Let (Z, g) be an (n dimensional) asymptotically conic space whose metric satisfies

$$
g=d r^{2}+r^{2} h(r, y) \text { on } Z \backslash K \cong\left[r_{0}, \infty\right)_{r} \times Y
$$

for some compact subset $K \subset Z$. The Laplace operator on Z has a canonical selfadjoint extension to $\mathcal{L}^{2}\left(Z, d V_{g}\right)$ because Z is complete. Then, the "normal operator at infinity" (see references for b-operators and more general "edge operators" Melrose and/or Mazzeo) is

$$
-\partial_{r}^{2}-\frac{n-1}{r} \partial_{r}+\Delta_{h},
$$

where Δ_{h} is the limiting Laplace operator on Y. Using separation of variables, any harmonic function (or form) f has an expansion as $r \rightarrow \infty$ of the form

$$
\begin{equation*}
\sum_{j=1}^{k}\left(c_{j}^{+} r^{\alpha_{j}^{+}}+c_{j}^{-} r^{\alpha_{j}^{-}}\right) f_{j}(y) \tag{0.1}
\end{equation*}
$$

where f_{j} is an eigenform of Δ_{h} satisfying

$$
\Delta_{h} f_{j}=\lambda_{j} f_{j}
$$

Note that Δ and Δ_{h} are non-negative operators by our sign convention. We compute the α_{j} by computing solutions of the quadratic equation

$$
\alpha^{2}+(n-2) \alpha-\lambda_{j}=0,
$$

so

$$
\alpha_{j}^{ \pm}=\frac{2-n}{2} \pm \sqrt{\frac{(n-2)^{2}}{4}+\lambda_{j}} .
$$

Thus, the α_{j} lie in the range

$$
\begin{equation*}
\left(-\infty, \frac{2-n}{2}-\sqrt{\frac{(n-2)^{2}}{4}+\lambda_{0}}\right] \cup\left[\frac{2-n}{2}+\sqrt{\frac{(n-2)^{2}}{4}+\lambda_{0}}, \infty\right) \tag{0.2}
\end{equation*}
$$

where λ_{0} is the bottom of the spectrum of Δ_{h} on Y.
The condition from "Case 1 " is that $-\delta>\frac{2-n}{2}$. In Case 2, we end up with a harmonic form f on Z which satisfies

$$
|f| \leq C r^{-\delta} \text { as } r \rightarrow \infty
$$

for some constant C which is independent of $r \rightarrow \infty$. Taking $-\delta$ close to $\frac{2-n}{2}$, since we know the range (0.2) in which the exponents in the expansion (0.1) lie, we know that in fact,

$$
|f| \leq C r^{-\gamma}, \quad-\gamma \leq \frac{2-n}{2}-\sqrt{\frac{(n-2)^{2}}{4}+\lambda_{0}}
$$

However, this does not give us the necessary contradiction, that $f \in \mathcal{L}^{2}$, unless we add some hypotheses.

The volume form on Z is asymptotic to $r^{n-1} d r d y$ for large r, thus we need f to decay better than $r^{-n / 2}$ for f to be \mathcal{L}^{2}. Thus, we need to know that

$$
\frac{2-n}{2}-\sqrt{\frac{(n-2)^{2}}{4}+\lambda_{0}}<\frac{-n}{2}
$$

This is true if we add the following hypothesis to the statement of the theorem.

- Assume Z has no \mathcal{L}^{2} harmonic forms and

$$
\lambda_{0}\left(Y, \Delta_{h}\right)>1-\frac{(n-2)^{2}}{4}
$$

Note that this is a priori satisfied if $n \geq 5$.

