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W
hat is a noncooperative game?
You probably know the Rock-Paper-
Scissors (RPS) game. Let’s play:
ready, set, go! What did you choose?
I chose rock. If you chose scissors,

then I win, because rock crushes scissors. If you
chose paper, then you win, because paper covers
rock. If you also chose rock, then it’s a draw. This
is an example of a two-player game in which each
player has the same three pure strategies: rock,
paper, and scissors. In order for this game to have
any significance, we ought to define a payoff func-
tion. For example, we could say the winner receives
$1, which the loser must pay to the winner, so the
loser’s payoff is −$1. If it’s a draw, then neither of
us receives anything, so the payoffs are both 0.

This is an example of what we’ll call a discrete
game. A more general notion is a continuous game,
also called a mixed game, which we will simply call
a game. Rather than just thinking about playing the
game once, we think of the game being repeated
an arbitrary or possibly infinite number of times.
Instead of deciding upon one of rock, paper, or
scissors, we decide upon a probability distribution
which is a list of three numbers corresponding to
the probabilities of drawing rock, paper, or scissors.
The sum of these three numbers is 1, because we as-
sume that we must draw something. One example
is (1/3,1/3,1/3), which means the probabilities of
drawing rock, paper, or scissors are equal to 1/3. If
you only want to draw rock, then your probability
distribution would be (1,0,0). We can use these
to compute our expected payoffs; these are known
as expected values in probability theory. The ex-
pected payoff is the sum of the probabilities of
each possible outcome multiplied with the payoff

Julie Rowlett wrote this article while working as a postdoc
at Leibniz Universität Hannover and has recently been ap-
pointed to a position as professor of mathematics at the
Technische Hochschule Ingolstadt. Her email address is
rowlett@math.uni-hannover.de.

DOI: http://dx.doi.org/10.1090/noti1150

according to that outcome. For me, there is a 1/3
chance I will win, which happens if I draw paper;
there is a 1/3 chance I will lose, which happens if
I draw scissors; and there is a 1/3 chance we will
have a draw, which happens if I also draw rock.
Summing these probabilities multiplied with the
corresponding payoffs, my expected payoff is

$1∗ 1
3
+−$1∗ 1

3
+ 0∗ 1

3
= 0.

In your case, there is also a 1/3 chance you will
win, which happens if I draw scissors; and there
is a 1/3 chance you will lose, which happens if
I draw paper; and there is a 1/3 chance we will
have a draw, which happens if I draw rock. So, your
expected payoff is also

$1∗ 1
3
+−$1∗ 1

3
+ 0∗ 1

3
= 0.

More generally, if my probability distribution is
(a, b, c), and yours is (x, y, z), corresponding to
probabilities of executing rock, paper, or scissors,
respectively, then we compute my expected payoff
as

−ay + az + bx− bz + cy − cx.
Exercise 1. What is your expected payoff?

For those of you with some background in game
theory, you know that RPS is an example of a two-
player, symmetric, zero-sum game which can be
given in normal form. We will see how to express
RPS in normal form in the section entitled “Pre-
liminaries”. The general field of game theory is
enormous and has connections to many areas of
mathematics, including geometry and analysis. It
would be quite bold to claim to present an exhaus-
tive survey of games and game theory. Instead, I
would like to present an introduction to games
which are especially appealing to geometric ana-
lysts. A noncooperative (continuous) game, which
we will simply call a game, is canonically identified
with a payoff function, from RN to Rn, where n is
the number of players, and N is the total number
of pure strategies summed over all players. This
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function will be assumed to be consistent with the
definition of expected payoff and expected value.

Exercise 2. What are n and N in the RPS game?

For mathematicians in the fields of analysis and
geometry, these games are appealing because we
can prove theorems about them using the tools of
geometry and analysis. A perfect example is the
Nobel-prize winning Nash Equilibrium Theorem.
To state this, we need a few definitions.

In an n-player game, each player has some num-
ber of pure strategies, like rock, paper, and scissors.
For more general games it is possible that, unlike
in RPS, different players have different sets of pure
strategies. We will usemi to denote the number of
pure strategies the ith player has. A strategy for the
ith player is a list ofmi nonnegative numbers which
sum to 1. These correspond to the probabilities
of executing each pure strategy. Note that these
are sometimes called mixed strategies, but since
they include the pure strategies, we will simply call
them strategies. We can identify each pure strategy
with a unit vector in Rmi , because each pure strat-
egy means doing that strategy with probability 1,
and the others with probability 0. So, for instance
in RPS, we could identify (1,0,0) ∈ R3 with rock,
(0,1,0) ∈ R3 with paper, and (0,0,1) ∈ R3 with
scissors.

The set of strategies for the ith player is the set
of all mi-tuples (c1, c2, . . . , cmi ) such that

(1) 0 ≤ cj ≤ 1, j = 1,2, . . . ,mi ,
mi∑
j=1

cj = 1.

This is nice for geometers because we can geomet-
rically represent the set of strategies for the ith
player as the convex hull of the standard unit vec-
tors {e1, e2, . . . , emi} in Rmi . The pure strategies are
the vertices of this convex set. We will represent
this set by Si and the total strategy space for all
players,

S =
n∏
i=1

Si .

The total strategy space is the product of each of
the strategy spaces, so we can view this as a subset
of RN , where

N :=
n∑
i=1

mi .

The game is represented by n payoff functions
which give the expected payoff to each player de-
termined by the strategies across all players

℘i : S→ R, i = 1, . . . , n.

Exercise 3. Prove that, in order for the payoff func-
tion to correspond to the expected value given by
the probability distributions over pure strategies,
each player’s payoff function must be linear in the
strategy of that player.

This means that, if all other players’ strategies
are fixed, then each ℘i : Si → R is a linear function.

The (total) payoff function is

℘ : S→ Rn, ℘ = (℘1, ℘2, . . . , ℘n).

Each component function ℘i of the total payoff
function depends on the strategies of all players.
Although each function ℘i is a linear function on
Si alone, it need not in general be simultaneously
linear in the strategies of the other players. For
example, the ith player’s payoff could depend on
the j th player’s strategy in a nonlinear way. We
will see more about this in the section called “Main
Result”.

Now, let us introduce the last bit of notation
necessary to state Nash’s celebrated theorem. For
s ∈ S and σ ∈ Si let (s; i;σ) be the strategy in
which the ith player’s strategy is replaced by σ ,
and all other players’ strategies are given by s.
An equilibrium strategy, which is also called an
equilibrium point, is s ∈ S such that

℘i(s) ≥ ℘i(s; i;σ) ∀σ ∈ Si , ∀i = 1,2, . . . , n.

This means that no player can increase his payoff
by changing his strategy if the strategies of the
other players remain fixed.

Theorem 1 (Nash). There exists at least one equi-
librium strategy in S.

The proof is a clever application of the Kaku-
tani Fixed Point Theorem. Nash defined a function
which has a fixed point precisely at an equilibrium
point. He then used the continuity of the total pay-
off function and the Fixed Point Theorem to prove
that this cleverly defined function must have at
least one fixed point.

In the spirit of Nash’s theorem, one can apply
geometric analysis to prove a characterization of
the level sets of the total payoff function for most
games. We begin in the section entitled “Prelimi-
naries” with an example from popular culture and
a preliminary result based on linear algebra. We
will see in “Main Result” that continuity of the pay-
off function and further properties follow from its
definition and use these properties to prove the
main theorem. This result is already recognized by
game theorists; see for example [23]. Nonetheless
the proof is instructive for readers learning the
theory of noncooperative games and combines ele-
ments of analysis, geometry, geometric measure
theory, and algebraic geometry, yet deep knowl-
edge of these areas is not required. Consequently,
we hope the reader also finds the result and its
proof interesting. Although this theorem does not
appear to be new, we have made a novel application
in biology to the “paradox of the plankton”, which
is described in the section called “Applications.”
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Preliminaries
In the film “A Beautiful Mind,” based on the life
and work of John Nash [19], there is a scene which
purportedly depicts Theorem 1.

A Beautiful Mind

In this scene Nash is together with a group of male
colleagues at a bar as a group of women enters. One
woman is depicted as being thought of as the most
attractive to the men, whereas the other women
are depicted as being considered only of average
attractiveness to the men. In a flash of insight,
Nash’s character apparently realizes that he can
apply the mathematics he has been studying to
determine the best course of action for the men: he
imagines each of the men approaching a different,
averagely attractive woman and leaving with her,
whereas the most attractive woman is left alone.
At this point Nash hurriedly leaves the bar to work
on his new insight.

The situation is depicted as a competition be-
tween the men, where each man decides without
communicating with the others which woman he
will court. This corresponds to a noncooperative
game. For simplicity, let’s assume there are 2 men,
denoted by man 1 and man 2, and 3 women, de-
noted by “M” (for most attractive) and “A” (for
averagely attractive). Each man has two pure strate-
gies: M which corresponds to courting the most
attractive woman, and A which corresponds to
courting one of the averagely attractive women.
The normal form of the game is the following.

M A
M (0, 0) (1, −1)
A (−1, 1) (0, 0)

This is also known as a payoff matrix, since it
lists the payoffs to each player according to the
corresponding strategies. This is an example of a
two-player, symmetric, zero-sum game, with one
dominant (winning) strategy. The winning strategy
is successfully courting the most attractive woman.
The interpretation of the payoffs is that if both men
do strategy M, then they are both unsuccessful.
This means that neither man has won, so they
each receive a neutral payoff, 0. Similarly, if both
men do strategy A, and presumably each court a
different woman, then they are both successful,
but since neither man has won, they each receive
a neutral payoff. In the last case one man does
strategy M while the other does strategy A, and so
the man doing M has won and receives a payoff of
1, whereas the other man can be seen as the loser
and receives a payoff of −1.

Exercise 4. Represent the rock-paper-scissors game
in normal form.

Probability Player 2
does dominant strategy

Probability Player 1
does dominant strategy

Equilibrium
Strategy

For a two-player, symmetric, zero-sum game
with one dominant strategy, the level sets of the

total payoff function are line segments. This
depicts the general idea of Theorem 2; the level

sets of most games almost always have positive
jjj-dimensional Hausdorff measure for

some j ≥ 1j ≥ 1j ≥ 1.

If the probability that man 1 does M is x, and
the probability that man 2 does M is y , then the
payoff functions are

℘1(x, y) = x− y, ℘2(x, y) = y − x.
Exercise 5. Show that the unique equilibrium strat-
egy is x = y = 1.

The interpretation of the equilibrium strategy
is that both men should with probability 1 attempt
to court the most attractive woman. This contra-
dicts the film which indicates that the equilibrium
strategy ought to be x = y = 0.

One possible explanation is that, if indeed the
above model was used to determine the best strat-
egy for the characters in the film, perhaps the
filmmakers understood that the payoff accord-
ing to the equilibrium strategy is (0,0). There is
precisely one strategy contained in the level set
℘−1(0,0) = {0 ≤ x = y ≤ 1} for which each man
pairs up with a woman with probability 1, and that
is the strategy (x = y = 0) given in the film. While
not the equilibrium strategy, it is just as good in
the sense that the payoff is identical to the payoff
according to the equilibrium strategy, so perhaps
this is the reason it is considered to be the best.

It may however seem more natural to define the
game with a different payoff matrix.

Exercise 6. Is it possible to define a game in normal
form such that the equilibrium strategy is consistent
with the film?

For the solution to this exercise, see [1].
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Linear Payoff Functions

While it is always true that the ith player’s payoff
function depends linearly on his own strategy, it
need not be the case that his payoff function also
depends linearly on the other players’ strategies.
If, however, this is the case, then we can prove the
following result. This is a good warm-up for the
more general characterization of the level sets of
payoff functions for typical games.

Proposition 1. For an n-player game, assume that
each player has at least two pure strategies and at
least one of the following holds.

(1) At least one player has three or more pure
strategies.

(2) The game is zero-sum.

Let N denote the total number of pure strategies
over all players as above. If only (1) holds, let k =
N − 2n. If (2) holds, let k = N − 2n+ 1. If the payoff
functions are all linear functions in the strategies
of all players, then the level sets of the total payoff
function are affine linear subsets of dimension j ≥ k,
where j is given in the proof below.

Recall that a game is zero-sum precisely when,
for each s ∈ S,

(2)
n∑
i=1

℘i(s) = 0.

Zero-sum games imply that gains by some players
are met by equal losses to other players and can
therefore be used to model competition for limited
resources.

Proof. Do you remember the Rank-Nullity Theo-
rem from linear algebra? This theorem states that,
for an m× n matrix, the sum of the dimension of
the column space (rank) together with the dimen-
sion of the kernel (nullity) is equal to n. The idea
is that if one uses Gauss-Jordan elimination to put
the matrix in row-reduced echelon form, then each
column is either a pivot column or not. The num-
ber of pivot columns is the rank, and the number
of nonpivot columns is the nullity. This number
must sum up to the total number of columns, and
that is n. So, what does this mean if we have a ma-
trix which is longer than it is tall, so that n > m?
Since the column space is the dimension of the
space spanned by the columns, and each column
is an element of Rm, this dimension is at most m.
Since n > m, the nullity must be at least n −m.
It turns out that the payoff function ℘ for most
games can be canonically identified with a map
from a higher-dimensional Euclidean space to a
lower-dimensional Euclidean space.

Exercise 7. Show that the strategy space S is an
N − n-dimensional subset of RN . Using (2) if the
game is zero-sum, show that the payoff function

is canonically identified with a map from RN−n to
RN−n−k.

Since the payoff function can be represented
by an affine linear function from RN−n to RN−n−k,
there exists an (N −n−k)× (N −n)matrix M and
an (N−n−k)×1 vector b such that ℘(s) = Ms+b.
The level sets of ℘ are translations of the kernel of
M , and since M is k-columns wider than it is tall,
by the Rank-Nullity Theorem the dimension of the
kernel of M is j ≥ k. �

This proposition may be helpful in familiarizing
readers with games and payoff functions, since it
relies only on the definitions and linear algebra.
What is more interesting is that this result can be
generalized to payoff functions which are not linear
in the strategies of all players. The assumptions
(1) and (2) above are satisfied by a “typical game,”
because if a player has only one pure strategy, then
he cannot affect the outcome of play, so his role is
trivial. Moreover, many games have at least three
pure strategies per player and/or are zero-sum.

Main Result
While John Nash was a graduate student at Prince-
ton in 1950, he proved the existence of equilibrium
strategies for noncooperative games [19]. In 1952,
he published Real Algebraic Manifolds and proved
that two real algebraic manifolds are equivalent
if and only if they are analytically homeomorphic
[20]. He then proceeded in 1954–1956 to study
the imbedding problem for Riemannian manifolds
[21], [22]. That work involved what are now known
as Nash functions and Nash manifolds; the payoff
functions considered here are examples of Nash
functions. Based on his work in game theory, dif-
ferential geometry, and algebraic geometry, we can
be pretty sure that Nash was the first to recognize
this result and therefore acknowledge it to him.1

Theorem 2 (Nash). For an n-player game, assume
that each player has at least two pure strategies,
and at least one of the following holds.

(1) At least one player has three or more pure
strategies.

(2) The game is zero-sum.

The image ℘(S) is then a k-dimensional semial-
gebraic set for some k ≤ n in case only (1) holds
or k ≤ n − 1 in case (2) holds. For almost every
y ∈ ℘(S) with respect to k-dimensional Hausdorff
measure, the level set ℘−1(y) has positive (or in-
finite) N − n − k-dimensional Hausdorff measure,
noting that N − n− k ≥ 1.

1The author would like to note that this result and its
proof, although implicitly or explicitly known by experts, was
obtained independently.
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Proof. The main idea is to put a game which satis-
fies these hypotheses in normal form. The strategy
space is

S �
n∏
i=1

Si ,

Si �


mi∑
j=1

cjej ∈ Rmi : 0 ≤ cj ≤ 1,
mi∑
j=1

cj = 1

 ,
where ej are used to denote the standard unit vec-
tors in Euclidean space. The normal form of a game
lists the payoffs to all players corresponding to all
possible combinations of pure strategies. These
combinations of pure strategies geometrically cor-
respond to the vertices of S. We denote this set
by V and use binary expansions of integers to
represent the elements of V . There are

M :=
n∏
i=1

mi

elements of V . Each element is of the form

vx =
N∑
j=1

xjej , xj ∈ {0,1}∀j,

x :=
N∑
j=1

xj2j ∈ {2,4, . . . ,2N+1 − 2}.

So we see that each vertex vx corresponds to a
unique x, because binary expansions are unique
(see Chapter 6 of [26]). There is one further re-
striction on the vertices: each player executes one
pure strategy at a vertex vx. Mathematically we can
express this using the orthogonal projections

φi : S→ Si ,

together with

1i :=
mi∑
j=1

ej ,

so that

φi(vx) · 1i = 1, ∀i = 1, . . . , n.

The normal form for such a game would in this gen-
erality be a rather large matrix. Each player requires
one dimension, so the matrix is n-dimensional.
Along the ith dimension there are mi slots, corre-
sponding to each of themi possible pure strategies
for the ith player. In an entry of this matrix, we list
the payoffs to each player for the corresponding
list of pure strategies. Once we know all these pay-
offs, then just like the RPS game, we can write the
payoff for any mixed strategy, because this must
be consistent with the expected value. So, for a
strategy

s =
N∑
j=1

cjej ∈ S, ℘i(s) =
∑
vx∈V

Probvx(s)℘i(vx).

Above, we used Probvx(s) to denote the probability
according to s of the combination of pure strate-
gies in vx. This is the product of the probabilities
according to s of each pure strategy in vx,

Probvx(s) =
N∏
j=1

xjcj .

So what does this mean? The payoff functions
are

℘i(s) =
∑
vx∈V

 N∏
j=1

xjcj

℘i(vx).
The important observation is that this is a poly-
nomial function in the variables {cj}Nj=1. The total
payoff function is therefore a real polynomial func-
tion from S ⊂ RN → Rn. Since S is defined by a
finite set of inequalities and linear equations, it
is by definition a semialgebraic set (see Definition
2.1.4 on p. 24 of [3]). By the Tarski-Seidenberg
Theorem (see pp. 28–29 of [3]), ℘(S) is also a semi-
algebraic set. Such a set has the structure of a
stratified space, which is a disjoint union of a fi-
nite number of smooth manifolds (strata) which
are themselves semialgebraic sets, and such that
this stratification can be taken to satisfy the Whit-
ney conditions [14]. In this case, since the payoff
function is continuous, and S is compact, the im-
age ℘(S) is compact, and so this semialgebraic set
is triangulable and is semialgebraically isomorphic
to a finite polyhedron [14]. It has some dimension
k ≤ n. Note that if the game is zero-sum, then

℘n(s) = 1−
n−1∑
i=1

℘i(s),

which implies that ℘(S) has dimension k ≤ n −
1. The level sets, ℘−1(℘(s)) for ℘(s) ∈ ℘(S) are
known in this setting as fibers. By Theorem 9.3.2
and Corollary 9.3.3 on pp. 221–224 of [3], we can
decompose ℘(S) as the union of semialgebraic sets

℘(S) =
L⋃
l=0

Tl , dim(T0) = k, dim(Tl) < k, ∀l ≥ 1,

such that each Tl is closed for l ≥ 1, and ℘ has
a semialgebraic trivialization over each Tl . This
means that, for each l, the fibers ℘−1(y) have di-
mension dl for all y ∈ Tl . By removing the lower-
dimensional strata, T0 is an open k-dimensional
semialgebraic set. By Proposition 2.38 on p. 71 of
[2], ℘−1(T0) is an open semialgebraic set (openness
follows since ℘ is a polynomial and therefore con-
tinuous). By the Semialgebraic Sard Theorem (see
Theorem 9.6.2 on p. 235 of [3]) the set of critical
values in T0 has dimension strictly smaller than
k. At a regular (not critical) point, the derivative
matrix D℘(s) has rank equal to k, and the level
set ℘−1(℘(s)) is an N − n − k-dimensional sub-
manifold of S (recall that S is N − n-dimensional).
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Since the dimension of the fibers over T0 are all
the same, this means that the level sets ℘−1(y)
have dimension N − n− k for all y ∈ T0. Further-
more the sets ℘(S) and T0 differ by a set of zero
k-dimensional Hausdorff measure. Consequently,
for almost all (with respect to k-dimensional Haus-
dorff measure) y ∈ ℘(S), the level set ℘−1(y) is
an N − n− k-dimensional submanifold and there-
fore has positive (or infinite) N−n−k-dimensional
Hausdorff measure. �

Remark 1. One could likely say more about the
structure of the level sets (fibers) using the tools
of real algebraic geometry; references include [3],
[4], [2], [28], [10]. For our biological application
discussed in the section “Applications,” the above
theorem was sufficient.

Bibliographical Note

Since I was rather new to game theory, it was
natural to search the literature for results con-
cerning the level sets of payoff functions. In [15],
the level sets of the value (payoff) function for lin-
ear differential games of fixed terminal time with
a convex payoff function were numerically investi-
gated. For a linear pursuit-evasion game with two
pursuers and one evader, the level sets of the value
function were numerically studied in [8]. For zero-
sum games, [29] studied a certain Hamiltonian flow
which can be used to study the best response dy-
namic in two-person games, and showed that under
certain assumptions the level sets of the associ-
ated Hamiltonian function are topological spheres.
Further examples of the study of the level sets
of the payoff functions for specific games include
[18], [24], [25], and [27]. Investigating connections
between real algebraic geometry and game theory
led to Neyman’s work including [23]. It appears
that many results in game theory tend to be more
computational whereas the results in real algebraic
geometry tend to be more theoretical. We hope to
encourage further communication between game
theorists and real algebraic geometers.

Applications
The structure of the level sets of the payoff func-
tions has a novel application to biology by pro-
viding a new and rigorous solution to the long-
standing “paradox of the plankton” in [16].

Biodiversity of Micro-Organisms

The “paradox of the plankton” coined by Hutchin-
son in 1961 [13] is the observation that the
number of co-existing plankton species appears
to contradict the explicable number based on
competition theory [11], [9]. The number of co-
existing species is orders of magnitude larger
than expected, based on competition theories

and predictions which yield reasonably accurate
numbers for macro-organisms. There have been
numerous explanations proposed by biologists,
but a mathematical theory consistent with all
these explanations, which is based on a biological
factor subject to natural selection and is not in
contradiction with competition theory, appears
to have been missing. In [16], we realized that
Theorem 2 has implications for a game modeling
competition of plankton organisms which may
resolve the paradox.

How can we use a game to model competition
of plankton organisms? Plankton reproduce asex-
ually and are genetically identical within a species.
Justified by this clonal nature we define a “player”
as consisting of many individuals belonging to one
species. The survival of the species is a cumulative
function of the survival of its individuals. Due to
the asexual reproduction, success in competition
among microbes can be identified with population
increase or decrease, which corresponds to positive
or negative payoff. The strategies for each player
(=species) are probability distributions across the
various behaviors of which that species is capa-
ble. Each of these probabilities is the probability
that a randomly selected individual organism does
the corresponding behavior (like swim up, for ex-
ample). In this way, we can use a game to model
competition between plankton species.

What is the connection with the structure of the
level sets of typical games? In a broad sense evolu-
tion can be described as a feedback loop; we refer
readers interested in evolutionary game dynamics
to [12] and the references therein. This means that,
within a level set of a game modeling competition,
the feedback to all species is identical. There is ab-
solutely no difference. In the generic sense made
precise in Theorem 2, the level sets of typical games
are typically large. How do the hypotheses of the
theorem fit with plankton ecology? The hypotheses
mean that all species are capable of at least two
different behaviors. This corresponds to individual
variability which seems to be the underlying mech-
anism supporting the large plankton biodiversity
and may explain the unexpectedly large biodiver-
sity of other microbes as well. The assumptions
(1) and (2) mean that either species possess fur-
ther variability and/or are competing for limited
resources which also appears to be the case.

Although plankton individuals are genetic
clones within a species, they exhibit significant
variability among individuals; see §1 of [16] and
the references cited therein. This individual vari-
ability is inherent to a species and is subject to
natural selection and consequently to the evo-
lutionary feedback loop [7]. We propose that it
is this individual variability which is driving the
large biodiversity. Mathematically, by Theorem 2,
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this variability implies that the level sets of the
payoff function are large. These large level sets
correspond to the large variety of strategies which
are all “equally good”, in the sense that they
produce identical feedback. The various strategies
in the level sets may characterize different species
and correspond to the large number of species
which may co-exist, which we describe as “many
different ways to stay in the game” [16].

Our theory may be thought of as “survival of
the cumulatively fit” rather than “survival of the
fittest” and is applicable to micro-organisms which
reproduce asexually. Defining a player as consist-
ing of several organisms belonging to one species,
while reasonable for micro-organisms which repro-
duce asexually, no longer makes sense for larger
macro-organisms which do not reproduce asexu-
ally, because the death of an individual implies
the loss of that individual’s unique genome. Con-
sequently, our theory does not contradict competi-
tion theories or predictions of species abundance
for macro-organisms.

Compatibility. It may seem counterintuitive to ap-
ply noncooperative game theory to evaluate a rela-
tionship, but many everyday decisions are made
quickly according to self-interest, without coop-
erative discussion. In [1] we used noncooperative
game theory to design a new type of compatibility
test to measure the balance and overall happiness
of two people in a relationship. Our test may be
customized to analyze the overall balance and sat-
isfaction in any relationship between two people,
romantic or otherwise; this is discussed in [1]. If
you are in a relationship, we challenge you to take
this test!

Concluding Remarks

In situations modeled by noncooperative games,
players do not communicate; the only feedback
they experience is their payoff. This means that
not only equilibrium strategies but also the struc-
ture of the level sets of the payoff function are
important to understand. Some readers may be of
the opinion that only seasoned experts ought to
write about a certain topic. However, approach-
ing a field from a different perspective may at
times be helpful, and so I hope that this note
written from a geometric analyst’s perspective has
provided some basic insight into noncooperative
(mixed/continuous) games, and that it may inspire
further investigation and collaboration.
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