ERRATUM TO THE SOUND OF SYMMETRY

Z. LU \& J. ROWLETT

1. Misprints

There is a typo at the bottom of p. 823, where it is written $\lambda_{2}\left(\Omega_{1}\right)-\lambda_{2}\left(\Omega_{1}\right)=\lambda_{2}\left(\Omega_{k}\right)-$ $\lambda_{1}\left(\Omega_{k}\right) \leq \cdots$. Clearly the left side of the equality should be $\lambda_{2}\left(\Omega_{1}\right)-\lambda_{1}\left(\Omega_{1}\right)$. Lemma 11 should be corrected to state that the length of the shortest closed geodesic that is not contained entirely in the boundary is twice the height; see [2, Proposition 14]. There is a typo in [3, equation(3.9)] due to a missing set of parentheses. Since

$$
\left[(\alpha(\pi-\alpha))^{-1}\right]^{\prime}=-\frac{\pi-2 \alpha}{\alpha^{2}(\pi-\alpha)^{2}},
$$

[3, equation(3.9)] should read

$$
g^{\prime}(\alpha)=-\frac{\pi-2 \alpha}{\alpha^{2}(\pi-\alpha)^{2}}(f(\alpha)-f(\beta)), \quad f(x)=\frac{x^{2}(\pi-x)^{2} \cos (x)}{(\pi-2 x) \sin ^{2} x} .
$$

Below that the statement should be corrected to read that an equivalent expression for $f(\alpha)=-\frac{\csc (x) \cot (x)}{\left((\alpha(\pi-\alpha))^{-1}\right)^{\prime}}$. To prove [3, Lemma 12], in [3, (3.10)] we defined

$$
u(\alpha):=\frac{f^{\prime}(\alpha)}{f(\alpha)}=\log (f(\alpha))^{\prime}=\frac{1}{\pi / 2-\alpha}+\frac{2}{\alpha}-2 \cot \alpha-\frac{2}{\pi-\alpha}-\tan \alpha .
$$

We claimed that $u(\alpha)<0$ for $\alpha \in(0, \pi / 2)$, however there are two misprints in the proof of the claim. The -2 in the last equation on p .831 should be -4 , and the -4 in the first equation on p. 832 should be -8 . Although with these misprints the proof in [3] of the claim no longer holds, here we present two proofs that may be of independent interest.

> 2. Proof of [3, Claim on p.830]

Proposition 1. The function

$$
u(\alpha):=\frac{1}{\pi / 2-\alpha}+\frac{2}{\alpha}-2 \cot \alpha-\frac{2}{\pi-\alpha}-\tan \alpha<0, \quad \alpha \in(0, \pi / 2) .
$$

Proof. Changing variables to $z=\frac{\alpha}{\pi}$ the proposition is equivalent to proving that

$$
\begin{gathered}
-2 \cot (\pi z)-\tan (\pi z)+\frac{2}{\pi z}-\frac{2}{\pi-\pi z}+\frac{1}{\pi / 2-\pi z}<0 \\
\Longleftrightarrow 2 \pi \cot (\pi z)+\pi \tan (\pi z)-\frac{2}{z}+\frac{2}{1-z}-\frac{2}{1-2 z}>0, \quad z \in(0,1 / 2) .
\end{gathered}
$$

We further make the change of variables $w=\frac{1}{2}-z$ and note that $\cot (\pi(1 / 2-w))=\tan (\pi w)$, so this is equivalent to

$$
\begin{equation*}
2 \pi \tan (\pi w)+\pi \cot (\pi w)-\frac{1}{w}-\frac{4}{1-2 w}+\frac{4}{1+2 w}>0, \quad w \in(0,1 / 2) \tag{1}
\end{equation*}
$$

By [1, 1.421.3]

$$
\begin{equation*}
\pi \cot (\pi w)=\sum_{k \in \mathbb{Z}} \frac{1}{k+w}=\frac{1}{w}-\sum_{k=1}^{\infty} \frac{2 w}{k^{2}-w^{2}} \tag{2}
\end{equation*}
$$

By $[1,1.421 .1]$

$$
\begin{equation*}
2 \pi \tan (\pi w)=16 w \sum_{k \geq 0} \frac{1}{(2 k+1)^{2}-4 w^{2}} \tag{3}
\end{equation*}
$$

Since

$$
\frac{4}{1+2 w}-\frac{4}{1-2 w}=-\frac{16 w}{1-4 w^{2}}, \quad \frac{16 w}{(2 k+1)^{2}-4 w^{2}}=\frac{4 w}{\left(k+\frac{1}{2}\right)^{2}-w^{2}}
$$

by (2) and (3), observing that $w>0,(1)$ is equivalent to

$$
\begin{equation*}
\wp\left(w^{2}\right):=\sum_{k \geq 1} \frac{2}{\left(k+\frac{1}{2}\right)^{2}-w^{2}}-\sum_{k=1}^{\infty} \frac{1}{k^{2}-w^{2}}>0, \quad w \in(0,1 / 2) . \tag{4}
\end{equation*}
$$

We therefore calculate

$$
\wp^{\prime}(x)=\sum_{k=1}^{\infty} \frac{2}{\left(\left(k+\frac{1}{2}\right)^{2}-x\right)^{2}}-\sum_{k=1}^{\infty} \frac{1}{\left(k^{2}-x\right)^{2}} .
$$

Since we consider $x=w^{2} \in(0,1 / 2)$, we have for $x \in(0,1 / 4)$,

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{2}{\left(\left(k+\frac{1}{2}\right)^{2}-x\right)^{2}} \leq \sum_{k=1}^{\infty} \frac{2}{\left(\left(k+\frac{1}{2}\right)^{2}-1 / 4\right)^{2}}=\sum_{k=1}^{\infty} \frac{2}{k^{2}(k+1)^{2}} \\
=2 \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)^{2}=2 \sum_{k=1}^{\infty} \frac{1}{k^{2}}+2 \sum_{k=1}^{\infty} \frac{1}{(k+1)^{2}}-4 \sum_{k=1}^{\infty} \frac{1}{k(k+1)} \\
=\frac{\pi^{2}}{3}+2\left(\frac{\pi^{2}}{6}-1\right)-4<0.6
\end{gathered}
$$

having used

$$
\sum_{k \geq 1} \frac{1}{k(k+1)}=\sum_{k \geq 1}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1, \quad \sum_{k \geq 1} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Since $x \in(0,1 / 4)$,

$$
\sum_{k=1}^{\infty} \frac{1}{\left(k^{2}-x\right)^{2}} \geq \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}>1 \Longrightarrow \wp^{\prime}(x)<0.6-1<0
$$

Thus \wp is a strictly decreasing function, and for $w=x^{2} \in(0,1 / 4)$

$$
\begin{aligned}
& \wp(w)>\wp(1 / 4)=\sum_{k=1}^{\infty} \frac{2}{k(1+k)}-\sum_{k=1}^{\infty} \frac{1}{k^{2}-1 / 4} \\
& =2 \sum_{k=1}^{\infty}\left(\frac{1}{k}-\frac{1}{k+1}\right)-\sum_{k=1}^{\infty}\left(\frac{1}{k-1 / 2}-\frac{1}{k+1 / 2}\right)=0 .
\end{aligned}
$$

3. Laurent series method

An alternative proof that may be of independent interest is obtained using the Laurent and Taylor series expansions of the function $u(\alpha)$ for $\alpha \in(0, \pi / 4]$ and $\alpha \in(\pi / 4, \pi / 2)$.
Proposition 2. The function

$$
u(\alpha):=\frac{1}{\pi / 2-\alpha}+\frac{2}{\alpha}-2 \cot \alpha-\frac{2}{\pi-\alpha}-\tan \alpha
$$

is strictly negative for $\alpha \in(0, \pi / 4]$.
Proof. Recall the Laurent expansion [1, 1.411.7]

$$
\cot (z)=\sum_{n \geq 0} \frac{(-1)^{n} 4^{n} B_{2 n} z^{2 n-1}}{(2 n)!}
$$

with $B_{2 n}$ the $2 n^{\text {th }}$ Bernoulli number. Consequently

$$
\frac{1}{z}-\cot (z)=-\sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} z^{2 n-1}}{(2 n)!}
$$

One also has the expansion [1, 1.411.5]

$$
\begin{equation*}
\tan z=\sum_{n \geq 1} \frac{(-1)^{n-1} 4^{n}\left(2^{2 n}-1\right) B_{2 n} z^{2 n-1}}{(2 n)!} \tag{5}
\end{equation*}
$$

We calculate the geometric series

$$
\frac{1}{\pi / 2-\alpha}=\frac{2}{\pi(1-2 \alpha / \pi)}=\frac{2}{\pi} \sum_{n \geq 0}\left(\frac{2 \alpha}{\pi}\right)^{n}, \quad 0<\alpha<\frac{\pi}{2},
$$

and

$$
-\frac{2}{\pi-\alpha}=-\frac{2}{\pi} \frac{1}{1-\alpha / \pi}=-\frac{2}{\pi} \sum_{n \geq 0}\left(\frac{\alpha}{\pi}\right)^{n}
$$

So we have

$$
u(\alpha)=\frac{2}{\pi} \sum_{n \geq 0}\left[-\left(\frac{\alpha}{\pi}\right)^{n}+\left(\frac{2 \alpha}{\pi}\right)^{n}\right]-\tan \alpha-2 \sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} \alpha^{2 n-1}}{(2 n)!}
$$

Using the series expansion of the tangent (5)we therefore combine and simplify

$$
u(\alpha)=\frac{2}{\pi} \sum_{n \geq 1}\left(\frac{\alpha}{\pi}\right)^{n}\left(2^{n}-1\right)+\sum_{n \geq 1} \frac{4^{n} B_{2 n} \alpha^{2 n-1}}{(2 n)!}(-1)^{n}\left(4^{n}-3\right) .
$$

We calculate

$$
\begin{gathered}
\frac{2}{\pi} \sum_{n \geq 1}\left(\frac{\alpha}{\pi}\right)^{n}\left(2^{n}-1\right)=\sum_{k \geq 1} \frac{2}{\pi}\left(2^{2 k-1}-1\right) \frac{\alpha^{2 k-1}}{\pi^{2 k-1}}+\sum_{j \geq 1} \frac{2}{\pi}\left(2^{2 j}-1\right) \frac{\alpha^{2 j-1}}{\pi^{2 j}} \alpha \\
=\sum_{k \geq 1}\left(2^{2 k}-2\right) \frac{\alpha^{2 k-1}}{\pi^{2 k}}+\sum_{j \geq 1} \frac{2 \alpha}{\pi}\left(4^{j}-1\right) \frac{\alpha^{2 j-1}}{\pi^{2 j}} \\
=\sum_{n \geq 1} \alpha^{2 n-1}\left[\frac{4^{n}-2}{\pi^{2 n}}+\frac{2 \alpha}{\pi} \frac{\left(4^{n}-1\right)}{\pi^{2 n}}\right] .
\end{gathered}
$$

We therefore have

$$
\begin{equation*}
u(\alpha)=\sum_{n \geq 1} \alpha^{2 n-1}\left[\left[\frac{4^{n}-2}{\pi^{2 n}}+\frac{2 \alpha}{\pi} \frac{\left(4^{n}-1\right)}{\pi^{2 n}}\right]+\frac{4^{n}\left(4^{n}-3\right)(-1)^{n} B_{2 n}}{(2 n)!}\right] \tag{6}
\end{equation*}
$$

Note that the Bernoulli numbers satisfy

$$
(-1)^{n} B_{2 n}=-\left|B_{2 n}\right| \forall n \geq 1
$$

Moreover, by [1, 9.616],

$$
\left|B_{2 n}\right|=\frac{(2 n)!\zeta(2 n)}{2^{2 n-1} \pi^{2 n}} \forall n \geq 1
$$

with ζ the Riemann zeta function. Consequently the coefficients of $\alpha^{2 n-1}$ in (6) are

$$
\begin{aligned}
& \frac{1}{\pi^{2 n}}\left(4^{n}-2+\frac{2 \alpha}{\pi}\left(4^{n}-1\right)-2\left(4^{n}-3\right) \zeta(2 n)\right) \\
= & \frac{1}{\pi^{2 n}}\left(\left(4^{n}-1\right)\left(1+\frac{2 \alpha}{\pi}-2 \zeta(2 n)\right)-1+4 \zeta(2 n)\right) .
\end{aligned}
$$

If we assume that $\alpha \in(0, \pi / 4]$, then using the very crude estimates that $1<\zeta(2 n)<2$ for $n \geq 1$, we obtain the upper bound for the coefficients

$$
\begin{equation*}
\frac{1}{\pi^{2 n}}\left(-\frac{1}{2}\left(4^{n}-1\right)-1+8\right)<0 \forall n \geq 2 \tag{7}
\end{equation*}
$$

For $n=1$ we explicitly evaluate the Riemann zeta function and obtain the exact value of the coefficient:

$$
\begin{aligned}
& \frac{1}{\pi^{2}}\left(4-2+\frac{6 \alpha}{\pi}-2 \frac{\pi^{2}}{6}\right)=\frac{1}{\pi^{2}}\left(2+\frac{6 \alpha}{\pi}-\frac{\pi^{2}}{3}\right)<0 \\
& \quad \Longleftrightarrow \alpha<\frac{\pi}{3}\left(\frac{\pi^{2}}{6}-1\right) \approx 0.675, \quad \frac{\pi}{4} \approx 0.785
\end{aligned}
$$

Consequently, to prove that $u(\alpha)<0$ on $(0, \pi / 4]$, we investigate precisely the first two terms using the wonderful exercise in Fourier analysis which shows that the Riemann zeta function satisfies

$$
\zeta(2)=\frac{\pi^{2}}{6}, \quad \zeta(4)=\frac{\pi^{4}}{90}
$$

The sum of the first two terms in the series defining $u(\alpha)$ is

$$
\frac{\alpha}{\pi^{2}}\left(2+\frac{6 \alpha}{\pi}-\frac{\pi^{2}}{3}\right)+\frac{\alpha^{3}}{\pi^{4}}\left(15\left(1+\frac{2 \alpha}{\pi}-\frac{2 \pi^{4}}{90}\right)-1+\frac{4 \pi^{4}}{90}\right)
$$

Since $\alpha, \pi>0$, the sign of the above expression is equal to the sign of

$$
\begin{equation*}
2+\frac{6 \alpha}{\pi}-\frac{\pi^{2}}{3}+\frac{\alpha^{2}}{\pi^{2}}\left(14+\frac{30 \alpha}{\pi}-\frac{13 \pi^{4}}{45}\right) \tag{8}
\end{equation*}
$$

For α near zero, this expression is strictly negative because $2<\frac{\pi^{2}}{3}$. The derivative of (8) with respect to α is

$$
\frac{6}{\pi}+\frac{28 \alpha}{\pi^{2}}+\frac{90 \alpha^{2}}{\pi^{3}}-\frac{26 \alpha \pi^{2}}{45}
$$

For α near zero, this is positive. This is a quadratic function, and the discriminant is

$$
\left(\frac{28}{\pi^{2}}-\frac{26 \pi^{2}}{45}\right)^{2}-4\left(\frac{90}{\pi^{3}} \frac{6}{\pi}\right)<0
$$

Consequently, there are no real roots, and the derivative of (8) is positive, so (8) is an increasing function of α. Its maximum on $(0, \pi / 4]$ occurs at $\alpha=\pi / 4$. To compute the sign, we evaluate (8) at $\alpha=\pi / 4$ obtaining

$$
2+\frac{6}{4}-\frac{\pi^{2}}{3}+\frac{1}{16}\left(14+\frac{30}{4}-\frac{13 \pi^{4}}{45}\right)=\frac{7}{2}-\frac{\pi^{2}}{3}+\frac{1}{16}\left(\frac{43}{2}-\frac{13 \pi^{4}}{45}\right) \approx-0.2<0
$$

This shows that on $(0, \pi / 4]$ the sum of the first two terms in the series defining $u(\alpha)$ is strictly negative. By (7) the rest of the sum is also negative, and therefore $u(\alpha)<0$ on ($0, \pi / 4]$.

Proposition 3. The function

$$
u(\alpha):=\frac{1}{\pi / 2-\alpha}+\frac{2}{\alpha}-2 \cot \alpha-\frac{2}{\pi-\alpha}-\tan \alpha
$$

is strictly negative for $\alpha \in(\pi / 4, \pi / 2)$.
Proof. Since

$$
\begin{gathered}
\tan (\alpha)=\cot (\pi / 2-\alpha), \quad \cot (\alpha)=\tan (\pi / 2-\alpha) \\
u(\alpha)=\frac{1}{\pi / 2-\alpha}+\frac{2}{\pi / 2-\pi / 2+\alpha}-2 \tan (\pi / 2-\alpha)-\frac{2}{\pi / 2+\pi / 2-\alpha}-\cot (\pi / 2-\alpha)
\end{gathered}
$$

It is convenient to make the substitution

$$
y:=\frac{\pi}{2}-\alpha
$$

Then $y \in(0, \pi / 4)$ corresponds to $\alpha \in(\pi / 4, \pi / 2)$, and

$$
\begin{aligned}
& u(\alpha)=\frac{1}{y}-\cot y-2 \tan y+\frac{2}{\pi / 2-y}-\frac{2}{\pi / 2+y} \\
& =\frac{1}{y}-\cot y-2 \tan y+\frac{4}{\pi} \frac{1}{1-\frac{2 y}{\pi}}-\frac{4}{\pi} \frac{1}{1-\left(-\frac{2 y}{\pi}\right)}
\end{aligned}
$$

We use the series expansions:

$$
\frac{1}{y}-\cot y=-\sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} y^{2 n-1}}{(2 n)!}, \quad-2 \tan y=-2 \sum_{n \geq 1} \frac{(-1)^{n-1} 4^{n}\left(4^{n}-1\right) B_{2 n} y^{2 n-1}}{(2 n)!}
$$

with $B_{2 n}$ the $2 n^{\text {th }}$ Bernoulli number. So,

$$
\frac{1}{y}-\cot y-2 \tan y=\sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} y^{2 n-1}}{(2 n)!}\left(2\left(4^{n}\right)-3\right)
$$

We also have

$$
\frac{4}{\pi} \frac{1}{1-\frac{2 y}{\pi}}=\frac{4}{\pi} \sum_{n \geq 0}\left(\frac{2 y}{\pi}\right)^{n}
$$

So,

$$
u(\alpha)=\sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} y^{2 n-1}}{(2 n)!}\left(2\left(4^{n}\right)-3\right)+\frac{4}{\pi} \sum_{n \geq 0}\left(\frac{2 y}{\pi}\right)^{n}-\frac{2}{\pi / 2+y}
$$

Similarly we combine the series

$$
\frac{4}{\pi} \frac{1}{1-\frac{2 y}{\pi}}-\frac{4}{\pi} \frac{1}{1-\left(-\frac{2 y}{\pi}\right)}=\frac{4}{\pi} \sum_{n \geq 0}\left(\frac{2 y}{\pi}\right)^{n}-\left(-\frac{2 y}{\pi}\right)^{n}
$$

$$
=\frac{8}{\pi} \sum_{n \geq 1}\left(\frac{2 y}{\pi}\right)^{2 n-1}
$$

So, in total we obtain

$$
u(\alpha)=\sum_{n \geq 1} \frac{(-1)^{n} 4^{n} B_{2 n} y^{2 n-1}}{(2 n)!}\left(2\left(4^{n}\right)-3\right)+\frac{8}{\pi} \sum_{n \geq 1}\left(\frac{2 y}{\pi}\right)^{2 n-1}, \quad y=\frac{\pi}{2}-\alpha .
$$

Putting the series together we obtain

$$
\sum_{n \geq 1} y^{2 n-1}\left[\frac{(-1)^{n} 4^{n}\left(2^{2 n+1}-3\right) B_{2 n}}{(2 n)!}+\frac{2^{2 n+2}}{\pi^{2 n}}\right]
$$

Note that

$$
(-1)^{n} B_{2 n}=-\left|B_{2 n}\right|<0 \forall n \geq 1
$$

By [1, 9.616],

$$
\left|B_{2 n}\right|=\frac{(2 n)!\zeta(2 n)}{2^{2 n-1} \pi^{2 n}} \forall n \geq 1
$$

with ζ the Riemann zeta function. We therefore obtain

$$
\frac{4^{n}\left(2^{2 n+1}-3\right)\left|B_{2 n}\right|}{(2 n)!}=\frac{2\left(2^{2 n+1}-3\right) \zeta(2 n)}{\pi^{2 n}} .
$$

The coefficient of $y^{2 n-1}$ is therefore

$$
\frac{1}{\pi^{2 n}}\left(2^{2 n+2}-2\left(2^{2 n+1}-3\right) \zeta(2 n)\right)=\frac{1}{\pi^{2 n}}\left(2^{2 n+2}(1-\zeta(2 n))+6 \zeta(2 n)\right) .
$$

For $n=1$ we compute the coefficient of y explicitly

$$
\begin{equation*}
\frac{1}{\pi^{2}}\left(16-2(5) \frac{\pi^{2}}{6}\right)=\frac{1}{\pi^{2}}\left(16-\frac{5 \pi^{2}}{3}\right)<-0.045 \tag{9}
\end{equation*}
$$

We calculate that

$$
\begin{gathered}
2^{2 n+2}(1-\zeta(2 n))+6 \zeta(2 n)=-2^{2 n+2} \sum_{m \geq 2} m^{-2 n}+6+6 \sum_{m \geq 2} m^{-2 n}=2+6(4)^{-n}+\sum_{m \geq 3}\left(6-2^{2 n+2}\right) m^{-2 n} \\
=2+\frac{6}{4^{n}}+\left(6-2^{2 n+2}\right) 3^{-2 n}+\sum_{m \geq 4}\left(6-2^{2 n+2}\right) m^{-2 n}
\end{gathered}
$$

Note that for all $n \geq 1$ we have $\left(6-2^{2 n+2}\right)<0$, so the sum on the right above is negative. Moreover we also have

$$
\frac{6}{4^{n}}+\left(6-2^{2 n+2}\right) 3^{-2 n}<0 \forall n \geq 2
$$

Consequently, an upper bound for the coefficient of $y^{2 n-1}$ for $n \geq 2$ is $\frac{2}{\pi^{2 n}}$. The series from $n \geq 2$ may therefore be estimated from above by

$$
\begin{aligned}
& \sum_{n \geq 2} \frac{2}{\pi^{2 n}} y^{2 n-1}=\frac{2}{y} \sum_{n \geq 2}\left(\frac{y^{2}}{\pi^{2}}\right)^{n}=\frac{2}{y} \frac{y^{4}}{\pi^{4}} \sum_{n \geq 0}\left(\frac{y^{2}}{\pi^{2}}\right)^{n} \\
&=\frac{2 y^{3}}{\pi^{4}} \frac{1}{1-\frac{y^{2}}{\pi^{2}}}
\end{aligned}
$$

So, in total we have the estimate that

$$
u(\alpha)<\frac{1}{\pi^{2}}\left(16-\frac{5 \pi^{2}}{3}\right) y+\frac{2 y^{3}}{\pi^{4}} \frac{1}{1-\frac{y^{2}}{\pi^{2}}}, \quad y=\pi / 2-\alpha \in(0, \pi / 4) .
$$

It therefore suffices to prove that

$$
\frac{1}{\pi^{2}}\left(16-\frac{5 \pi^{2}}{3}\right)+\frac{2 y^{2}}{\pi^{4}} \frac{1}{1-\frac{y^{2}}{\pi^{2}}}<0, \quad y \in(0, \pi / 4)
$$

This is an increasing function of $y \in(0, \pi / 4)$, so its maximum occurs at $y=\pi / 4$ with the value

$$
\frac{1}{\pi^{2}}\left(16-\frac{5 \pi^{2}}{3}\right)+\frac{1}{8 \pi^{2}} \frac{1}{1-1 / 16}<-0.03
$$

Acknowledgments

JR is supported by Swedish Research Council Grant 2018-03873. Both authors are grateful to Leonardo Valori for drawing our attention to the misprints.

References

[1] I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Eighth, Elsevier/Academic Press, Amsterdam, 2015. Translated from the Russian, Translation edited and with a preface by Daniel Zwillinger and Victor Moll, Revised from the seventh edition.
[2] H. Hezari, Z. Lu, and J. Rowlett, The Neumann isospectral problem for trapezoids, Annales de l'Institut Henri Poincaré 18 (2017), 3759-3752.
[3] Z. Lu and J. Rowlett, The sound of symmetry, American Math Monthly 122 (2015), no. 9, 815-835.

