ERRATUM TO THE SOUND OF SYMMETRY

Z.LU & J. ROWLETT

1. MISPRINTS

There is a typo at the bottom of p. 823, where it is written A2(€21) — A2(Q1) = Ao () —
A1(2%) < ---. Clearly the left side of the equality should be Aa(€21) — A1(€21). Lemma
11 should be corrected to state that the length of the shortest closed geodesic that is not
contained entirely in the boundary is twice the height; see [2, Proposition 14]. There is a
typo in [3, equation(3.9)] due to a missing set of parentheses. Since

’ T — 2«

[(a(m =)' = ——5—3,

C2(r— )
[3, equation(3.9)] should read
2 cos(z)

(mr —2x)sinz

T — 2 (1 — )

g'(a) = T2 a2 (fla) = f(B), [flz)=
Below that the statement should be corrected to read that an equivalent expression for
fla)= —%. To prove [3, Lemma 12], in [3, (3.10)] we defined

S
u(0) = o =loa(f()) = 5

We claimed that u(a) < 0 for a € (0,7/2), however there are two misprints in the proof
of the claim. The —2 in the last equation on p. 831 should be —4, and the —4 in the first
equation on p. 832 should be —8. Although with these misprints the proof in [3] of the claim
no longer holds, here we present two proofs that may be of independent interest.
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2. PrROOF OF [3, Claim on p.830]

Proposition 1. The function

1
u(er) = /2 —«

2
+ — —2cota — —tana <0, ae€(0,7/2).
o'

™=

Proof. Changing variables to z = & the proposition is equivalent to proving that

—2cot(mz) — tan(wz) + 22 + ! <0
Tz w—Twz T[2—Tz
< 2mcot(mz) + mwtan(mwz) — 2 + 2 2 >0, z€(0,1/2).
z l1—2z 1-2z
We further make the change of variables w = 3 —z and note that cot(m(1/2—w)) = tan(rw),
so this is equivalent to
1 4 4

(1) 27 tan(mw) + 7 cot(mw) — e >0, we(0,1/2).

1—2w+1+2w
1
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By [1, 1.421.3]
1 1 & 2w
(2) 7 cot(mw) = tew Z T R—
keZ k=1
By [1, 1.421.1]
. 1
(3) 27 tan(mw) = 16w Z e
k>0
Since
4 4 16w 16w 4w

T+2u 1-2w 1—duw? (@k+12—4u?  (p4 122
by (2) and (3), observing that w > 0, (1) is equivalent to

2 =1
(4) pw?) =3 ——— 3" = >0, we(0,1/2).
k>1 (k+3)" —w? v
We therefore calculate
> 2 > 1
/
(@) = s
; ((k+3)?—z)? ,;1 (k? — )2
Since we consider z = w? € (0,1/2), we have for x € (0,1/4),
> 2 > 2 > 2
<
,; ((k+3)2—2)2 ~ &= ((k+5)2 = 1/4)? ; k2(k+1)2

k=1 k=1 k=1 k=1
w2 2
= —42(——-1)-4<06
42 (1) —a<os
having used
I <1 1) I
— ) =1, =
kz1k(k+1) —\k k+1 kzlk 6
Since z € (0,1/4),
G 1 21 7t
e 2 T~ a5 > 1 ' 6—-1<0.
;(M—x)?—kz_lm go 1 = w0 <06-1<0

o0

1

k2 _—1/4
pt k?—1/4

1
/1 1 > 1 1
=9 i _ _ —0.
Z(k k:+1) kl(k:l/Q k+1/2> 0
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3. LAURENT SERIES METHOD

An alternative proof that may be of independent interest is obtained using the Laurent
and Taylor series expansions of the function u(a) for o € (0,7/4] and o € (7/4,7/2).

Proposition 2. The function

(@) L 2 gt ¢
u(a) i = —— + — — 2cotar — — tan «
T/2—-—a  « T—«
is strictly negative for o € (0,7/4].
Proof. Recall the Laurent expansion [1, 1.411.7]
- (_1)n4nB2nz2n—1
cot(z) = Z @)l ,
n>0
with Bs, the 2n'" Bernoulli number. Consequently
1 B (_1)n4nB2nZ2n—1
P cot(z) = — Z @)
n>1
One also has the expansion [1, 1.411.5]
_ (_1)n714n(22n o 1)B2n22n71
(5) tan z = Z )l .

n>1

We calculate the geometric series

1 2 2 2a\" T
71'/2—0[_71'(1—20[/7[')_7TZ<7T> ’ 0<oz<§,
n>0

and 2 2 1 2
o n
_w—a__;l—a/ﬂ__;z(;) ’
n>0
So we have
2 a\" 200\ " ”4”B2na
= — — — —t 2
u(a) ﬂ_;[ (77) +<7T)} ana — Z

Using the series expansion of the tangent (5)we therefore combine and simplify

u(a):gz<a> +Z4 Bz a2n 1 1 3).

T T
n>1
We calculate
2 a\" 2 a2k-1 2 a2i—1
“ = M _ 1) = 2k—-1 “1092j
S (5) @y =Y @ - ) Y 2 - ) ga
n>1 E>1 j>1
2k—1 2j—1
9% o 2a !
- E (2 2) 3% E — (47 1) 5
E>1 j>1
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We therefore have
4" -2 2a (4™ -1 4™ (4™ — 3) (—1)"Ba,
(6) u(a)zzoﬂn*l |:|: + O[( ) + ( )( ) 2

m2n T (2n)!

n>1
Note that the Bernoulli numbers satisfy
(—=1)"Bgy, = —|Bap|¥n > 1.

Moreover, by [1, 9.616],
(2n)1¢(2n)

| Ban| = 92n—1,2n

Vn>1

with ¢ the Riemann zeta function. Consequently the coefficients of a**~1 in (6) are

1 <4n — 2424 — 1) — 204" — 3)6(271))

2

m2n T

1 2a
= <(4" -1) <1 + — 2((271)) -1 +4C(2n)> .

If we assume that « € (0,7/4], then using the very crude estimates that 1 < ((2n) < 2
for n > 1, we obtain the upper bound for the coefficients

2n 2

For n = 1 we explicitly evaluate the Riemann zeta function and obtain the exact value of
the coeflicient: ) )
1 6 T 1 6a T
—(4-2+—-2—)|==(2+—-—] <0
72 ( T 6 ) 2 ( T T3 )

7 (72 ™
<= —(——=1]=0. — =~ 0. .
a<3<6 ) 0.675, 1 0.785

Consequently, to prove that u(a) < 0 on (0, 7/4], we investigate precisely the first two terms
using the wonderful exercise in Fourier analysis which shows that the Riemann zeta function
satisfies

(7) ! <—1(4”—1)—1—|—8> < 0¥n > 2.

2 4

(@="%, W=

The sum of the first two terms in the series defining u(a) is

« 6a 72 o’ 200 27t 47t
— (24— - — — (151 4+——— ] -1+ —].
7r2<+7r 3)+7T4( <+7r 90) +90>

Since a, 7 > 0, the sign of the above expression is equal to the sign of

6o 7w o? 30 1374
8 24 — - — 4+ — (144 — — )
®) T T3 e ( T 45 >

For a near zero, this expression is strictly negative because 2 < %2 The derivative of (8)
with respect to « is

6 N 28a N 90a?  26ar?
T w2 3 45
For « near zero, this is positive. This is a quadratic function, and the discriminant is

28 26m2\° 90 6
<7r2‘45> ‘4<W3W><0'
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Consequently, there are no real roots, and the derivative of (8) is positive, so (8) is an
increasing function of a. Its maximum on (0, 7/4] occurs at o = 7/4. To compute the sign,
we evaluate (8) at o = m/4 obtaining

6 w2 1 30 137* 7 w2 1 (/43 137
24 - ——+ —([14+ = — - -4 (=
4 45 2 2 45

~ 0.2 < 0.
173 16 316 ) <

This shows that on (0,7/4] the sum of the first two terms in the series defining u(«) is
strictly negative. By (7) the rest of the sum is also negative, and therefore u(a) < 0 on
(0, 7/4]. O

Proposition 3. The function

1 2
+ — —2cota —

= — —tana
T/2—a  « T—«

u(a) :

is strictly negative for o € (w/4,7/2).
Proof. Since
tan(a) = cot(m/2 — a), cot(a) = tan(mw/2 — ),
1 2 2

u(a) = —a +7T/2—7T/2—|—a —2tan(7r/2—a)—m—co‘c(ﬂﬂ—a).
It is convenient to make the substitution
Y= % — .
Then y € (0,7/4) corresponds to a € (w/4,7/2), and
u(a):l—coty—Qtany%— N
y T/2—y T/2+y
1 4 1

1 4
= - —coty — 2t — - — .
” coty any+7rl_27y wl_(_gy)

1 B (_1)n4nB2ny2n—1 B (_1)n—14n(4n . 1)Bgny2”_1
f—coty——z (2n)! , —Qtany——QZ (2n)! ,

We use the series expansions:

n>1 n>1
with Ba, the 2nt"* Bernoulli number. So,

(_1)n4nB2ny2n71

1
— —coty —2tany = E (2(4™) —3).
|
Y = (2n)!
We also have "
4 1 4 %
()
™ n>0

So,

(_1)n4n32ny2n71 4 2y n 92
= 2(4™) — — =
) = G — e 9+ 15
Similarly we combine the series

7T1—277y 7r1_(_27y>_7r T T
™
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_8 3 <29>2n_1
- s i ’
n>1

So, in total we obtain

_1\nyn 2n—1 2n—1 -
- S e S () et

n>1

Putting the series together we obtain

Z y2n-1 [(_1)n4n(22n+1 _ 3)B2n 22n+2:|

n>1 (2n)! m2n
Note that
(=1)"Bgy, = —|Bap| < 0¥n > 1.
By [1, 9.616],
(2n)!¢(2n)
‘B2n’ = WVH >1

with ¢ the Riemann zeta function. We therefore obtain

47(227H1 = 3)[Ban| _ 2(2°"M —3)¢(2n)
(2n)! B 2n '

2n—1

The coefficient of y is therefore

1

o (22742 — 222"+ — 3)¢(2n)) = ;Tn (22"72(1 — ¢(2n)) + 6((2n)) .

For n = 1 we compute the coefficient of y explicitly
1 w2 1 5m?
—(16-25B)— | == (16— — —0.045.
(9) 7T2<6 (5)6> 7T2(6 3>< 0.045
We calculate that
22”+2(1—C(2n))—|—6C(2n) — _22n+2 Z m—2n+6+6 Z m—?n _ 2+6(4)—n+2(6_22n+2)m—2n

m>2 m>2 m>3

6
=24 (62737 4 3 (6 - 22 )m
m>4

Note that for all n > 1 we have (6 — 227"%2) < 0, so the sum on the right above is negative.

Moreover we also have

6 _

Y (6 — 2272)3721 < Ovn > 2.
Consequently, an upper bound for the coefficient of y?"~! for n > 2 is
n > 2 may therefore be estimated from above by

ZlanngZ v nzgyi )"
on y 2 ynt 2= \x?

n>2 n>2

2

—w- The series from

_2y3 1
=7
™ 1_%
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So, in total we have the estimate that

1 5m? 2% 1
u(a)<7r2<16—3>y+7r41_yz, y:7r/2—a€(0,7r/4).

It therefore suffices to prove that

1 5m2 22 1
71'2<16_3>+7T41_yz <0, y€(0,7r/4).
™

This is an increasing function of y € (0,7/4), so its maximum occurs at y = w/4 with the
value )

1 o 1 1

— (16 — — ——— < —0.03.

7r2< 3)+87r21—1/16
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