
ERRATUM TO THE SOUND OF SYMMETRY

Z. LU & J. ROWLETT

1. Misprints

There is a typo at the bottom of p. 823, where it is written λ2(Ω1)− λ2(Ω1) = λ2(Ωk)−
λ1(Ωk) ≤ · · · . Clearly the left side of the equality should be λ2(Ω1) − λ1(Ω1). Lemma
11 should be corrected to state that the length of the shortest closed geodesic that is not
contained entirely in the boundary is twice the height; see [2, Proposition 14]. There is a
typo in [3, equation(3.9)] due to a missing set of parentheses. Since[

(α(π − α))−1
]′

= − π − 2α

α2(π − α)2
,

[3, equation(3.9)] should read

g′(α) = − π − 2α

α2(π − α)2
(f(α)− f(β)) , f(x) =

x2(π − x)2 cos(x)

(π − 2x) sin2 x
.

Below that the statement should be corrected to read that an equivalent expression for

f(α) = − csc(x) cot(x)
((α(π−α))−1)′ . To prove [3, Lemma 12], in [3, (3.10)] we defined

u(α) :=
f ′(α)

f(α)
= log(f(α))′ =

1

π/2− α
+

2

α
− 2 cotα− 2

π − α
− tanα.

We claimed that u(α) < 0 for α ∈ (0, π/2), however there are two misprints in the proof
of the claim. The −2 in the last equation on p. 831 should be −4, and the −4 in the first
equation on p. 832 should be −8. Although with these misprints the proof in [3] of the claim
no longer holds, here we present two proofs that may be of independent interest.

2. Proof of [3, Claim on p.830]

Proposition 1. The function

u(α) :=
1

π/2− α
+

2

α
− 2 cotα− 2

π − α
− tanα < 0, α ∈ (0, π/2).

Proof. Changing variables to z = α
π the proposition is equivalent to proving that

−2 cot(πz)− tan(πz) +
2

πz
− 2

π − πz
+

1

π/2− πz
< 0

⇐⇒ 2π cot(πz) + π tan(πz)− 2

z
+

2

1− z
− 2

1− 2z
> 0, z ∈ (0, 1/2).

We further make the change of variables w = 1
2−z and note that cot(π(1/2−w)) = tan(πw),

so this is equivalent to

(1) 2π tan(πw) + π cot(πw)− 1

w
− 4

1− 2w
+

4

1 + 2w
> 0, w ∈ (0, 1/2).
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By [1, 1.421.3]

(2) π cot(πw) =
∑
k∈Z

1

k + w
=

1

w
−
∞∑
k=1

2w

k2 − w2
.

By [1, 1.421.1]

(3) 2π tan(πw) = 16w
∑
k≥0

1

(2k + 1)2 − 4w2
.

Since
4

1 + 2w
− 4

1− 2w
= − 16w

1− 4w2
,

16w

(2k + 1)2 − 4w2
=

4w(
k + 1

2

)2 − w2

by (2) and (3), observing that w > 0, (1) is equivalent to

(4) ℘(w2) :=
∑
k≥1

2(
k + 1

2

)2 − w2
−
∞∑
k=1

1

k2 − w2
> 0, w ∈ (0, 1/2).

We therefore calculate

℘′(x) =

∞∑
k=1

2

((k + 1
2)2 − x)2

−
∞∑
k=1

1

(k2 − x)2
.

Since we consider x = w2 ∈ (0, 1/2), we have for x ∈ (0, 1/4),

∞∑
k=1

2

((k + 1
2)2 − x)2

≤
∞∑
k=1

2

((k + 1
2)2 − 1/4)2

=

∞∑
k=1

2

k2(k + 1)2

= 2

∞∑
k=1

(
1

k
− 1

k + 1

)2

= 2

∞∑
k=1

1

k2
+ 2

∞∑
k=1

1

(k + 1)2
− 4

∞∑
k=1

1

k(k + 1)

=
π2

3
+ 2

(
π2

6
− 1

)
− 4 < 0.6,

having used ∑
k≥1

1

k(k + 1)
=
∑
k≥1

(
1

k
− 1

k + 1

)
= 1,

∑
k≥1

1

k2
=
π2

6
.

Since x ∈ (0, 1/4),

∞∑
k=1

1

(k2 − x)2
≥
∞∑
k=1

1

k4
=
π4

90
> 1 =⇒ ℘′(x) < 0.6− 1 < 0.

Thus ℘ is a strictly decreasing function, and for w = x2 ∈ (0, 1/4)

℘(w) > ℘(1/4) =
∞∑
k=1

2

k(1 + k)
−
∞∑
k=1

1

k2 − 1/4

= 2
∞∑
k=1

(
1

k
− 1

k + 1

)
−
∞∑
k=1

(
1

k − 1/2
− 1

k + 1/2

)
= 0.
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3. Laurent series method

An alternative proof that may be of independent interest is obtained using the Laurent
and Taylor series expansions of the function u(α) for α ∈ (0, π/4] and α ∈ (π/4, π/2).

Proposition 2. The function

u(α) :=
1

π/2− α
+

2

α
− 2 cotα− 2

π − α
− tanα

is strictly negative for α ∈ (0, π/4].

Proof. Recall the Laurent expansion [1, 1.411.7]

cot(z) =
∑
n≥0

(−1)n4nB2nz
2n−1

(2n)!
,

with B2n the 2nth Bernoulli number. Consequently

1

z
− cot(z) = −

∑
n≥1

(−1)n4nB2nz
2n−1

(2n)!
.

One also has the expansion [1, 1.411.5]

(5) tan z =
∑
n≥1

(−1)n−14n(22n − 1)B2nz
2n−1

(2n)!
.

We calculate the geometric series

1

π/2− α
=

2

π(1− 2α/π)
=

2

π

∑
n≥0

(
2α

π

)n
, 0 < α <

π

2
,

and

− 2

π − α
= − 2

π

1

1− α/π
= − 2

π

∑
n≥0

(α
π

)n
.

So we have

u(α) =
2

π

∑
n≥0

[
−
(α
π

)n
+

(
2α

π

)n]
− tanα− 2

∑
n≥1

(−1)n4nB2nα
2n−1

(2n)!
.

Using the series expansion of the tangent (5)we therefore combine and simplify

u(α) =
2

π

∑
n≥1

(α
π

)n
(2n − 1) +

∑
n≥1

4nB2nα
2n−1

(2n)!
(−1)n (4n − 3) .

We calculate

2

π

∑
n≥1

(α
π

)n
(2n − 1) =

∑
k≥1

2

π
(22k−1 − 1)

α2k−1

π2k−1
+
∑
j≥1

2

π
(22j − 1)

α2j−1

π2j
α

=
∑
k≥1

(22k − 2)
α2k−1

π2k
+
∑
j≥1

2α

π
(4j − 1)

α2j−1

π2j

=
∑
n≥1

α2n−1
[

4n − 2

π2n
+

2α

π

(4n − 1)

π2n

]
.
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We therefore have

(6) u(α) =
∑
n≥1

α2n−1
[[

4n − 2

π2n
+

2α

π

(4n − 1)

π2n

]
+

4n (4n − 3) (−1)nB2n

(2n)!

]
.

Note that the Bernoulli numbers satisfy

(−1)nB2n = −|B2n|∀n ≥ 1.

Moreover, by [1, 9.616],

|B2n| =
(2n)!ζ(2n)

22n−1π2n
∀n ≥ 1

with ζ the Riemann zeta function. Consequently the coefficients of α2n−1 in (6) are

1

π2n

(
4n − 2 +

2α

π
(4n − 1)− 2(4n − 3)ζ(2n)

)
=

1

π2n

(
(4n − 1)

(
1 +

2α

π
− 2ζ(2n)

)
− 1 + 4ζ(2n)

)
.

If we assume that α ∈ (0, π/4], then using the very crude estimates that 1 < ζ(2n) < 2
for n ≥ 1, we obtain the upper bound for the coefficients

(7)
1

π2n

(
−1

2
(4n − 1)− 1 + 8

)
< 0∀n ≥ 2.

For n = 1 we explicitly evaluate the Riemann zeta function and obtain the exact value of
the coefficient:

1

π2

(
4− 2 +

6α

π
− 2

π2

6

)
=

1

π2

(
2 +

6α

π
− π2

3

)
< 0

⇐⇒ α <
π

3

(
π2

6
− 1

)
≈ 0.675,

π

4
≈ 0.785.

Consequently, to prove that u(α) < 0 on (0, π/4], we investigate precisely the first two terms
using the wonderful exercise in Fourier analysis which shows that the Riemann zeta function
satisfies

ζ(2) =
π2

6
, ζ(4) =

π4

90
.

The sum of the first two terms in the series defining u(α) is

α

π2

(
2 +

6α

π
− π2

3

)
+
α3

π4

(
15

(
1 +

2α

π
− 2π4

90

)
− 1 +

4π4

90

)
.

Since α, π > 0, the sign of the above expression is equal to the sign of

(8) 2 +
6α

π
− π2

3
+
α2

π2

(
14 +

30α

π
− 13π4

45

)
.

For α near zero, this expression is strictly negative because 2 < π2

3 . The derivative of (8)
with respect to α is

6

π
+

28α

π2
+

90α2

π3
− 26απ2

45
.

For α near zero, this is positive. This is a quadratic function, and the discriminant is(
28

π2
− 26π2

45

)2

− 4

(
90

π3
6

π

)
< 0.
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Consequently, there are no real roots, and the derivative of (8) is positive, so (8) is an
increasing function of α. Its maximum on (0, π/4] occurs at α = π/4. To compute the sign,
we evaluate (8) at α = π/4 obtaining

2 +
6

4
− π2

3
+

1

16

(
14 +

30

4
− 13π4

45

)
=

7

2
− π2

3
+

1

16

(
43

2
− 13π4

45

)
≈ −0.2 < 0.

This shows that on (0, π/4] the sum of the first two terms in the series defining u(α) is
strictly negative. By (7) the rest of the sum is also negative, and therefore u(α) < 0 on
(0, π/4]. �

Proposition 3. The function

u(α) :=
1

π/2− α
+

2

α
− 2 cotα− 2

π − α
− tanα

is strictly negative for α ∈ (π/4, π/2).

Proof. Since
tan(α) = cot(π/2− α), cot(α) = tan(π/2− α),

u(α) =
1

π/2− α
+

2

π/2− π/2 + α
− 2 tan(π/2− α)− 2

π/2 + π/2− α
− cot(π/2− α).

It is convenient to make the substitution

y :=
π

2
− α.

Then y ∈ (0, π/4) corresponds to α ∈ (π/4, π/2), and

u(α) =
1

y
− cot y − 2 tan y +

2

π/2− y
− 2

π/2 + y

=
1

y
− cot y − 2 tan y +

4

π

1

1− 2y
π

− 4

π

1

1−
(
−2y

π

) .
We use the series expansions:

1

y
− cot y = −

∑
n≥1

(−1)n4nB2ny
2n−1

(2n)!
, −2 tan y = −2

∑
n≥1

(−1)n−14n(4n − 1)B2ny
2n−1

(2n)!
,

with B2n the 2nth Bernoulli number. So,

1

y
− cot y − 2 tan y =

∑
n≥1

(−1)n4nB2ny
2n−1

(2n)!
(2(4n)− 3) .

We also have
4

π

1

1− 2y
π

=
4

π

∑
n≥0

(
2y

π

)n
.

So,

u(α) =
∑
n≥1

(−1)n4nB2ny
2n−1

(2n)!
(2(4n)− 3) +

4

π

∑
n≥0

(
2y

π

)n
− 2

π/2 + y
.

Similarly we combine the series

4

π

1

1− 2y
π

− 4

π

1

1−
(
−2y

π

) =
4

π

∑
n≥0

(
2y

π

)n
−
(
−2y

π

)n
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=
8

π

∑
n≥1

(
2y

π

)2n−1
.

So, in total we obtain

u(α) =
∑
n≥1

(−1)n4nB2ny
2n−1

(2n)!
(2(4n)− 3) +

8

π

∑
n≥1

(
2y

π

)2n−1
, y =

π

2
− α.

Putting the series together we obtain∑
n≥1

y2n−1
[

(−1)n4n(22n+1 − 3)B2n

(2n)!
+

22n+2

π2n

]
.

Note that

(−1)nB2n = −|B2n| < 0∀n ≥ 1.

By [1, 9.616],

|B2n| =
(2n)!ζ(2n)

22n−1π2n
∀n ≥ 1

with ζ the Riemann zeta function. We therefore obtain

4n(22n+1 − 3)|B2n|
(2n)!

=
2(22n+1 − 3)ζ(2n)

π2n
.

The coefficient of y2n−1 is therefore

1

π2n
(
22n+2 − 2(22n+1 − 3)ζ(2n)

)
=

1

π2n
(
22n+2(1− ζ(2n)) + 6ζ(2n)

)
.

For n = 1 we compute the coefficient of y explicitly

(9)
1

π2

(
16− 2(5)

π2

6

)
=

1

π2

(
16− 5π2

3

)
< −0.045.

We calculate that

22n+2(1−ζ(2n))+6ζ(2n) = −22n+2
∑
m≥2

m−2n+6+6
∑
m≥2

m−2n = 2+6(4)−n+
∑
m≥3

(6−22n+2)m−2n

= 2 +
6

4n
+ (6− 22n+2)3−2n +

∑
m≥4

(6− 22n+2)m−2n.

Note that for all n ≥ 1 we have (6− 22n+2) < 0, so the sum on the right above is negative.
Moreover we also have

6

4n
+ (6− 22n+2)3−2n < 0∀n ≥ 2.

Consequently, an upper bound for the coefficient of y2n−1 for n ≥ 2 is 2
π2n . The series from

n ≥ 2 may therefore be estimated from above by∑
n≥2

2

π2n
y2n−1 =

2

y

∑
n≥2

(
y2

π2

)n
=

2

y

y4

π4

∑
n≥0

(
y2

π2

)n

=
2y3

π4
1

1− y2

π2

.
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So, in total we have the estimate that

u(α) <
1

π2

(
16− 5π2

3

)
y +

2y3

π4
1

1− y2

π2

, y = π/2− α ∈ (0, π/4).

It therefore suffices to prove that

1

π2

(
16− 5π2

3

)
+

2y2

π4
1

1− y2

π2

< 0, y ∈ (0, π/4).

This is an increasing function of y ∈ (0, π/4), so its maximum occurs at y = π/4 with the
value

1

π2

(
16− 5π2

3

)
+

1

8π2
1

1− 1/16
< −0.03.
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