12 Appendix. Mathematical, computational and sta-
tistical background

Below you can find condensed descriptions of concepts and methods used in these notes.
If you have a basic knowledge of some area these descriptions can serve as a repetition,
but if some concepts are new to you, you presumably need to go to textbooks for more
complete information. Nowadays quite useful information can also be obtained from the
internet, for example from the Wikipedia pages.

12.1 Some matrix algebra

A matrix with m rows and n columns, or briefly a matrix of type m x n, is a rectangular
array

i1 -+ Ainp

(94)

Am1 *°° Qmn
of numbers a; j, sometimes written a;;, called matrix elements. If the type is understood
we can write A = [a; ;]. Row and column vectors are thin matrices with m =1 and n = 1,
respectively. If m = n = 1 the matrix is just a number. A square matrix has m = n.

Let A be an m x n matrix. The transpose A” of A is an n x m matrix obtained by
making rows in A into columns, that is the (4, j) element in AT is the (j,4) element in A.
A matrix is symmetric if it equal to its transpose.

Matrices of the same type can be added by element-wise addition. If A and B are
matrices of types m x n and n x k, respectively, the product C' = AB is a matrix type
m x k with elements ¢;; = > a;,b.;. A square n x n matrix A is called invertible (or
non-singular) if there exists an inverse denoted A~! such that

AAT T =ATA=1T (95)
where [ is the unit n x n matrix with diagonal elements i; ; = 1 and off-diagonal elements
ij,k = Oa] 7£ k.

Let us now define recursively the determinant det A of a square n x n matrix A = [a; ;).
For n = 1 we define det A = a for the matrix A = [a]. Suppose that we have defined
determinants for matrices of type (n — 1) x (n — 1) and let A be a matrix of type n x n.

Let the minor A;; be the determinant of the matrix obtained from A by deleting row
number ¢ and column number 5. Then we put

det A = Z(—l)lﬂal,jAl,j. (96)
j=1

One can show that a square matrix A is non-singular if and only if det A # 0.

Let A be a square matrix. We say that a real number ) is an eigenvalue of A and that
a column vector x is an eigenvector of a if

Az = Az (97)
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A symmetric real n X n matrix A is said to be positive-definite or positive-semidefinite
if 27 Ax > 0 or 7 Az > 0, respectively, for each non-zero n-dimensional column vector
x. One can show that a symmetric matrix is positive-definite or positive-semidefinite if
all its eigenvalues are positive or nonnegative, respectively. Further, a positive definite
matrix is invertible.

Exercises

Ezercise 11.1. Let A = {i Z] . Determine det A by use of (96).

Exercise 11.2. Let A = CCL Z] with ad — bc # 0. Determine the inverse of A by solving

a linear equation system with four unknowns.

12.2 Optimization of a real funtion

Let us first consider Newton’s method for optimization of a twice continuously differen-
tiable real-valued function f(x) of a real variable x. Suppose that f has a maximum or
minumum at z*. Then f’(2*) = 0. Newton’s iterative method for locating x* is to put

k+1 _ ok f'(@*)
A )
f"(*)
Assuming that f”(z*) # 0 and that we start close enough to z* one can show that 2% — z*
as k — oo.

(98)

Let us now consider Newton’s method for optimization of a twice continuously dif-
ferentiable real-valued function f(z) of an n-dimensional column vector x. As above we
suppose that f has a maximum or minumum at z*. Let V f(x) denote the (column)
gradient vector

af  Of \r
\Y =|=... 99
f@) = [ 52 (99)
and let H f(x) denote the Hessian matrix
2 f > f
0x10x1 CTt 0z10xn
Hf(x)=1] : (100)
_f _0f
Oxndx1 °~°°  Oxndrn
Newton’s iterative method for locating x* is to put
2+ = ok (H () f (") (101)

Assuming that H f(x*) is positive-definite and thus invertible, and that we start close
enough to z* one can show that 2% — 2* as k — oo.

Newton’s method is quite efficient but has drawbacks. Computation of derivatives can
require a lot of programming. One may use finite differences to compute approximate
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derivatives but that then it requires extra programming to find suitable step lengths.
Often it is more efficient to use so called quasi-Newton methods where the Hessian is
automatically estimated from successively computed gradient vectors, see for instance
Press et al. (2007). In MATLAB the FMINUNC function uses a quasi-Newton metod for
minimization.

The Newton and quasi-Newton methods typically work quite well if you start close
to the optimum. A much slower but quite robust optimizer, which does not require
computation of any derivates, is the simplex method of (Nelder & Mead, 1965) which is
available in MATLAB as the function NELDER_MEAD. A good strategy in applications
can often be to begin with the simplex metod to get an overview and suitable starting
values and then to use a quasi-Newton method.

12.3 Discrete probability distributions

Discrete distributions for a random variable X are characterized by the probability func-
tion Pr(X = z), z € V, where V is the finite or countable set of values that X can
take. For a real-valued discrete random variable the expectation u, standard deviation
o and variance o are defined by y = E(X) = Y 2 Pr(X = z) and ¢* = var(X) =
S, (x — u)? Pr(X = a).
A random variable X is said to be Poisson distributed with parameter \ if
)\Tl

Pr(X =n) = ol exp(—A), n=0,1,..., (102)

and for such a variable both the expectation and the variance are equal to \.

A random variable X is said to be binomial (n,p) if

Pr(X = k) = ( Z’ )pk(l —p)"F, k=0,...,n, (103)

and for such a variable the expectation is np and the variance is np(1 — p).

12.4 Continuous probability distributions

Continuous distributions for a real-valued random variable X are characterized by the
probability density

f(z) = %Pr(X <zx), reR, (104)

where R = (—o0,00) is the set of real numbers. For a continuous random variable
the expextation p, standard deviation o and variance o2 are defined by u = E(X) =

Jexf(x)dr and 0 = var(X) = [p(z — p)?f(z)dz.
A random variable X is said to have a uniform distribution on the interval (a, b) if the
probability density is
fx)=1/(b—a), a<z <D, (105)
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and f(x) = 0 for x < a and = > b, and for such a variable the expectation is (a + b)/2
and the variance is (b — a)?/12.

A random variable X is said to have an exponential distribution with parameter 3 if
the probability density is
f(z) = Bexp(—pz), = >0, (106)
and f(z) = 0 for x < 0, and for such a variable the expectation is 1/ and the variance
is 1/3%
A random variable X is said to be normal(u,0?), or briefly X ~ N(u,0?) if the prob-

ability density is
1
flz) = exp(—(z — p)*/0®), © €R, (107)
2o

and for such a variable the expectation is y and the variance is o2

12.5 Multivariate probability distributions

Let X,..., X4 be real-valued random variables. Then X = [X; ... X,]” is a d-dimensional
random (column) vector. The expectation of a random vector (or a random matrix) is
defined componentwise. Thus the expectation vectory = pux = E(X) of a random column
vector X is the column vector with components u; = E(X;),7 =1,...,d. The covariance
matrix C' = Cx = C(X) of X is the symmetric d X d matrix

E(Xy = p)(Xy — 1) - E(Xy = ) (Xg — pa)
C=EBX-p)X-p' = : : . (108)

E(Xq = pa)(X1 = pa) -+ E(Xa— pa)(Xa — pa)
The (i, j)-element of the covariance matrix of X is the covariance cov(X;, X;) = E(X; —
i) (X; — pj) of the ith and jth components of X, which for ¢ = j is the variance of X;.
The d-dimensional vector X has a d-dimensional probability density f = fx if

Pr(X e A) = /Af(x)dx (109)

for subsets A of d-dimensional space R? for which the integral in (109) is well-defined.

Let p be a d-dimensional column vector and let C' be a positive-definite d x d matrix.
The d-dimensional random vector X is said to be normal(u,C) or briefly X ~ N(u,C) if
X has the d-dimensional density function

1

(o) = Gy (g — 1 C = ), (120)

where det C' denotes the determinant of the matrix C'. One can show that then X has
expectation vector p and covariance matrix C'.

An important special case is the two-dimensional normal distribution. Regard X =
[X1 X,)T. Let p; and o? denote the expectation and variance of X;, ¢ = 1,2, and let
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p = cov(X1, X5)/(0102) denote the correlation between the two components of X. Thus
the covariance matrix of X is

_| oo (111)
poioy  os |7

One can then show that the two-dimensional density funcion of X is

1 1

f(z) = S - exp{—mQ@h@)} (112)
where
Q(Cﬂl,xz) _ (961 —2M1) _ 2p($1 - M1)($2 - M2) 4 (952 —2M2) (113)

12.6 Random, Gaussian and Markov processes on the real line

A random process or stochastic process X on the real line consists a set of random
variables X = (X}) indexed by time t € T, where T is a subset of the real line R. We
suppose here that T is either a set of consecutive integers or an interval and then we
talk about a discrete time or continuous time random process, respectively. The set V' of
values that X; can take we call the state space. A real-valued process has the real line or
a subset of it as state space. A real-valued random process may be characterized by its
mean value function,

and its covariance function

C(s,t) = E(Xs —ms) (X — my). (115)
A random process is said to be normal or Gaussian if (X;,, ..., X}, ) has an n-dimensional
normal distribution for any choice of time points ¢, ..., ¢,. One can show that a Gaussian

process is fully specified by its mean value and covariance functions.

A random process (X;) is said to be stationary if its distribution is invariant under a
translation 7, more precisely if for each choice of n > 1 and (¢4, ...,t,) the distribution
of the n-dimensional random vector (Xy,4,..., Xy, +-) does not depend on 7. Consider
the mean value and covariance functions of a stationary process. The mean value is a
constant m = EX; and the covariance function can be written as C(s,t) = o?p(t — s)
where the variance o2 = C(¢,t) and p(t) is the correlation function.

We say that (X;,t € T') is a Markov process if the conditional distribution of X at a
future time given the history up to time ¢ only depends on the value of X at the current
time ¢, more precisely if

Pr(X, € AlX,,s <t)=Pr(X, € A|Xy), t<T. (116)

A discrete time Markov process with finite state space V, for notational simplicity here
denoted V' = {1,...v}, is determined by its transition probability matrix P which is the
(v X v) matrix with elements

pij = Pr(Xep = jI Xy =14), 1 <i,5 <w. (117)
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A zero-mean autoregressive process (X;) of order p is recursively generated from
p
Xt == Z aithi + € (118)
i=1

where ¢; are independent and identically distributed random variables with zero mean
and finite variance o2. Often ¢, is assumed to be normally distributed. Then X, is also
normally distributed. An autoregressive process of order p = 1 is a Markov process. An
autogressive process of order one is stationary if |a;| < 1 and the starting value in (118)
is suitably chosen.

An example of a continuous time Markov process is the Poisson process with intensity

A which is characterized by the fact that the increment X, — X, is Poisson distributed
with expecation

E(X; — X,)=\t—3s), s<t, (119)

and the increments over disjoint time intervals are independent.

Suppose that points are randomly placed on the real line such that

(i) the number of points in disjoint intervals are independent,

(ii) the probability that two points are placed in an interval of length A tends to
zero faster than the probability that one point is placed in the same interval when
h—0,

(iii) the distribution of the number of points in an interval depends only on the
length of the interval and not on where it is placed.

One can then show that if X; denotes the number of points in the interval (0,t), then
(X, t > 0) is Poisson process with intensity A equal to the expected number of points in
an interval of unit length. For an arbitrary time ¢ let further W denote the waiting time
for the first point after £. One can then show that W has an exponential distribution
with parameter \.

Another example of a continuous time Markov process is the Brownian motion or
Wiener process on the interval [0,00) characterized by having independent increments
over disjoint time intervals and that X, is normal(0, 0%t) for ¢ > 0.

A third example of a continuous time Markov process is the Ornstein-Uhlenbeck pro-
cess, which is Gaussian process with mean zero and correlation function

p(t) = exp(—At) (120)

for some positive constant \.

12.7 Estimation of parameters. Likelihood and least squares

Suppose that we observe a random variable or vector X with a distribution that depends
on a parameter # that may be a vector. Let § = §(X) be an estimate of 6. We say that
6 is an unbiased estimate of 0 if

E(0) = 6. (121)
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Typically we observe a sample of a random variable which means that we have a sequence
of independent and identically distributed random variables. We say that 6 is a consistent
estimate of 6 if for an arbitrary € > 0

Pr(|0 — 6] > €) — 0 (122)

as the number n of observations goes to infinity. One can for instance show that 0 is a
consistent estimate of 6 if E(]§ — 6|*) — 0 as n — oc.

Let X be a discrete or continuous random vector that we observe and that has a
probability distribution depending on 6. If X is discrete we put f(x,0) = Pr(X = x)
and if X is continuous f(z,6) denotes the probability density of X. The likelihood value
corresponding to an observed value x of X is written

L(0) = L)) = f(x,0). (123)

In particular, if we have a sample X = (X3,...,X,,) of a random variable assumed to
be either discrete with probability function Pr(X; = x;) = f(x;,0) or continuous with
probability density f(z;,#) the corresponding likelihood function is

n

L(9) = L@lz) = [ ] f(x:,6). (124)

i=1
where x = (x1,...,z,).

A maximum likelihood estimate 6 of 6 is a value that maximizes the likelihood function.
In practice it is often more convenient to maximize the log-likelihood function

((6) = log(L(0)), (125)

where log (as always in these notes) denotes the natural logarithm.

As an example, suppose that X = (X7, ..., X,,) is a sample of a variable that is Poisson
distributed with parameter A, that is X, ..., X,, are independent and identically Poisson
distributed. The log-likelihood function is

() =log(] | X

=1

exp(—A)) = ¢ — nA + log(\) ZX (126)

where ¢ does not depend on A and thus can be disregarded during the maximization. One
finds that the maximum likelihood estimate of A is

1 &
A==Y X, 12
nZ (127)

which one can show is a both unbiased and consistent estimate of A. (In the computations
in this example we have used the notation X; rather than x; which is often convenient.)

A useful complement to the maximum likelihood method to estimate parameters is
the least squares method which, when applicable, is often easier to use. Suppose that
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X1...,X, are independent random variables with the same variance and with an ex-
pection that depends on a parameter . The least squares estimate 6 is obtained by
minimizing
n
Q) =) (X; — E(X)))*. (128)

i=1

Let us again consider a sample (Xi,...,X,) of a random variable that is Poisson
distributed with parameter A. The sum of squares (128) now becomes

n

QM) =) (Xi =), (129)

i=1

which is minimized for A = X in (127). Thus the least squares and the maximum likelihood
estimates coincide in this example.

12.8 Linear and logistic regression

Let us first consider linear regression with one explaining real variable x. Suppose that
we observe

Y,=a+Bx;+e, i=1,...n, (130)

with independent zero-mean random errors ¢;, ¢ = 1, ..., n, with identical variances. The
least squares estimates & and 3 are obtained by minimizing

n

Qa, f) = (Y —a— fm;)?, (131)

=1

which gives
D S A
A=Y _557 _ Zz:l(n )(f . ZE)’ (132)
> (@i — )

where T = (1/n) >, z; and Y = (1/n) >, Y;.

Let us now consider multiple linear regression with m explaining variables. We assume
that we have observations

Yi=0bwza+ ..+ BnTim + 6, 1=1,...n, (133)

with independent zero-mean random errors €;, ¢ = 1,...,n, with identical variances. We
can write our observations on vector-matrix form as

Y = X3 +e, (134)
where
Y, 11 0 Tim B €1
Y=1:|, X=|: oy, B= ], e=] (135)
Yn Tn1 * Tnm ﬁm €n
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It turns out that the least squares estimate of the parameter vector 3 is

B=(XTX)"'XxTy. (136)

Let us now consider logistic regression where we observe independent variables Y7, ...,Y,
taking values 0 or 1. We suppose that the probability p; = Pr(Y; = 1) = 1 — Pr(Y; = 0)
depends on m explaining variables such that

Di

To estimate the parameters (31, ..., 3, we can maximize the likelihood function
L(Br, - Bm) = [ [ (1 = ) 7). (138)

i=1

There is no analytical expression for the maximum likelihood estimates so to maximize
(138) one may use computational optimization methods such as those describe in Section
12.2 and then it is typically more convenient to maximize the log-likelihood function.

12.9 Confidence intervals and tests, observations from a normal
distribution, the t- and chi-square distributions

Let X denote observations from a distribution depending on a real-valued parameter
0. We say that the interval (L(X),U(X)) is a confidence interval for # with confidence
degree p if

Pr(L(X) <0 <U(X))=np. (139)

Let X = (X1,...,X,) be a sample from a normal(u, 0?) distribution. Then

1 <& 1 n _
X==-) X, d §*= X, — X)? 140
DR e DI RS (140)

n—1°
=1

are unbiased and consistent estimates of ;1 and o2, respectively. To compute confidence
intervals for © and o2 we introduce the chi-square and t-distributions.

A random variable is said to be chi-square distributed with r degrees of freedom if it
has the same distribution as

=Y 77, (141)
=1

where Z, ..., Z, are independent and normal(0, 1). Let us note that a variable that is
chi-square distributed with r degrees of freedom has expectation r. A random variable is
said to be t-distributed with r degrees of freedom if it has the same distribution as
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where Z and x? are independent and distributed normal(0, 1) and chi-squared with r
degrees of freedom, respectively.

Let us define quantiles for random variables with a continuous distribution function
F(z) = Pr(X < z). A pth quantile =, corresponding to such a distribution satisfies
F(x,) = p. Let ng denote the pth quantile of a chi-square distribution with n — 1 degrees
of freedom. For s? defined by (140) one can then show that

Pr(xti_py2 < (n—=1)s"/0% < X{iipy2) =P (143)
which gives a confidence interval for o2 with confidence degree p,

(n—1)s? Py (n—1)s?
2

Pr( 5
X(14p)/2 X(1-p)/2

) =p. (144)

Similarly we let ¢, denote the pth quantile of a ¢t-distribution with n—1 degrees of freedom.
Then

Pr(X —ta_py2 s/Vn < pu <X +ta_pp s/V/n)=np, (145)
which gives a confidence interval for p with confidence degree p.

Let us also briefly describe one type of test of an hypothesis Hy : 8 = 5. Suppose
that we have a test variable T' = T'(X) tending to take large values when the hypothesis
Hj is not true and that we for our observations obtain an observed value T, of T'. The
strategy can then be to reject the hypothesis Hj if the probability under Hj to obtain a
T-value at least as large as the observed value is small enough. More precisely we reject
Hy if the p-value

p=Pro(T > Tys) (146)

is small enough. Here Pry denotes a probability evaluated under the probability distri-
bution corresponding to H,.

As an example let us suppose that we have a random sample (X,...,X,) from a
N(u,o?) distribution and that we want to test the hypothesis Hy : u = o with the
alternative hypothesis that p is either larger or smaller than ji. Let X and s? be defined
as in (140) and put

" :X—Mo
obs 8/\/ﬁ

(147)
The corresponding p-value is then
p=P([t| > [tovs]) (148)

evaluated with the assumption that ¢ is ¢-distributed with n — 1 degrees of freedom.

12.10 The F-distribution, analysis of variance

A random variable is F-distributed with (rq,72) degrees of freedom if it has the same
distribution as )
N Xi/m1

F - )
X3/T2

(149)
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where x? and 3 are independent chi-square distributed variables with r; and ry degrees of
freedom, respectively. The F-distribution can be used to compare two variance estimates
and in analysis of variance (ANOVA) models. Let us consider a simple ANOVA model.

Assume that X;;,7 =1,...,m, j = 1,...,n; are independent normal variables with
identical variance o2 and expectations

To test the hypothesis Hy : pu; = ... = p,, we can use the test variable

o i =X (m—1)
Z?; Z?;(Xij = X;.)? ) (i — 1))
where X; = (1/n;) >_; Xij and X. =, > Xij)/(D2;mi). It turns out that under H

the test variable F' in (151) is F-distributed with (m — 1, .(n; — 1))degrees of freedom
and we reject the hypothesis Hy if F' is large enough.

(151)

12.11 Approximate statistical methods, bootstrap

In the previous sections we have seen how confidence intervals with exact confidence
degree and exact p-values for tests can be computed for simple models with normal
random variables. Otherwise such exact statistical inference is typically not possible.
However, for large samples good approximate methods are often available. Let us give
some examples of how such approximate methods can look.

Suppose that we have a sample X = (X,...,X,,) of a random variables with log-
likelihood £(6), see (125), depending on a parameter vector § = (6;,...,60,). Under
suitable regularity conditions, see for instance Pawitan (2001), one can then show that
for large n the maximum likelihood estimate 0 has an approximate d-dimensional normal
distribution, which we write

0% NO,Z0) ). (152)
Here Z(6) is the Fisher information matrix with matrix elements
" o2
7;;(0) = —mg(e)fezé (153)

~

and we suppose that Z(6) is invertible. From this we can compute confidence intervals
with approximate p-values for the components of # and more generally for linear com-
binations of these components. Let us note that the Fisher information matrix is the
Hessian (see Section 12.2) of the log-likelihood function and as discussed in Section 12.2
the Hessian can be obtained by use of quasi-Newton optimization methods.

Let us now consider two hypotheses Hy and H;, which are nested in such a way that
H, is obtained from H; by imposing r linear restrictions on the parameters, for instance
by putting r parameters equal to zero. Let ¢(0y) and ¢(6;) denote the log-likelihoods
corresponding to the maximum likelihood estimates obtained under Hy, and H;. Put

A ~

X* = 2(£(01) — £(00))- (154)
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We note that as £(6;) is obtained as a maximum under fewer restrictions than ¢(6y) it
follows that £(f;) > £(6y). One can show that under the hypothesis Hy the variable 2 in
(154) is approximately chi-square distributed with r degrees of freedom for large samples.
We can reject the hypothesis Hy if the observed y2-value is large enough, that is if the
corresponding p-value

p=Pr(x* > x2,) (155)
evaluated for a chi-square distribution with r degrees of freedom is small enough.

One method for obtaining approximate inference that has been much used since its
introduction 1979 is the bootstrap which is based on resampling from observed distribu-
tions in such a way that confidence intervals and test variables can be computed, see for
instance Efron & Tibshirani (1993).

12.12 Random numbers, simulation

An important method to study random systems is to use simulation and this requires gen-
eration of random numbers, or more precisely pseudo-random numbers, with computers.
A basic random number generator is the linear congruential generator

X1 = (X, +b) mod m (156)

with suitable integers a, b and m and a starting value X, called seed. This generates a
sequence with approximately independent random number equidistributed on the set of
integers {0, 1,...,m — 1}. This type of generators with some variations are used as basic
random generators in computer languges such as for MATLAB. Putting U, = X,,/m
gives a sequence of random numbers with an approximate uniform distribution on the
unit interval [0, 1].

Suppose now that we have a random number U with a uniform distribution on the
interval (0,1) and that we want a random number X with a given distribution function
F(z) = Pr(X < z). This can be obtained by putting

X = FY(U), (157)

where F'~1 denotes the inverse of F. Putting

1
g

gives for instance a random variable that is exponentially distributed with parameter f3.

X = log(1—U) (158)

Sometimes one wants a random number with uniform distribution on a bounded two-
dimensional set A. One can then use rejection sampling by first finding a rectangle
R={(z1,22) : a1 <1 < by,as < x9 < by} containing A as a subset. Generate then two
independent random numbers U; and U; with uniform distributions on the unit interval.
Put X = (a1 + (by — a1)Uz, as + (by — az)Us). If X € A accept X, otherwise reject X and
repeat the procedure until we get a point in A.
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12.13 Bayesian inference, Markov chain Monte Carlo

In Bayesian inference we have in addition to a model describing the distribution of obser-
vations X given parameter 6 also a random distribution for # called the prior distribution.
After obtaining observations of X the distribution of 6 is modified to the posterior distri-
bution. Let us show how this goes when both # and X are discrete variables, the formulas
when one or both of these variables have continuous distributions being similar. We let
7; denote the prior probability, m; = Pr(6 = 6;).

From the definition of conditional probabilities for events A and B we have Pr(A|B) =
Pr(AN B)/Pr(B). This gives the posterior distribution for # when we observe X = z as

follows.
_ Pr(X =x|0)m  Pr(X = z]0;)m

Pr(f = 6,|X = z) = Pr(X =z) >, Pr(X =0,

(159)

In Bayesian analysis of noisy observations of complicated high-dimensional objects
such as images it is not easy to evaluate or sample from the posterior distribution. One
general method that has ben much used in recent years is Markov chain Monte Carlo,
abbreviated MCMC. Here you construct a Markov chain which has the distribution of
interest as its stationary distribution. Useful algorithms for constructing and analyzing
such Markov chains are the Gibbs sampler and the Metropolis algorithm, see for instance
Gilks et al. (1996).

12.14 Prediction, Kalman filtering

Let us look at prediction and filtering by use of Kalman filters. We let the d-dimensional
column vector X;,t = 0,1,..., denote the state of a system at time f. Assume that
XO ~ N(,Uo, P(]) and that

Xt :Ftthl—i_Wt; t: 1,2,..., (160)

where F; is a d X d matrix. Suppose that the dynamic d-dimensional noise vectors
W, ~ N(0,Q;) are independent mutually and of the initial state X,. Assume further
that we observe the r-dimensional vectors

)/t:HtXt—f-V;, t:]_,Q,..., (].6].)

where H,; is a r X d matrix and the measurement noise vectors V; ~ N(0, R;) are inde-
pendent mutually and of (WW;) and the initial state X,. Let Y7, = (Y7,...,Y};) denote
the accumulated observations up to time t. We are interested in computing the optimal
estimate of X, given observations up to time ¢. It turns out that given Y7., the conditional
distribution of X; is normal with expectation

Xt\t = E(X;|Y14) (162)

and covariance matrix P;. We will give a recursive algorithm for computing Xy, and Py,
which also gives the conditional expectation and covariance matrix X;,_; and P,;_; for
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prediction of X; from observations Y1.;—1 up to time ¢ — 1. The algorithm consists of the
following six equations in going from Xt 1jt—1 and P,_q;—1 to Xt‘t and P,

X1 = FXi 11, (163)

Py = Eptfl\tletT + Q4 (164)

Sy = HtPt\tletT + Ry, (165)

Ky = Py HI'S; (166)

Xt\t = Xt|t—1 + Ky (Y, — HtXt\t—l)a (167)
Py = (I — KyHy) Py, (168)

where I denotes the unit d x d-matrix.

Consider as an example motion of an object with centre at (z:,y;) and velocity (i, y:)
with a sampling interval At and observation of the position but not the velocity. We can
then put

T 1 0 At 0
e |01 0 At ~[tooo
X = a‘:t’Ft_oo 1 0 ’Ht_0100 (169)
U 00 0 1
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