
12 Appendix. Mathemati
al, 
omputational and sta-tisti
al ba
kgroundBelow you 
an �nd 
ondensed des
riptions of 
on
epts and methods used in these notes.If you have a basi
 knowledge of some area these des
riptions 
an serve as a repetition,but if some 
on
epts are new to you, you presumably need to go to textbooks for more
omplete information. Nowadays quite useful information 
an also be obtained from theinternet, for example from the Wikipedia pages.12.1 Some matrix algebraA matrix with m rows and n 
olumns, or brie�y a matrix of type m× n, is a re
tangulararray






a1,1 · · · a1,n... ...
am,1 · · · am,n






(94)of numbers ai,j , sometimes written aij , 
alled matrix elements. If the type is understoodwe 
an write A = [ai,j]. Row and 
olumn ve
tors are thin matri
es with m = 1 and n = 1,respe
tively. If m = n = 1 the matrix is just a number. A square matrix has m = n.Let A be an m × n matrix. The transpose AT of A is an n × m matrix obtained bymaking rows in A into 
olumns, that is the (i, j) element in AT is the (j, i) element in A.A matrix is symmetri
 if it equal to its transpose.Matri
es of the same type 
an be added by element-wise addition. If A and B arematri
es of types m × n and n × k, respe
tively, the produ
t C = AB is a matrix type

m × k with elements ci,j =
∑

r ai,rbr,j . A square n × n matrix A is 
alled invertible (ornon-singular) if there exists an inverse denoted A−1 su
h that
AA−1 = A−1A = I (95)where I is the unit n×n matrix with diagonal elements ij,j = 1 and o�-diagonal elements

ij,k = 0, j 6= k.Let us now de�ne re
ursively the determinant det A of a square n×n matrix A = [ai,j].For n = 1 we de�ne det A = a for the matrix A = [a]. Suppose that we have de�neddeterminants for matri
es of type (n − 1)× (n − 1) and let A be a matrix of type n × n.Let the minor Ai,j be the determinant of the matrix obtained from A by deleting rownumber i and 
olumn number j. Then we put
det A =

n
∑

j=1

(−1)1+ja1,jA1,j . (96)One 
an show that a square matrix A is non-singular if and only if det A 6= 0.Let A be a square matrix. We say that a real number λ is an eigenvalue of A and thata 
olumn ve
tor x is an eigenve
tor of a if
Ax = λx. (97)68



A symmetri
 real n × n matrix A is said to be positive-de�nite or positive-semide�niteif xT Ax > 0 or xT Ax ≥ 0, respe
tively, for ea
h non-zero n-dimensional 
olumn ve
tor
x. One 
an show that a symmetri
 matrix is positive-de�nite or positive-semide�nite ifall its eigenvalues are positive or nonnegative, respe
tively. Further, a positive de�nitematrix is invertible.Exer
isesExer
ise 11.1. Let A =

[

a b
c d

]. Determine det A by use of (96).Exer
ise 11.2. Let A =

[

a b
c d

] with ad − bc 6= 0. Determine the inverse of A by solvinga linear equation system with four unknowns.12.2 Optimization of a real funtionLet us �rst 
onsider Newton's method for optimization of a twi
e 
ontinuously di�eren-tiable real-valued fun
tion f(x) of a real variable x. Suppose that f has a maximum orminumum at x⋆. Then f ′(x⋆) = 0. Newton's iterative method for lo
ating x⋆ is to put
xk+1 = xk − f ′(xk)

f ′′(xk)
. (98)Assuming that f ′′(x⋆) 6= 0 and that we start 
lose enough to x⋆ one 
an show that xk → x⋆as k → ∞.Let us now 
onsider Newton's method for optimization of a twi
e 
ontinuously dif-ferentiable real-valued fun
tion f(x) of an n-dimensional 
olumn ve
tor x. As above wesuppose that f has a maximum or minumum at x⋆. Let ∇f(x) denote the (
olumn)gradient ve
tor

∇f(x) = [
∂f

∂x1

. . .
∂f

∂xn

]T (99)and let Hf(x) denote the Hessian matrix
Hf(x) =







∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn... ...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn






(100)Newton's iterative method for lo
ating x⋆ is to put

xk+1 = xk − (Hf(xk))−1∇f(xk) (101)Assuming that Hf(x⋆) is positive-de�nite and thus invertible, and that we start 
loseenough to x⋆ one 
an show that xk → x⋆ as k → ∞.Newton's method is quite e�
ient but has drawba
ks. Computation of derivatives 
anrequire a lot of programming. One may use �nite di�eren
es to 
ompute approximate69



derivatives but that then it requires extra programming to �nd suitable step lengths.Often it is more e�
ient to use so 
alled quasi-Newton methods where the Hessian isautomati
ally estimated from su

essively 
omputed gradient ve
tors, see for instan
ePress et al. (2007). In MATLAB the fminun
 fun
tion uses a quasi-Newton metod forminimization.The Newton and quasi-Newton methods typi
ally work quite well if you start 
loseto the optimum. A mu
h slower but quite robust optimizer, whi
h does not require
omputation of any derivates, is the simplex method of (Nelder & Mead, 1965) whi
h isavailable in MATLAB as the fun
tion nelder_mead. A good strategy in appli
ations
an often be to begin with the simplex metod to get an overview and suitable startingvalues and then to use a quasi-Newton method.12.3 Dis
rete probability distributionsDis
rete distributions for a random variable X are 
hara
terized by the probability fun
-tion Pr(X = x), x ∈ V , where V is the �nite or 
ountable set of values that X 
antake. For a real-valued dis
rete random variable the expe
tation µ, standard deviation
σ and varian
e σ2 are de�ned by µ = E(X) =

∑

x x Pr(X = x) and σ2 = var(X) =
∑

x(x − µ)2 Pr(X = x).A random variable X is said to be Poisson distributed with parameter λ if
Pr(X = n) =

λn

n!
exp(−λ), n = 0, 1, . . . , (102)and for su
h a variable both the expe
tation and the varian
e are equal to λ.A random variable X is said to be binomial (n,p) if

Pr(X = k) =

(

n
k

)

pk(1 − p)n−k, k = 0, . . . , n, (103)and for su
h a variable the expe
tation is np and the varian
e is np(1 − p).12.4 Continuous probability distributionsContinuous distributions for a real-valued random variable X are 
hara
terized by theprobability density
f(x) =

d

dx
Pr(X ≤ x), x ∈ R, (104)where R = (−∞,∞) is the set of real numbers. For a 
ontinuous random variablethe expextation µ, standard deviation σ and varian
e σ2 are de�ned by µ = E(X) =

∫

R
xf(x)dx and σ2 = var(X) =

∫

R
(x − µ)2f(x)dx.A random variable X is said to have a uniform distribution on the interval (a, b) if theprobability density is

f(x) = 1/(b − a), a < x < b, (105)70



and f(x) = 0 for x < a and x > b, and for su
h a variable the expe
tation is (a + b)/2and the varian
e is (b − a)2/12.A random variable X is said to have an exponential distribution with parameter β ifthe probability density is
f(x) = β exp(−βx), x > 0, (106)and f(x) = 0 for x < 0, and for su
h a variable the expe
tation is 1/β and the varian
eis 1/β2.A random variable X is said to be normal(µ,σ2), or brie�y X ∼ N(µ,σ2) if the prob-ability density is

f(x) =
1√
2πσ

exp(−(x − µ)2/σ2), x ∈ R, (107)and for su
h a variable the expe
tation is µ and the varian
e is σ2.12.5 Multivariate probability distributionsLet X1, . . . , Xd be real-valued random variables. Then X = [X1 . . .Xd]
T is a d-dimensionalrandom (
olumn) ve
tor. The expe
tation of a random ve
tor (or a random matrix) isde�ned 
omponentwise. Thus the expe
tation ve
torµ = µX = E(X) of a random 
olumnve
tor X is the 
olumn ve
tor with 
omponents µi = E(Xi), i = 1, . . . , d. The 
ovarian
ematrix C = CX = C(X) of X is the symmetri
 d × d matrix

C = E(X −µ)(X −µ)T =







E(X1 − µ1)(X1 − µ1) · · · E(X1 − µ1)(Xd − µd)... ...
E(Xd − µd)(X1 − µ1) · · · E(Xd − µd)(Xd − µd)






. (108)The (i, j)-element of the 
ovarian
e matrix of X is the 
ovarian
e 
ov(Xi, Xj) = E(Xi −

µi)(Xj − µj) of the ith and jth 
omponents of X, whi
h for i = j is the varian
e of Xi.The d-dimensional ve
tor X has a d-dimensional probability density f = fX ifPr(X ∈ A) =

∫

A

f(x)dx (109)for subsets A of d-dimensional spa
e R
d for whi
h the integral in (109) is well-de�ned.Let µ be a d-dimensional 
olumn ve
tor and let C be a positive-de�nite d× d matrix.The d-dimensional random ve
tor X is said to be normal(µ,C) or brie�y X ∼ N(µ,C) if

X has the d-dimensional density fun
tion
fX(x) =

1

(2π)d/2(det C)1/2
exp(−1

2
(x − µ)T C−1(x − µ)), (110)where det C denotes the determinant of the matrix C. One 
an show that then X hasexpe
tation ve
tor µ and 
ovarian
e matrix C.An important spe
ial 
ase is the two-dimensional normal distribution. Regard X =

[X1 X2]
T . Let µi and σ2

i denote the expe
tation and varian
e of Xi, i = 1, 2, and let71



ρ = 
ov(X1, X2)/(σ1σ2) denote the 
orrelation between the two 
omponents of X. Thusthe 
ovarian
e matrix of X is
C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (111)One 
an then show that the two-dimensional density fun
ion of X is
f(x) =

1

2πσ1σ2

√

1 − ρ2
exp{− 1

2(1 − ρ2)
Q(x1, x2)} (112)where

Q(x1, x2) =
(x1 − µ1)

2

σ2
1

− 2ρ(
x1 − µ1

σ1

)(
x2 − µ2

σ2

) +
(x2 − µ2)

2

σ2
2

(113)12.6 Random, Gaussian and Markov pro
esses on the real lineA random pro
ess or sto
hasti
 pro
ess X on the real line 
onsists a set of randomvariables X = (Xt) indexed by time t ∈ T , where T is a subset of the real line R. Wesuppose here that T is either a set of 
onse
utive integers or an interval and then wetalk about a dis
rete time or 
ontinuous time random pro
ess, respe
tively. The set V ofvalues that Xt 
an take we 
all the state spa
e. A real-valued pro
ess has the real line ora subset of it as state spa
e. A real-valued random pro
ess may be 
hara
terized by itsmean value fun
tion,
mt = EXt (114)and its 
ovarian
e fun
tion

C(s, t) = E(Xs − ms)(Xt − mt). (115)A random pro
ess is said to be normal or Gaussian if (Xt1 , . . . , Xtn) has an n-dimensionalnormal distribution for any 
hoi
e of time points t1, . . . , tn. One 
an show that a Gaussianpro
ess is fully spe
i�ed by its mean value and 
ovarian
e fun
tions.A random pro
ess (Xt) is said to be stationary if its distribution is invariant under atranslation τ , more pre
isely if for ea
h 
hoi
e of n ≥ 1 and (t1, . . . , tn) the distributionof the n-dimensional random ve
tor (Xt1+τ , . . . , Xtn+τ ) does not depend on τ . Considerthe mean value and 
ovarian
e fun
tions of a stationary pro
ess. The mean value is a
onstant m = EXt and the 
ovarian
e fun
tion 
an be written as C(s, t) = σ2ρ(t − s)where the varian
e σ2 = C(t, t) and ρ(t) is the 
orrelation fun
tion.We say that (Xt, t ∈ T ) is a Markov pro
ess if the 
onditional distribution of X at afuture time given the history up to time t only depends on the value of X at the 
urrenttime t, more pre
isely ifPr(Xτ ∈ A|Xs, s ≤ t) = Pr(Xτ ∈ A|Xt), t < τ. (116)A dis
rete time Markov pro
ess with �nite state spa
e V , for notational simpli
ity heredenoted V = {1, . . . v}, is determined by its transition probability matrix P whi
h is the(v × v) matrix with elements
pij = Pr(Xt+1 = j|Xt = i), 1 ≤ i, j ≤ v. (117)72



A zero-mean autoregressive pro
ess (Xt) of order p is re
ursively generated from
Xt =

p
∑

i=1

aiXt−i + ǫt (118)where ǫt are independent and identi
ally distributed random variables with zero meanand �nite varian
e σ2. Often ǫt is assumed to be normally distributed. Then Xt is alsonormally distributed. An autoregressive pro
ess of order p = 1 is a Markov pro
ess. Anautogressive pro
ess of order one is stationary if |a1| < 1 and the starting value in (118)is suitably 
hosen.An example of a 
ontinuous time Markov pro
ess is the Poisson pro
ess with intensity
λ whi
h is 
hara
terized by the fa
t that the in
rement Xt − Xs is Poisson distributedwith expe
ation E(Xt − Xs) = λ(t − s), s < t, (119)and the in
rements over disjoint time intervals are independent.Suppose that points are randomly pla
ed on the real line su
h that(i) the number of points in disjoint intervals are independent,(ii) the probability that two points are pla
ed in an interval of length h tends tozero faster than the probability that one point is pla
ed in the same interval when

h → 0 ,(iii) the distribution of the number of points in an interval depends only on thelength of the interval and not on where it is pla
ed.One 
an then show that if Xt denotes the number of points in the interval (0, t), then
(Xt, t > 0) is Poisson pro
ess with intensity λ equal to the expe
ted number of points inan interval of unit length. For an arbitrary time t let further W denote the waiting timefor the �rst point after t. One 
an then show that W has an exponential distributionwith parameter λ.Another example of a 
ontinuous time Markov pro
ess is the Brownian motion orWiener pro
ess on the interval [0,∞) 
hara
terized by having independent in
rementsover disjoint time intervals and that Xt is normal(0, σ2t) for t ≥ 0.A third example of a 
ontinuous time Markov pro
ess is the Ornstein-Uhlenbe
k pro-
ess, whi
h is Gaussian pro
ess with mean zero and 
orrelation fun
tion

ρ(t) = exp(−λt) (120)for some positive 
onstant λ.12.7 Estimation of parameters. Likelihood and least squaresSuppose that we observe a random variable or ve
tor X with a distribution that dependson a parameter θ that may be a ve
tor. Let θ̂ = θ̂(X) be an estimate of θ. We say that
θ̂ is an unbiased estimate of θ if E(θ̂) = θ. (121)73



Typi
ally we observe a sample of a random variable whi
h means that we have a sequen
eof independent and identi
ally distributed random variables. We say that θ̂ is a 
onsistentestimate of θ if for an arbitrary ǫ > 0Pr(|θ̂ − θ| > ǫ) → 0 (122)as the number n of observations goes to in�nity. One 
an for instan
e show that θ̂ is a
onsistent estimate of θ if E(|θ̂ − θ|2) → 0 as n → ∞.Let X be a dis
rete or 
ontinuous random ve
tor that we observe and that has aprobability distribution depending on θ. If X is dis
rete we put f(x, θ) = Pr(X = x)and if X is 
ontinuous f(x, θ) denotes the probability density of X. The likelihood value
orresponding to an observed value x of X is written
L(θ) = L(θ|x) = f(x, θ). (123)In parti
ular, if we have a sample X = (X1, . . . , Xn) of a random variable assumed tobe either dis
rete with probability fun
tion Pr(Xi = xi) = f(xi, θ) or 
ontinuous withprobability density f(xi, θ) the 
orresponding likelihood fun
tion is

L(θ) = L(θ|x) =

n
∏

i=1

f(xi, θ), (124)where x = (x1, . . . , xn).A maximum likelihood estimate θ̂ of θ is a value that maximizes the likelihood fun
tion.In pra
ti
e it is often more 
onvenient to maximize the log-likelihood fun
tion
ℓ(θ) = log(L(θ)), (125)where log (as always in these notes) denotes the natural logarithm.As an example, suppose that X = (X1, . . . , Xn) is a sample of a variable that is Poissondistributed with parameter λ, that is X1, . . . , Xn are independent and identi
ally Poissondistributed. The log-likelihood fun
tion is

ℓ(λ) = log(

n
∏

i=1

λXi

Xi!
exp(−λ)) = c − nλ + log(λ)

n
∑

i=1

Xi, (126)where c does not depend on λ and thus 
an be disregarded during the maximization. One�nds that the maximum likelihood estimate of λ is
λ̂ =

1

n

n
∑

i=1

Xi, (127)whi
h one 
an show is a both unbiased and 
onsistent estimate of λ. (In the 
omputationsin this example we have used the notation Xi rather than xi whi
h is often 
onvenient.)A useful 
omplement to the maximum likelihood method to estimate parameters isthe least squares method whi
h, when appli
able, is often easier to use. Suppose that74



X1 . . . , Xn are independent random variables with the same varian
e and with an ex-pe
tion that depends on a parameter θ. The least squares estimate θ̂ is obtained byminimizing
Q(θ) =

n
∑

i=1

(Xi −E(Xi))
2. (128)Let us again 
onsider a sample (X1, . . . , Xn) of a random variable that is Poissondistributed with parameter λ. The sum of squares (128) now be
omes

Q(λ) =
n

∑

i=1

(Xi − λ)2, (129)whi
h is minimized for λ = λ̂ in (127). Thus the least squares and the maximum likelihoodestimates 
oin
ide in this example.12.8 Linear and logisti
 regressionLet us �rst 
onsider linear regression with one explaining real variable x. Suppose thatwe observe
Yi = α + βxi + ǫi, i = 1, . . . n, (130)with independent zero-mean random errors ǫi, i = 1, . . . , n, with identi
al varian
es. Theleast squares estimates α̂ and β̂ are obtained by minimizing
Q(α, β) =

n
∑

i=1

(Yi − α − βxi)
2, (131)whi
h gives

α̂ = Y − β̂ x, β̂ =

∑n
i=1(Yi − Y )(xi − x)
∑n

i=1(xi − x)2
, (132)where x = (1/n)

∑

i xi and Y = (1/n)
∑

i Yi.Let us now 
onsider multiple linear regression with m explaining variables. We assumethat we have observations
Yi = β1xi1 + . . . + βmxim + ǫi, i = 1, . . . n, (133)with independent zero-mean random errors ǫi, i = 1, . . . , n, with identi
al varian
es. We
an write our observations on ve
tor-matrix form as

Y = Xβ + ǫ, (134)where
Y =







Y1...
Yn






, X =







x11 · · · x1m... ...
xn1 · · · xnm






, β =







β1...
βm






, ǫ =







ǫ1...
ǫn






. (135)75



It turns out that the least squares estimate of the parameter ve
tor β is
β̂ = (XT X)−1XT Y. (136)Let us now 
onsider logisti
 regression where we observe independent variables Y1, . . . , Yntaking values 0 or 1. We suppose that the probability pi = Pr(Yi = 1) = 1 − Pr(Yi = 0)depends on m explaining variables su
h that

log(
pi

1 − pi
) = β1xi1 + . . . + βmxim, i = 1, . . . n. (137)To estimate the parameters β1, . . . , βm we 
an maximize the likelihood fun
tion

L(β1, . . . , βm) =

n
∏

i=1

(pYi

i (1 − pi)
1−Yi). (138)There is no analyti
al expression for the maximum likelihood estimates so to maximize(138) one may use 
omputational optimization methods su
h as those des
ribe in Se
tion12.2 and then it is typi
ally more 
onvenient to maximize the log-likelihood fun
tion.12.9 Con�den
e intervals and tests, observations from a normaldistribution, the t- and 
hi-square distributionsLet X denote observations from a distribution depending on a real-valued parameter

θ. We say that the interval (L(X), U(X)) is a 
on�den
e interval for θ with 
on�den
edegree p if Pr(L(X) < θ < U(X)) = p. (139)Let X = (X1, . . . , Xn) be a sample from a normal(µ, σ2) distribution. Then
X =

1

n

n
∑

i=1

Xi and s2 =
1

n − 1

n
∑

i=1

(Xi − X)2 (140)are unbiased and 
onsistent estimates of µ and σ2, respe
tively. To 
ompute 
on�den
eintervals for µ and σ2 we introdu
e the 
hi-square and t-distributions.A random variable is said to be 
hi-square distributed with r degrees of freedom if ithas the same distribution as
χ2 =

r
∑

i=1

Z2
i , (141)where Z1, . . . , Zr are independent and normal(0, 1). Let us note that a variable that is
hi-square distributed with r degrees of freedom has expe
tation r. A random variable issaid to be t-distributed with r degrees of freedom if it has the same distribution as

t =
Z

√

χ2/r
(142)76



where Z and χ2 are independent and distributed normal(0, 1) and 
hi-squared with rdegrees of freedom, respe
tively.Let us de�ne quantiles for random variables with a 
ontinuous distribution fun
tion
F (x) = Pr(X ≤ x). A pth quantile xp 
orresponding to su
h a distribution satis�es
F (xp) = p. Let χ2

p denote the pth quantile of a 
hi-square distribution with n− 1 degreesof freedom. For s2 de�ned by (140) one 
an then show thatPr(χ2
(1−p)/2 < (n − 1)s2/σ2 < χ2

(1+p)/2) = p (143)whi
h gives a 
on�den
e interval for σ2 with 
on�den
e degree p,Pr((n − 1)s2

χ2
(1+p)/2

< σ2 <
(n − 1)s2

χ2
(1−p)/2

) = p. (144)Similarly we let tp denote the pth quantile of a t-distribution with n−1 degrees of freedom.Then Pr(X − t(1−p)/2 s/
√

n < µ < X + t(1−p)/2 s/
√

n) = p, (145)whi
h gives a 
on�den
e interval for µ with 
on�den
e degree p.Let us also brie�y des
ribe one type of test of an hypothesis H0 : θ = θ0. Supposethat we have a test variable T = T (X) tending to take large values when the hypothesis
H0 is not true and that we for our observations obtain an observed value Tobs of T . Thestrategy 
an then be to reje
t the hypothesis H0 if the probability under H0 to obtain a
T -value at least as large as the observed value is small enough. More pre
isely we reje
t
H0 if the p-value

p = Pr0(T ≥ Tobs) (146)is small enough. Here Pr0 denotes a probability evaluated under the probability distri-bution 
orresponding to H0.As an example let us suppose that we have a random sample (X1, . . . , Xn) from a
N(µ, σ2) distribution and that we want to test the hypothesis H0 : µ = µ0 with thealternative hypothesis that µ is either larger or smaller than µ0. Let X and s2 be de�nedas in (140) and put

tobs =
X − µ0

s/
√

n
. (147)The 
orresponding p-value is then

p = P (|t| ≥ |tobs|) (148)evaluated with the assumption that t is t-distributed with n − 1 degrees of freedom.12.10 The F-distribution, analysis of varian
eA random variable is F -distributed with (r1, r2) degrees of freedom if it has the samedistribution as
F =

χ2
1/r1

χ2
2/r2

, (149)77



where χ2
1 and χ2

2 are independent 
hi-square distributed variables with r1 and r2 degrees offreedom, respe
tively. The F -distribution 
an be used to 
ompare two varian
e estimatesand in analysis of varian
e (ANOVA) models. Let us 
onsider a simple ANOVA model.Assume that Xij, i = 1, . . . , m, j = 1, . . . , ni are independent normal variables withidenti
al varian
e σ2 and expe
tationsE(Xij) = µi, i = 1, . . . , m, j = 1 . . . , ni. (150)To test the hypothesis H0 : µ1 = . . . = µm we 
an use the test variable
F =

∑m
i=1 ni(Xi· − X··)

2 / (m − 1)
∑m

i=1

∑ni

j=1(Xij − Xi·)2 / (
∑

i(ni − 1))
(151)where Xi· = (1/ni)

∑

j Xij and X·· = (
∑

i

∑

j Xij)/(
∑

i ni). It turns out that under H0the test variable F in (151) is F -distributed with (m − 1,
∑

i(ni − 1))degrees of freedomand we reje
t the hypothesis H0 if F is large enough.12.11 Approximate statisti
al methods, bootstrapIn the previous se
tions we have seen how 
on�den
e intervals with exa
t 
on�den
edegree and exa
t p-values for tests 
an be 
omputed for simple models with normalrandom variables. Otherwise su
h exa
t statisti
al inferen
e is typi
ally not possible.However, for large samples good approximate methods are often available. Let us givesome examples of how su
h approximate methods 
an look.Suppose that we have a sample X = (X1, . . . , Xn) of a random variables with log-likelihood ℓ(θ), see (125), depending on a parameter ve
tor θ = (θ1, . . . , θd). Undersuitable regularity 
onditions, see for instan
e Pawitan (2001), one 
an then show thatfor large n the maximum likelihood estimate θ̂ has an approximate d-dimensional normaldistribution, whi
h we write
θ̂

d→ N(θ, I(θ̂)
−1

). (152)Here I(θ̂) is the Fisher information matrix with matrix elements
Iij(θ̂) = − ∂2

∂θi∂θj
ℓ(θ)|θ=θ̂ (153)and we suppose that I(θ̂) is invertible. From this we 
an 
ompute 
on�den
e intervalswith approximate p-values for the 
omponents of θ and more generally for linear 
om-binations of these 
omponents. Let us note that the Fisher information matrix is theHessian (see Se
tion 12.2) of the log-likelihood fun
tion and as dis
ussed in Se
tion 12.2the Hessian 
an be obtained by use of quasi-Newton optimization methods.Let us now 
onsider two hypotheses H0 and H1, whi
h are nested in su
h a way that

H0 is obtained from H1 by imposing r linear restri
tions on the parameters, for instan
eby putting r parameters equal to zero. Let ℓ(θ̂0) and ℓ(θ̂1) denote the log-likelihoods
orresponding to the maximum likelihood estimates obtained under H0 and H1. Put
χ2 = 2(ℓ(θ̂1) − ℓ(θ̂0)). (154)78



We note that as ℓ(θ̂1) is obtained as a maximum under fewer restri
tions than ℓ(θ̂0) itfollows that ℓ(θ̂1) ≥ ℓ(θ̂0). One 
an show that under the hypothesis H0 the variable χ2 in(154) is approximately 
hi-square distributed with r degrees of freedom for large samples.We 
an reje
t the hypothesis H0 if the observed χ2-value is large enough, that is if the
orresponding p-value
p = Pr(χ2 ≥ χ2

obs) (155)evaluated for a 
hi-square distribution with r degrees of freedom is small enough.One method for obtaining approximate inferen
e that has been mu
h used sin
e itsintrodu
tion 1979 is the bootstrap whi
h is based on resampling from observed distribu-tions in su
h a way that 
on�den
e intervals and test variables 
an be 
omputed, see forinstan
e Efron & Tibshirani (1993).12.12 Random numbers, simulationAn important method to study random systems is to use simulation and this requires gen-eration of random numbers, or more pre
isely pseudo-random numbers, with 
omputers.A basi
 random number generator is the linear 
ongruential generator
Xn+1 = (aXn + b) mod m (156)with suitable integers a, b and m and a starting value X0 
alled seed. This generates asequen
e with approximately independent random number equidistributed on the set ofintegers {0, 1, . . . , m− 1}. This type of generators with some variations are used as basi
random generators in 
omputer languges su
h as for MATLAB. Putting Un = Xn/mgives a sequen
e of random numbers with an approximate uniform distribution on theunit interval [0, 1].Suppose now that we have a random number U with a uniform distribution on theinterval (0, 1) and that we want a random number X with a given distribution fun
tion

F (x) = Pr(X ≤ x). This 
an be obtained by putting
X = F−1(U), (157)where F−1 denotes the inverse of F . Putting

X = − 1

β
log(1 − U) (158)gives for instan
e a random variable that is exponentially distributed with parameter β.Sometimes one wants a random number with uniform distribution on a bounded two-dimensional set A. One 
an then use reje
tion sampling by �rst �nding a re
tangle

R = {(x1, x2) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} 
ontaining A as a subset. Generate then twoindependent random numbers U1 and U2 with uniform distributions on the unit interval.Put X = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2). If X ∈ A a

ept X, otherwise reje
t X andrepeat the pro
edure until we get a point in A.79



12.13 Bayesian inferen
e, Markov 
hain Monte CarloIn Bayesian inferen
e we have in addition to a model des
ribing the distribution of obser-vations X given parameter θ also a random distribution for θ 
alled the prior distribution.After obtaining observations of X the distribution of θ is modi�ed to the posterior distri-bution. Let us show how this goes when both θ and X are dis
rete variables, the formulaswhen one or both of these variables have 
ontinuous distributions being similar. We let
πi denote the prior probability, πi = Pr(θ = θi).From the de�nition of 
onditional probabilities for events A and B we have Pr(A|B) =Pr(A ∩ B)/Pr(B). This gives the posterior distribution for θ when we observe X = x asfollows. Pr(θ = θi|X = x) =

Pr(X = x|θi)πiPr(X = x)
=

Pr(X = x|θi)πi
∑

j Pr(X = x|θj)πj
(159)In Bayesian analysis of noisy observations of 
ompli
ated high-dimensional obje
tssu
h as images it is not easy to evaluate or sample from the posterior distribution. Onegeneral method that has ben mu
h used in re
ent years is Markov 
hain Monte Carlo,abbreviated MCMC. Here you 
onstru
t a Markov 
hain whi
h has the distribution ofinterest as its stationary distribution. Useful algorithms for 
onstru
ting and analyzingsu
h Markov 
hains are the Gibbs sampler and the Metropolis algorithm, see for instan
eGilks et al. (1996).12.14 Predi
tion, Kalman �lteringLet us look at predi
tion and �ltering by use of Kalman �lters. We let the d-dimensional
olumn ve
tor Xt, t = 0, 1, . . . , denote the state of a system at time t. Assume that

X0 ∼ N(µ0, P0) and that
Xt = FtXt−1 + Wt, t = 1, 2, . . . , (160)where Ft is a d × d matrix. Suppose that the dynami
 d-dimensional noise ve
tors

Wt ∼ N(0, Qt) are independent mutually and of the initial state X0. Assume furtherthat we observe the r-dimensional ve
tors
Yt = HtXt + Vt, t = 1, 2, . . . , (161)where Ht is a r × d matrix and the measurement noise ve
tors Vt ∼ N(0, Rt) are inde-pendent mutually and of (Wt) and the initial state X0. Let Y1:t = (Y1, . . . , Yt) denotethe a

umulated observations up to time t. We are interested in 
omputing the optimalestimate of Xt given observations up to time t. It turns out that given Y1:t the 
onditionaldistribution of Xt is normal with expe
tation

X̂t|t = E(Xt|Y1:t) (162)and 
ovarian
e matrix Pt|t. We will give a re
ursive algorithm for 
omputing X̂t|t and Pt|twhi
h also gives the 
onditional expe
tation and 
ovarian
e matrix X̂t|t−1 and Pt|t−1 for80



predi
tion of Xt from observations Y1:t−1 up to time t− 1. The algorithm 
onsists of thefollowing six equations in going from X̂t−1|t−1 and Pt−1|t−1 to X̂t|t and Pt|t,
X̂t|t−1 = FtX̂t−1|t−1, (163)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt, (164)

St = HtPt|t−1H
T
t + Rt, (165)

Kt = Pt|t−1H
T
t S−1

t , (166)
X̂t|t = X̂t|t−1 + Kt(Yt − HtX̂t|t−1), (167)

Pt|t = (I − KtHt)Pt|t−1, (168)where I denotes the unit d × d-matrix.Consider as an example motion of an obje
t with 
entre at (xt, yt) and velo
ity (ẋt, ẏt)with a sampling interval ∆t and observation of the position but not the velo
ity. We 
anthen put
Xt =









xt

yt

ẋt

ẏt









, Ft =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, Ht =

[

1 0 0 0
0 1 0 0

]

. (169)
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