
12 Appendix. Mathematial, omputational and sta-tistial bakgroundBelow you an �nd ondensed desriptions of onepts and methods used in these notes.If you have a basi knowledge of some area these desriptions an serve as a repetition,but if some onepts are new to you, you presumably need to go to textbooks for moreomplete information. Nowadays quite useful information an also be obtained from theinternet, for example from the Wikipedia pages.12.1 Some matrix algebraA matrix with m rows and n olumns, or brie�y a matrix of type m× n, is a retangulararray






a1,1 · · · a1,n... ...
am,1 · · · am,n






(94)of numbers ai,j , sometimes written aij , alled matrix elements. If the type is understoodwe an write A = [ai,j]. Row and olumn vetors are thin matries with m = 1 and n = 1,respetively. If m = n = 1 the matrix is just a number. A square matrix has m = n.Let A be an m × n matrix. The transpose AT of A is an n × m matrix obtained bymaking rows in A into olumns, that is the (i, j) element in AT is the (j, i) element in A.A matrix is symmetri if it equal to its transpose.Matries of the same type an be added by element-wise addition. If A and B arematries of types m × n and n × k, respetively, the produt C = AB is a matrix type

m × k with elements ci,j =
∑

r ai,rbr,j . A square n × n matrix A is alled invertible (ornon-singular) if there exists an inverse denoted A−1 suh that
AA−1 = A−1A = I (95)where I is the unit n×n matrix with diagonal elements ij,j = 1 and o�-diagonal elements

ij,k = 0, j 6= k.Let us now de�ne reursively the determinant det A of a square n×n matrix A = [ai,j].For n = 1 we de�ne det A = a for the matrix A = [a]. Suppose that we have de�neddeterminants for matries of type (n − 1)× (n − 1) and let A be a matrix of type n × n.Let the minor Ai,j be the determinant of the matrix obtained from A by deleting rownumber i and olumn number j. Then we put
det A =

n
∑

j=1

(−1)1+ja1,jA1,j . (96)One an show that a square matrix A is non-singular if and only if det A 6= 0.Let A be a square matrix. We say that a real number λ is an eigenvalue of A and thata olumn vetor x is an eigenvetor of a if
Ax = λx. (97)68



A symmetri real n × n matrix A is said to be positive-de�nite or positive-semide�niteif xT Ax > 0 or xT Ax ≥ 0, respetively, for eah non-zero n-dimensional olumn vetor
x. One an show that a symmetri matrix is positive-de�nite or positive-semide�nite ifall its eigenvalues are positive or nonnegative, respetively. Further, a positive de�nitematrix is invertible.ExerisesExerise 11.1. Let A =

[

a b
c d

]. Determine det A by use of (96).Exerise 11.2. Let A =

[

a b
c d

] with ad − bc 6= 0. Determine the inverse of A by solvinga linear equation system with four unknowns.12.2 Optimization of a real funtionLet us �rst onsider Newton's method for optimization of a twie ontinuously di�eren-tiable real-valued funtion f(x) of a real variable x. Suppose that f has a maximum orminumum at x⋆. Then f ′(x⋆) = 0. Newton's iterative method for loating x⋆ is to put
xk+1 = xk − f ′(xk)

f ′′(xk)
. (98)Assuming that f ′′(x⋆) 6= 0 and that we start lose enough to x⋆ one an show that xk → x⋆as k → ∞.Let us now onsider Newton's method for optimization of a twie ontinuously dif-ferentiable real-valued funtion f(x) of an n-dimensional olumn vetor x. As above wesuppose that f has a maximum or minumum at x⋆. Let ∇f(x) denote the (olumn)gradient vetor

∇f(x) = [
∂f

∂x1

. . .
∂f

∂xn

]T (99)and let Hf(x) denote the Hessian matrix
Hf(x) =







∂2f
∂x1∂x1

. . . ∂2f
∂x1∂xn... ...

∂2f
∂xn∂x1

. . . ∂2f
∂xn∂xn






(100)Newton's iterative method for loating x⋆ is to put

xk+1 = xk − (Hf(xk))−1∇f(xk) (101)Assuming that Hf(x⋆) is positive-de�nite and thus invertible, and that we start loseenough to x⋆ one an show that xk → x⋆ as k → ∞.Newton's method is quite e�ient but has drawbaks. Computation of derivatives anrequire a lot of programming. One may use �nite di�erenes to ompute approximate69



derivatives but that then it requires extra programming to �nd suitable step lengths.Often it is more e�ient to use so alled quasi-Newton methods where the Hessian isautomatially estimated from suessively omputed gradient vetors, see for instanePress et al. (2007). In MATLAB the fminun funtion uses a quasi-Newton metod forminimization.The Newton and quasi-Newton methods typially work quite well if you start loseto the optimum. A muh slower but quite robust optimizer, whih does not requireomputation of any derivates, is the simplex method of (Nelder & Mead, 1965) whih isavailable in MATLAB as the funtion nelder_mead. A good strategy in appliationsan often be to begin with the simplex metod to get an overview and suitable startingvalues and then to use a quasi-Newton method.12.3 Disrete probability distributionsDisrete distributions for a random variable X are haraterized by the probability fun-tion Pr(X = x), x ∈ V , where V is the �nite or ountable set of values that X antake. For a real-valued disrete random variable the expetation µ, standard deviation
σ and variane σ2 are de�ned by µ = E(X) =

∑

x x Pr(X = x) and σ2 = var(X) =
∑

x(x − µ)2 Pr(X = x).A random variable X is said to be Poisson distributed with parameter λ if
Pr(X = n) =

λn

n!
exp(−λ), n = 0, 1, . . . , (102)and for suh a variable both the expetation and the variane are equal to λ.A random variable X is said to be binomial (n,p) if

Pr(X = k) =

(

n
k

)

pk(1 − p)n−k, k = 0, . . . , n, (103)and for suh a variable the expetation is np and the variane is np(1 − p).12.4 Continuous probability distributionsContinuous distributions for a real-valued random variable X are haraterized by theprobability density
f(x) =

d

dx
Pr(X ≤ x), x ∈ R, (104)where R = (−∞,∞) is the set of real numbers. For a ontinuous random variablethe expextation µ, standard deviation σ and variane σ2 are de�ned by µ = E(X) =

∫

R
xf(x)dx and σ2 = var(X) =

∫

R
(x − µ)2f(x)dx.A random variable X is said to have a uniform distribution on the interval (a, b) if theprobability density is

f(x) = 1/(b − a), a < x < b, (105)70



and f(x) = 0 for x < a and x > b, and for suh a variable the expetation is (a + b)/2and the variane is (b − a)2/12.A random variable X is said to have an exponential distribution with parameter β ifthe probability density is
f(x) = β exp(−βx), x > 0, (106)and f(x) = 0 for x < 0, and for suh a variable the expetation is 1/β and the varianeis 1/β2.A random variable X is said to be normal(µ,σ2), or brie�y X ∼ N(µ,σ2) if the prob-ability density is

f(x) =
1√
2πσ

exp(−(x − µ)2/σ2), x ∈ R, (107)and for suh a variable the expetation is µ and the variane is σ2.12.5 Multivariate probability distributionsLet X1, . . . , Xd be real-valued random variables. Then X = [X1 . . .Xd]
T is a d-dimensionalrandom (olumn) vetor. The expetation of a random vetor (or a random matrix) isde�ned omponentwise. Thus the expetation vetorµ = µX = E(X) of a random olumnvetor X is the olumn vetor with omponents µi = E(Xi), i = 1, . . . , d. The ovarianematrix C = CX = C(X) of X is the symmetri d × d matrix

C = E(X −µ)(X −µ)T =







E(X1 − µ1)(X1 − µ1) · · · E(X1 − µ1)(Xd − µd)... ...
E(Xd − µd)(X1 − µ1) · · · E(Xd − µd)(Xd − µd)






. (108)The (i, j)-element of the ovariane matrix of X is the ovariane ov(Xi, Xj) = E(Xi −

µi)(Xj − µj) of the ith and jth omponents of X, whih for i = j is the variane of Xi.The d-dimensional vetor X has a d-dimensional probability density f = fX ifPr(X ∈ A) =

∫

A

f(x)dx (109)for subsets A of d-dimensional spae R
d for whih the integral in (109) is well-de�ned.Let µ be a d-dimensional olumn vetor and let C be a positive-de�nite d× d matrix.The d-dimensional random vetor X is said to be normal(µ,C) or brie�y X ∼ N(µ,C) if

X has the d-dimensional density funtion
fX(x) =

1

(2π)d/2(det C)1/2
exp(−1

2
(x − µ)T C−1(x − µ)), (110)where det C denotes the determinant of the matrix C. One an show that then X hasexpetation vetor µ and ovariane matrix C.An important speial ase is the two-dimensional normal distribution. Regard X =

[X1 X2]
T . Let µi and σ2

i denote the expetation and variane of Xi, i = 1, 2, and let71



ρ = ov(X1, X2)/(σ1σ2) denote the orrelation between the two omponents of X. Thusthe ovariane matrix of X is
C =

[

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

]

. (111)One an then show that the two-dimensional density funion of X is
f(x) =

1

2πσ1σ2

√

1 − ρ2
exp{− 1

2(1 − ρ2)
Q(x1, x2)} (112)where

Q(x1, x2) =
(x1 − µ1)

2

σ2
1

− 2ρ(
x1 − µ1

σ1

)(
x2 − µ2

σ2

) +
(x2 − µ2)

2

σ2
2

(113)12.6 Random, Gaussian and Markov proesses on the real lineA random proess or stohasti proess X on the real line onsists a set of randomvariables X = (Xt) indexed by time t ∈ T , where T is a subset of the real line R. Wesuppose here that T is either a set of onseutive integers or an interval and then wetalk about a disrete time or ontinuous time random proess, respetively. The set V ofvalues that Xt an take we all the state spae. A real-valued proess has the real line ora subset of it as state spae. A real-valued random proess may be haraterized by itsmean value funtion,
mt = EXt (114)and its ovariane funtion

C(s, t) = E(Xs − ms)(Xt − mt). (115)A random proess is said to be normal or Gaussian if (Xt1 , . . . , Xtn) has an n-dimensionalnormal distribution for any hoie of time points t1, . . . , tn. One an show that a Gaussianproess is fully spei�ed by its mean value and ovariane funtions.A random proess (Xt) is said to be stationary if its distribution is invariant under atranslation τ , more preisely if for eah hoie of n ≥ 1 and (t1, . . . , tn) the distributionof the n-dimensional random vetor (Xt1+τ , . . . , Xtn+τ ) does not depend on τ . Considerthe mean value and ovariane funtions of a stationary proess. The mean value is aonstant m = EXt and the ovariane funtion an be written as C(s, t) = σ2ρ(t − s)where the variane σ2 = C(t, t) and ρ(t) is the orrelation funtion.We say that (Xt, t ∈ T ) is a Markov proess if the onditional distribution of X at afuture time given the history up to time t only depends on the value of X at the urrenttime t, more preisely ifPr(Xτ ∈ A|Xs, s ≤ t) = Pr(Xτ ∈ A|Xt), t < τ. (116)A disrete time Markov proess with �nite state spae V , for notational simpliity heredenoted V = {1, . . . v}, is determined by its transition probability matrix P whih is the(v × v) matrix with elements
pij = Pr(Xt+1 = j|Xt = i), 1 ≤ i, j ≤ v. (117)72



A zero-mean autoregressive proess (Xt) of order p is reursively generated from
Xt =

p
∑

i=1

aiXt−i + ǫt (118)where ǫt are independent and identially distributed random variables with zero meanand �nite variane σ2. Often ǫt is assumed to be normally distributed. Then Xt is alsonormally distributed. An autoregressive proess of order p = 1 is a Markov proess. Anautogressive proess of order one is stationary if |a1| < 1 and the starting value in (118)is suitably hosen.An example of a ontinuous time Markov proess is the Poisson proess with intensity
λ whih is haraterized by the fat that the inrement Xt − Xs is Poisson distributedwith expeation E(Xt − Xs) = λ(t − s), s < t, (119)and the inrements over disjoint time intervals are independent.Suppose that points are randomly plaed on the real line suh that(i) the number of points in disjoint intervals are independent,(ii) the probability that two points are plaed in an interval of length h tends tozero faster than the probability that one point is plaed in the same interval when

h → 0 ,(iii) the distribution of the number of points in an interval depends only on thelength of the interval and not on where it is plaed.One an then show that if Xt denotes the number of points in the interval (0, t), then
(Xt, t > 0) is Poisson proess with intensity λ equal to the expeted number of points inan interval of unit length. For an arbitrary time t let further W denote the waiting timefor the �rst point after t. One an then show that W has an exponential distributionwith parameter λ.Another example of a ontinuous time Markov proess is the Brownian motion orWiener proess on the interval [0,∞) haraterized by having independent inrementsover disjoint time intervals and that Xt is normal(0, σ2t) for t ≥ 0.A third example of a ontinuous time Markov proess is the Ornstein-Uhlenbek pro-ess, whih is Gaussian proess with mean zero and orrelation funtion

ρ(t) = exp(−λt) (120)for some positive onstant λ.12.7 Estimation of parameters. Likelihood and least squaresSuppose that we observe a random variable or vetor X with a distribution that dependson a parameter θ that may be a vetor. Let θ̂ = θ̂(X) be an estimate of θ. We say that
θ̂ is an unbiased estimate of θ if E(θ̂) = θ. (121)73



Typially we observe a sample of a random variable whih means that we have a sequeneof independent and identially distributed random variables. We say that θ̂ is a onsistentestimate of θ if for an arbitrary ǫ > 0Pr(|θ̂ − θ| > ǫ) → 0 (122)as the number n of observations goes to in�nity. One an for instane show that θ̂ is aonsistent estimate of θ if E(|θ̂ − θ|2) → 0 as n → ∞.Let X be a disrete or ontinuous random vetor that we observe and that has aprobability distribution depending on θ. If X is disrete we put f(x, θ) = Pr(X = x)and if X is ontinuous f(x, θ) denotes the probability density of X. The likelihood valueorresponding to an observed value x of X is written
L(θ) = L(θ|x) = f(x, θ). (123)In partiular, if we have a sample X = (X1, . . . , Xn) of a random variable assumed tobe either disrete with probability funtion Pr(Xi = xi) = f(xi, θ) or ontinuous withprobability density f(xi, θ) the orresponding likelihood funtion is

L(θ) = L(θ|x) =

n
∏

i=1

f(xi, θ), (124)where x = (x1, . . . , xn).A maximum likelihood estimate θ̂ of θ is a value that maximizes the likelihood funtion.In pratie it is often more onvenient to maximize the log-likelihood funtion
ℓ(θ) = log(L(θ)), (125)where log (as always in these notes) denotes the natural logarithm.As an example, suppose that X = (X1, . . . , Xn) is a sample of a variable that is Poissondistributed with parameter λ, that is X1, . . . , Xn are independent and identially Poissondistributed. The log-likelihood funtion is

ℓ(λ) = log(

n
∏

i=1

λXi

Xi!
exp(−λ)) = c − nλ + log(λ)

n
∑

i=1

Xi, (126)where c does not depend on λ and thus an be disregarded during the maximization. One�nds that the maximum likelihood estimate of λ is
λ̂ =

1

n

n
∑

i=1

Xi, (127)whih one an show is a both unbiased and onsistent estimate of λ. (In the omputationsin this example we have used the notation Xi rather than xi whih is often onvenient.)A useful omplement to the maximum likelihood method to estimate parameters isthe least squares method whih, when appliable, is often easier to use. Suppose that74



X1 . . . , Xn are independent random variables with the same variane and with an ex-petion that depends on a parameter θ. The least squares estimate θ̂ is obtained byminimizing
Q(θ) =

n
∑

i=1

(Xi −E(Xi))
2. (128)Let us again onsider a sample (X1, . . . , Xn) of a random variable that is Poissondistributed with parameter λ. The sum of squares (128) now beomes

Q(λ) =
n

∑

i=1

(Xi − λ)2, (129)whih is minimized for λ = λ̂ in (127). Thus the least squares and the maximum likelihoodestimates oinide in this example.12.8 Linear and logisti regressionLet us �rst onsider linear regression with one explaining real variable x. Suppose thatwe observe
Yi = α + βxi + ǫi, i = 1, . . . n, (130)with independent zero-mean random errors ǫi, i = 1, . . . , n, with idential varianes. Theleast squares estimates α̂ and β̂ are obtained by minimizing
Q(α, β) =

n
∑

i=1

(Yi − α − βxi)
2, (131)whih gives

α̂ = Y − β̂ x, β̂ =

∑n
i=1(Yi − Y )(xi − x)
∑n

i=1(xi − x)2
, (132)where x = (1/n)

∑

i xi and Y = (1/n)
∑

i Yi.Let us now onsider multiple linear regression with m explaining variables. We assumethat we have observations
Yi = β1xi1 + . . . + βmxim + ǫi, i = 1, . . . n, (133)with independent zero-mean random errors ǫi, i = 1, . . . , n, with idential varianes. Wean write our observations on vetor-matrix form as

Y = Xβ + ǫ, (134)where
Y =







Y1...
Yn






, X =







x11 · · · x1m... ...
xn1 · · · xnm






, β =







β1...
βm






, ǫ =







ǫ1...
ǫn






. (135)75



It turns out that the least squares estimate of the parameter vetor β is
β̂ = (XT X)−1XT Y. (136)Let us now onsider logisti regression where we observe independent variables Y1, . . . , Yntaking values 0 or 1. We suppose that the probability pi = Pr(Yi = 1) = 1 − Pr(Yi = 0)depends on m explaining variables suh that

log(
pi

1 − pi
) = β1xi1 + . . . + βmxim, i = 1, . . . n. (137)To estimate the parameters β1, . . . , βm we an maximize the likelihood funtion

L(β1, . . . , βm) =

n
∏

i=1

(pYi

i (1 − pi)
1−Yi). (138)There is no analytial expression for the maximum likelihood estimates so to maximize(138) one may use omputational optimization methods suh as those desribe in Setion12.2 and then it is typially more onvenient to maximize the log-likelihood funtion.12.9 Con�dene intervals and tests, observations from a normaldistribution, the t- and hi-square distributionsLet X denote observations from a distribution depending on a real-valued parameter

θ. We say that the interval (L(X), U(X)) is a on�dene interval for θ with on�denedegree p if Pr(L(X) < θ < U(X)) = p. (139)Let X = (X1, . . . , Xn) be a sample from a normal(µ, σ2) distribution. Then
X =

1

n

n
∑

i=1

Xi and s2 =
1

n − 1

n
∑

i=1

(Xi − X)2 (140)are unbiased and onsistent estimates of µ and σ2, respetively. To ompute on�deneintervals for µ and σ2 we introdue the hi-square and t-distributions.A random variable is said to be hi-square distributed with r degrees of freedom if ithas the same distribution as
χ2 =

r
∑

i=1

Z2
i , (141)where Z1, . . . , Zr are independent and normal(0, 1). Let us note that a variable that ishi-square distributed with r degrees of freedom has expetation r. A random variable issaid to be t-distributed with r degrees of freedom if it has the same distribution as

t =
Z

√

χ2/r
(142)76



where Z and χ2 are independent and distributed normal(0, 1) and hi-squared with rdegrees of freedom, respetively.Let us de�ne quantiles for random variables with a ontinuous distribution funtion
F (x) = Pr(X ≤ x). A pth quantile xp orresponding to suh a distribution satis�es
F (xp) = p. Let χ2

p denote the pth quantile of a hi-square distribution with n− 1 degreesof freedom. For s2 de�ned by (140) one an then show thatPr(χ2
(1−p)/2 < (n − 1)s2/σ2 < χ2

(1+p)/2) = p (143)whih gives a on�dene interval for σ2 with on�dene degree p,Pr((n − 1)s2

χ2
(1+p)/2

< σ2 <
(n − 1)s2

χ2
(1−p)/2

) = p. (144)Similarly we let tp denote the pth quantile of a t-distribution with n−1 degrees of freedom.Then Pr(X − t(1−p)/2 s/
√

n < µ < X + t(1−p)/2 s/
√

n) = p, (145)whih gives a on�dene interval for µ with on�dene degree p.Let us also brie�y desribe one type of test of an hypothesis H0 : θ = θ0. Supposethat we have a test variable T = T (X) tending to take large values when the hypothesis
H0 is not true and that we for our observations obtain an observed value Tobs of T . Thestrategy an then be to rejet the hypothesis H0 if the probability under H0 to obtain a
T -value at least as large as the observed value is small enough. More preisely we rejet
H0 if the p-value

p = Pr0(T ≥ Tobs) (146)is small enough. Here Pr0 denotes a probability evaluated under the probability distri-bution orresponding to H0.As an example let us suppose that we have a random sample (X1, . . . , Xn) from a
N(µ, σ2) distribution and that we want to test the hypothesis H0 : µ = µ0 with thealternative hypothesis that µ is either larger or smaller than µ0. Let X and s2 be de�nedas in (140) and put

tobs =
X − µ0

s/
√

n
. (147)The orresponding p-value is then

p = P (|t| ≥ |tobs|) (148)evaluated with the assumption that t is t-distributed with n − 1 degrees of freedom.12.10 The F-distribution, analysis of varianeA random variable is F -distributed with (r1, r2) degrees of freedom if it has the samedistribution as
F =

χ2
1/r1

χ2
2/r2

, (149)77



where χ2
1 and χ2

2 are independent hi-square distributed variables with r1 and r2 degrees offreedom, respetively. The F -distribution an be used to ompare two variane estimatesand in analysis of variane (ANOVA) models. Let us onsider a simple ANOVA model.Assume that Xij, i = 1, . . . , m, j = 1, . . . , ni are independent normal variables withidential variane σ2 and expetationsE(Xij) = µi, i = 1, . . . , m, j = 1 . . . , ni. (150)To test the hypothesis H0 : µ1 = . . . = µm we an use the test variable
F =

∑m
i=1 ni(Xi· − X··)

2 / (m − 1)
∑m

i=1

∑ni

j=1(Xij − Xi·)2 / (
∑

i(ni − 1))
(151)where Xi· = (1/ni)

∑

j Xij and X·· = (
∑

i

∑

j Xij)/(
∑

i ni). It turns out that under H0the test variable F in (151) is F -distributed with (m − 1,
∑

i(ni − 1))degrees of freedomand we rejet the hypothesis H0 if F is large enough.12.11 Approximate statistial methods, bootstrapIn the previous setions we have seen how on�dene intervals with exat on�denedegree and exat p-values for tests an be omputed for simple models with normalrandom variables. Otherwise suh exat statistial inferene is typially not possible.However, for large samples good approximate methods are often available. Let us givesome examples of how suh approximate methods an look.Suppose that we have a sample X = (X1, . . . , Xn) of a random variables with log-likelihood ℓ(θ), see (125), depending on a parameter vetor θ = (θ1, . . . , θd). Undersuitable regularity onditions, see for instane Pawitan (2001), one an then show thatfor large n the maximum likelihood estimate θ̂ has an approximate d-dimensional normaldistribution, whih we write
θ̂

d→ N(θ, I(θ̂)
−1

). (152)Here I(θ̂) is the Fisher information matrix with matrix elements
Iij(θ̂) = − ∂2

∂θi∂θj
ℓ(θ)|θ=θ̂ (153)and we suppose that I(θ̂) is invertible. From this we an ompute on�dene intervalswith approximate p-values for the omponents of θ and more generally for linear om-binations of these omponents. Let us note that the Fisher information matrix is theHessian (see Setion 12.2) of the log-likelihood funtion and as disussed in Setion 12.2the Hessian an be obtained by use of quasi-Newton optimization methods.Let us now onsider two hypotheses H0 and H1, whih are nested in suh a way that

H0 is obtained from H1 by imposing r linear restritions on the parameters, for instaneby putting r parameters equal to zero. Let ℓ(θ̂0) and ℓ(θ̂1) denote the log-likelihoodsorresponding to the maximum likelihood estimates obtained under H0 and H1. Put
χ2 = 2(ℓ(θ̂1) − ℓ(θ̂0)). (154)78



We note that as ℓ(θ̂1) is obtained as a maximum under fewer restritions than ℓ(θ̂0) itfollows that ℓ(θ̂1) ≥ ℓ(θ̂0). One an show that under the hypothesis H0 the variable χ2 in(154) is approximately hi-square distributed with r degrees of freedom for large samples.We an rejet the hypothesis H0 if the observed χ2-value is large enough, that is if theorresponding p-value
p = Pr(χ2 ≥ χ2

obs) (155)evaluated for a hi-square distribution with r degrees of freedom is small enough.One method for obtaining approximate inferene that has been muh used sine itsintrodution 1979 is the bootstrap whih is based on resampling from observed distribu-tions in suh a way that on�dene intervals and test variables an be omputed, see forinstane Efron & Tibshirani (1993).12.12 Random numbers, simulationAn important method to study random systems is to use simulation and this requires gen-eration of random numbers, or more preisely pseudo-random numbers, with omputers.A basi random number generator is the linear ongruential generator
Xn+1 = (aXn + b) mod m (156)with suitable integers a, b and m and a starting value X0 alled seed. This generates asequene with approximately independent random number equidistributed on the set ofintegers {0, 1, . . . , m− 1}. This type of generators with some variations are used as basirandom generators in omputer languges suh as for MATLAB. Putting Un = Xn/mgives a sequene of random numbers with an approximate uniform distribution on theunit interval [0, 1].Suppose now that we have a random number U with a uniform distribution on theinterval (0, 1) and that we want a random number X with a given distribution funtion

F (x) = Pr(X ≤ x). This an be obtained by putting
X = F−1(U), (157)where F−1 denotes the inverse of F . Putting

X = − 1

β
log(1 − U) (158)gives for instane a random variable that is exponentially distributed with parameter β.Sometimes one wants a random number with uniform distribution on a bounded two-dimensional set A. One an then use rejetion sampling by �rst �nding a retangle

R = {(x1, x2) : a1 ≤ x1 ≤ b1, a2 ≤ x2 ≤ b2} ontaining A as a subset. Generate then twoindependent random numbers U1 and U2 with uniform distributions on the unit interval.Put X = (a1 + (b1 − a1)U1, a2 + (b2 − a2)U2). If X ∈ A aept X, otherwise rejet X andrepeat the proedure until we get a point in A.79



12.13 Bayesian inferene, Markov hain Monte CarloIn Bayesian inferene we have in addition to a model desribing the distribution of obser-vations X given parameter θ also a random distribution for θ alled the prior distribution.After obtaining observations of X the distribution of θ is modi�ed to the posterior distri-bution. Let us show how this goes when both θ and X are disrete variables, the formulaswhen one or both of these variables have ontinuous distributions being similar. We let
πi denote the prior probability, πi = Pr(θ = θi).From the de�nition of onditional probabilities for events A and B we have Pr(A|B) =Pr(A ∩ B)/Pr(B). This gives the posterior distribution for θ when we observe X = x asfollows. Pr(θ = θi|X = x) =

Pr(X = x|θi)πiPr(X = x)
=

Pr(X = x|θi)πi
∑

j Pr(X = x|θj)πj
(159)In Bayesian analysis of noisy observations of ompliated high-dimensional objetssuh as images it is not easy to evaluate or sample from the posterior distribution. Onegeneral method that has ben muh used in reent years is Markov hain Monte Carlo,abbreviated MCMC. Here you onstrut a Markov hain whih has the distribution ofinterest as its stationary distribution. Useful algorithms for onstruting and analyzingsuh Markov hains are the Gibbs sampler and the Metropolis algorithm, see for instaneGilks et al. (1996).12.14 Predition, Kalman �lteringLet us look at predition and �ltering by use of Kalman �lters. We let the d-dimensionalolumn vetor Xt, t = 0, 1, . . . , denote the state of a system at time t. Assume that

X0 ∼ N(µ0, P0) and that
Xt = FtXt−1 + Wt, t = 1, 2, . . . , (160)where Ft is a d × d matrix. Suppose that the dynami d-dimensional noise vetors

Wt ∼ N(0, Qt) are independent mutually and of the initial state X0. Assume furtherthat we observe the r-dimensional vetors
Yt = HtXt + Vt, t = 1, 2, . . . , (161)where Ht is a r × d matrix and the measurement noise vetors Vt ∼ N(0, Rt) are inde-pendent mutually and of (Wt) and the initial state X0. Let Y1:t = (Y1, . . . , Yt) denotethe aumulated observations up to time t. We are interested in omputing the optimalestimate of Xt given observations up to time t. It turns out that given Y1:t the onditionaldistribution of Xt is normal with expetation

X̂t|t = E(Xt|Y1:t) (162)and ovariane matrix Pt|t. We will give a reursive algorithm for omputing X̂t|t and Pt|twhih also gives the onditional expetation and ovariane matrix X̂t|t−1 and Pt|t−1 for80



predition of Xt from observations Y1:t−1 up to time t− 1. The algorithm onsists of thefollowing six equations in going from X̂t−1|t−1 and Pt−1|t−1 to X̂t|t and Pt|t,
X̂t|t−1 = FtX̂t−1|t−1, (163)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt, (164)

St = HtPt|t−1H
T
t + Rt, (165)

Kt = Pt|t−1H
T
t S−1

t , (166)
X̂t|t = X̂t|t−1 + Kt(Yt − HtX̂t|t−1), (167)

Pt|t = (I − KtHt)Pt|t−1, (168)where I denotes the unit d × d-matrix.Consider as an example motion of an objet with entre at (xt, yt) and veloity (ẋt, ẏt)with a sampling interval ∆t and observation of the position but not the veloity. We anthen put
Xt =









xt

yt

ẋt

ẏt









, Ft =









1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1









, Ht =

[

1 0 0 0
0 1 0 0

]

. (169)
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