
Realtime face detection

Samuel Englund

March 17, 2003

Summary

This Master thesis is done in collaboration with Cecil AB. The goal is to evalu-
ate visual face detection methods. The techniques evaluated are all based on the
"window transform", which is a sort of band pass transform. Genetic program-
ming is introduced to improve the window transform. The algorithms AdaBoost
and Support Vector Machine (SVM) are both tested as classi�ers for the face
detector. A successful improvement of AdaBoost that enables a reduced number
of training examples has been done. Thereafter follows a discussion about the
possibilities for the CNN chip to use the tested algorithms. The CNN chip is
under development by Cecil AB.

Sammanfattning

Detta examensarbete görs i samarbete med Cecil AB. Målet är att undersöka
metoder för visuell ansiksdetektering. Teknikerna som prövas baseras alla på
"the window transform", som är en slags bandpass transform. Genetisk pro-
grammering introduceras för att förbättra fönstertransformen. Klassi�ceringsal-
goritmerna AdaBoost och Support Vector Machine (SVM) testas som klassi�-
cerare till detektorn. En förbättring av AdaBoost som gör att man kan använda
ett reducerat antal träningsbilder har utförts. Därefter följer en diskussion om
hur CNN chipet kan tillgodogöra sig de prövade algoritmerna. CNN chipet är
under utveckling hos Cecil AB.

Aknowledgements
I would like to thank Professor Mats Rudemo, Torbjörn Ahlqvist, Christian
Edberg and Johan Pettersson for all their suggestions and support. I also wish
to explain my gratitude to the sta� of Cecil for being such great colleges and
for making me feel at home there.

2

Contents

1 Introduction 5
1.1 Multi-class image classi�cation 5

1.1.1 Training . 6
1.2 Detection . 7
1.3 A guide through this thesis . 7

2 A market survey 8
2.1 Freeware . 8

2.1.1 Carnegie Mellon . 8
2.1.2 Fraunhofer Institut . 8
2.1.3 National Research Council of Canada 9
2.1.4 University of Alberta . 9
2.1.5 Sluggish Software . 10

2.2 Commercial systems . 10
2.2.1 Visionsphere . 10
2.2.2 Imagis Technologies inc. 11
2.2.3 Identix . 11

3 Window-AdaBoost 12
3.1 Preface . 12
3.2 Introduction . 12
3.3 Why the window transform? . 13
3.4 Classi�ers . 14
3.5 The training sets . 15
3.6 The AdaBoost training . 16

3.6.1 A �ow chart over window-AdaBoost 17
3.7 Test . 18

3.7.1 Test 1 . 19
3.7.2 Test 2 . 19
3.7.3 Test 3 . 19
3.7.4 Test 4 . 20
3.7.5 Test 5 . 21
3.7.6 Test 6 . 22

3.8 Further discussion about the window-AdaBoost technique 25

3

4 Support Vector Machine, SVM 26
4.1 Preface . 26
4.2 Introduction . 26
4.3 Linear SVM and separable data 27
4.4 Linear SVM and non-separable data 29
4.5 Non-linear SVM . 30
4.6 Setting up a SVM test . 31

4.6.1 Single detection or detection in stages? 31
4.6.2 Choosing dimensions . 32
4.6.3 Known problems with SVM 32
4.6.4 Setting parameters . 32
4.6.5 Software . 32

4.7 Test . 33
4.7.1 SVM + using previous results 33
4.7.2 Highest mean . 34
4.7.3 Ransac . 35

4.8 Conclusions on SVM . 36

5 Genetic programming 38
5.1 Preface . 38
5.2 Introduction to GP . 38
5.3 This speci�c GP . 39

5.3.1 Test AdaBoost 1 . 40
5.3.2 Test nearest neighbor . 40
5.3.3 Test AdaBoost 2 . 41

6 CNN-Cellular Neural Network 43
6.1 Preface . 43
6.2 Motivation . 43
6.3 Basics about CNN . 43
6.4 CNN friendly operations . 44

6.4.1 Filtering . 44
6.4.2 Morphology . 45
6.4.3 Di�usion . 45

7 Future work 46
7.1 Better feature extraction . 46
7.2 Better decision surface . 46

8 Appendix 48
8.1 Images for training . 48

4

Chapter 1

Introduction

The goal for this master thesis is to evaluate visual detection methods, which
is of interest for Cecil. I chosed the area of face detection both because there is
a potential market for Cecil and because there has been a lot of work prior in
this area. The �rst real time detector was claimed to be done by Viola & Jones
[1] and their work is the base for all methods that have been tried here.
CNN is a short for Cellular Neural Network and is a subset of neural networks.
Cecil is currently developing a CNN chip designed for fast close-to-sensor image
processing. Chapter 6 is about how the investigated algorithms apply to the
CNN chip.

1.1 Multi-class image classi�cation
Classi�cation is to take an image of a given size and to label it to one of the
predetermined classes. Any multi-class classi�er consist of two parts: Feature
extraction and decision surface.

Feature extraction

To classify a sub image based on its pixel values is usually not the fastest way
around. The dimension of a grey scale image is the same as its pixel number,
and for color images it is the pixel number multiplied with three. That takes
too much time to analyze for a real time system. Feature extraction is to look
at some speci�c things for the classes in the picture. Let us imagine that we
want a classi�er for farm animals and there are three classes of animals: pigs,
hens and rabbits. The animals in each class share some features. Pigs are pink
and clean shaved, hens are white and feathery and rabbits are grey and furry.
If we got a color picture of one of the animals on the farm, what would be a
feature to look for in order to determine its specie and class with a minimum of
e�ort? The most obvious is to see what the mean color is, that is a transform
to the 3D RGB color space. One could also look at the texture of the animal
and determine if it was a clean-shaved, feathery or furry, but that would mean

5

a transform into much higher dimensioned transform space.



· · · ·
· ·
· ·
· ·


 →




·
·
·
·




Image space Transform space

Decision surface
Once the image is in the transform space we need one or more decision surfaces.
A decision surface is a surface that separates one or more classes. If the transfor-
mation of the unknown animal appears in within the decision surface/surfaces
that encapsulate the pink(pig) area we can label the image as a pig and so on.
Figure 1.1 shows a decision surface for two classes in a two dimensional space.

Faces
Background
Decision surface

Figure 1.1: An example of what the transform space can look like in two di-
mensions

The operator has to choose possible transform methods and algorithms to con-
struct decision surfaces. When these theories are planned, some hard work still
remains. The detector has to be trained.

1.1.1 Training
Just like a secret agent, the detector can not rely only on theoretical studies,
but it has to do some �eld work training as well to get prepared. The training is
necessary to set parameters for the algorithms and to �nd the decision surface(s).

6

1.2 Detection
Detection is a special case of general multi-class image classi�cation. Only the
positive class and the background class exist in the detection case. In this master
thesis some things will remain unchanged. The positive class will be faces. The
size of images to classify are 24 by 24 pixels wide. One type of transform will
be used.

1.3 A guide through this thesis
We start by examining the technique I call window-AdaBoost developed by Viola
& Jones [1] in chapter 3. The image representation is the window transform and
the decision surface is constructed using AdaBoost. The types of windows for
the transform are done manually by educated guessing.
Problems with huge training sets lead to a (probably) new way to handle the
negative training set. After that follows a trial to improve their work by using
SVM as constructor of the decision surface is found in chapter 4, but without
much luck. A rather successful trial to let the computer automatically generate
transform dimensions is done in chapter 5. Genetic programming is used for
selecting and trying the transforms.
The next part of the work is about how well the window transform applies to
CNN technique and that is found in chapter 6.
In the last part of the thesis, a couple of suggestions are made for future work
concerning this subject.

7

Chapter 2

A market survey

Here is a short survey about what is available on the market. There are both
freeware and commercial products available today. This survey does not claim
to be complete, but the hope is that it can give an idea on what has been done
and what is currently possible.

2.1 Freeware
2.1.1 Carnegie Mellon
The method is described in
http://amp.ece.cmu.edu/Publication/Jie/icme2000_jie.pdf.
The basic idea is to have a priori knowledge of what colors are the most common
in a face. Each pixel is statistically evaluated to get the likelihood of what class
it belongs to, face or background. The pixels are clustered together and a search
algorithm is applied to get a cluster of pixels that are the most likely to be a
face. When the most likely cluster is found, the locations of the pixels in that
cluster point out the face. I have not found any data on detection rate, but
images on the web site
http://amp.ece.cmu.edu/projects/FaceTracking/Default.htm
show what the result could look like.
Carnegie Mellon o�er C++ code to be downloaded for free at
http://amp.ece.cmu.edu/projects/FaceTracking/download.htm
but they do not have an immediately executable program.

2.1.2 Fraunhofer Institut
Unfortunately, it is not described what method that are used, but an excellent
60-days free demo is o�ered to download at
http://www.iis.fraunhofer.de/bv/biometrie/download/index.html.
The demo is easy to install and tracks faces in the web camera that has to
be connected to the computer. The web camera I had on my computer is of
very low quality, but the program was robust enough to track my face anyway.
Impressive!

8

2.1.3 National Research Council of Canada
Dr. Dmitry O. Gorodnichy has constructed a program to track the nose, called
Nouse. Nouse locates the nose and enables you to steer programs with our nose
as a mouse or joystick. Nouse seems to use intensity maxima around the nose,
but the whole truth is a business secret. Download Nouse at
http://www.cv.iit.nrc.ca/research/Nouse/.
The program is very easy to install and the only additional ware you need is a
web camera. Once the nose is aligned to the tracker, Nouse tracks the tip of
the nose very smoothly. Sometimes the program could not keep up the tracking
if I moved the head too fast. I believe that Nouse is working with some kind
of minimization because if it loses track of the nose, it follows an other part
of the face like chin, cheek or forehead. It seems to look for any bright local
maximum in the face to track. Once it �nds a bright spot on the face it follows
it as if it was the tip of the nose. Nouse keeps up good in real time and as I
just mentioned before, I did not have a very good web camera. Very impressive!
Picture proof of me in nouse is found in Figure 2.1.

Figure 2.1: Screen dump of Nouse using my webcam.

2.1.4 University of Alberta
They provide Matlab Code for Principal Component Analysis (PCA), a method
using eigenvectors as a basis for a linear vector space. A SVM (Support Vector
Machine) sets up a decision surface that divides the vector space into two parts,
faces and background. PCA+SVM gives high detection rate, but it is too slow
to use in any real time system operated by a PC because the method is com-
putationally demanding. Initiated colleges at Cecil say that the CNN chip can
operate PCA+SVM in real time. At
http://vasc.ri.cmu.edu/cgi-bin/demos/�ndface.cgi
you can write the URL to an image you want to analyze. This is an example of

9

what it can do (Figure 2.2). Many more examples can be found on that site.

Figure 2.2: All faces in the image are successfully detected

2.1.5 Sluggish Software
On the following website you can read about their strategy.
http://www.fuzzgun.btinternet.co.uk/FaceLocation.htm
The idea is to take out pixels that may be a part of a face based on what color
the pixel has. The areas with a lot of potential pixels will be examined further
using PCA as described in the previous method. There is software to download
on
http://www.fuzzgun.btinternet.co.uk/Downloads.htm.
Unfortunately, I did not succeed to run any of the software on that site.

2.2 Commercial systems
Commercial system include a recognition part as well as the detection. Few
people would ever invest in a system that just detects and locates faces. To
make a system for recognition you generally need to detect the face and from
there pick out the face and compare it to a database. It is generally di�cult to
get any information on how good the detection part is, so I just present some
system available today.

2.2.1 Visionsphere
Visionsphere has developed systems for verifying users of computers and for
entrance. A detection part that isolates the face is incorporated, but further

10

information about how it works is a trade secret. Both software and hardware
are available. Visit Visionsphere at
http://www.visionspheretech.com/.

2.2.2 Imagis Technologies inc.
Imagis has one system for entrance and one system specially made for the po-
lice. Imagis has announced that the police in Orange County, CA in the US use
their system currently for booking people they arrest. No information what so
ever on how it works. Visit Imagis at
http://www.imagistechnologies.com/.

2.2.3 Identix
In 1997 the cases of robbery had began to rise dramatically in London, UK. The
police in Newham, a London borough, asked themselves what could be done
to stop the alarming trend in crime. An American company, Visionics (later
merged with Identix), proposed a system where surveillance cameras were put
up in the streets. A detection system located faces and another system com-
pared the faces with a data base of known criminals. The goal was to get a
system that could alarm before the suspect had left the camera. The system
was successfully put into operation in 1997 and an immediate drop in street
crime of 34% was attained. While crime continued to rise in other parts of
London, Newham stayed on a lower crime level. To put up surveillance systems
in the streets and in other public places is controversial, since many people do
not like the feeling of being controlled by any government, but I leave that dis-
cussion out of this thesis. Everything above is according to
http://www.sourceuk.net.
Visit Identix at
http://identix.com

11

Chapter 3

Window-AdaBoost

3.1 Preface
I call the method in [1] for window-AdaBoost. This chapter fully explains
window-AdaBoost and several tests using this technique are presented.

3.2 Introduction
The technique using the window transform and AdaBoost was developed by
Paul Viola and Michael J.Jones [1]. This method was presented at the ECCV
convent in 2001 and was claimed to be the �rst method for real time face de-
tection. The most critical factor in detection is speed. Viola & Jones present
numbers that show that their system can scan a 384 by 288 pixels large image
in 11 scales in 1

15 second. They used an ordinary desk top computer with a
Pentium 700MHz processor for that test.
Using window-AdaBoost as the base, Stan Z. Li et al. further developed the
detection system to incorporate faces rotated in all directions [3], which Viola
& Jones did not. There are more examples of visual detectors using AdaBoost
of which one is found in [2].
For feature extraction a bandpass transform is used that is referred to as the
window transform. The window transform is similar to Haar wavelets, but with
the fundamental di�erences that it is left-right symmetrical, over-complete and
has no inverse transform. But frontal faces are left-right symmetrical (in the
ideal case) so such a picture can be transformed without loss of information.
Each dimension in the transform space is de�ned by a window, which is a set
of rectangles. In Figure 3.1 you can see which types of rectangle combination
that I have used. The transform value is the sum of the pixels in the black area
minus the sum of the pixels in the white area(s). The windows are chosen to
emphasize the natural di�erences in intensity within a face. Eyes and mouth
are typically low in intensity while forehead, nose and chin are higher. The
rectangles are speci�ed by width, height and origin in the image.
The two areas contain the same number of pixels, which removes the low fre-
quency part of the image, i.e how bright the image is. The smaller the window
used are the higher are the frequencies caught. The deterministic part of this
method is which windows to pick.

12

Figure 3.1: The two types of rectangle combination for the window transform.
The width and height are variable, but with the restrictions that the rectangles
must be next to each other and that the areas of the black and white rectangles
are the same.

1,1

i ,j

Figure 3.2: Pi,j is the pixel sum of the shaded area

3.3 Why the window transform?
These kinds of rectangular windows are used not only because of their ability
to produce distinct transform values for faces, but they are also e�cient to
compute. The secret is to take the integral representation of the image. The
integral image has the same number of pixels as the original image, but the
pixel values (Pi,j) are the sum of all pixels (pm,n) from that point (i,j) and up
and to the left (Figure 3.2).

Pi,j =
i∑

m=1

j∑
n=1

pm,n

When we apply a window to an image we calculate the sum of all the pixels
within some rectangles. The number of operations used when summing the
pixels in an area is the same as the number of pixels within the same. The
computational �nesse with integral representation and rectangular windows is
that the pixel sum of any rectangles is calculated by one addition and two sub-
tractions. As there are a whole lot of rectangles to be computed, the integral
image is the key to the quick transforming.

Rectangle sum =
i2∑

i=i1

j2∑

j=j1

pi,j = Pi1−1,j1−1 + Pi2,j2 − Pi2,j1−1 − Pi1−1,j2 (3.1)

13

3.4 Classi�ers
First we have to list some denotations.

Class In detection problems there exist two classes, positive and negative. The
detector labels all subimages (24 by 24 pixels) it searches to be either
positive or negative.

Positive In this paper a positive image is an image of a face. If the detector
labels a subimage positive it means that the subimage should be a face.

Negative A negative subimage is a subimage that is anything but a face.

False positive, FP An image is called false positive if the image is not a face,
but the detector labels it positives. A true positive image is an image of
a face that the detector correctly labels positive.

False negative, FN An image is called false negative if the image is a face,
but the detector labels it negative, which means it does not �nd that face.
A true negative is a negative image correctly labelled negative.

Classi�er The detector in this chapter consists of several classi�ers. A classi�er
suggests to which class an image belongs. There are two kinds of classi�ers.
The �rst one is the weak classi�er, written WC in text and h in equations.
The second one is the strong classi�er SC in text and H in equations. The
classi�ers are further described below.

When the �nal detector scans a big image on site it has to go through all 24 by
24 subimages and has to rescale the big image to �nd faces in all kinds of scales.
Any big image always contain many more negative than positive subimages, so
the wish is to quickly classify the negative subimages correctly to get rid of them
without spending too much time on each negative. The positive subimages are
much fewer, so we don't bother if it takes more computing until the detector es-
tablishes that a subimage is positive. To solve this problem the detector is built
in a cascade of so called strong classi�ers, SC. Each subimage goes through all
SC but if one SC on the way classi�es it as negative, the following SC doesn't
have to process it. That is because it is only images that pass as positives
through all SC that are labelled positive by the detector. Supposed that the
detector has no false positive or false negatives, then all negative sub-images get
�ltered out somewhere on the way and only the few positive has to go through
all SC.
The SC make their decisions based on suggestions from a couple of weak clas-
si�ers, WC. The object of training is to pick out the right WC and to assemble
them into a SC.
Let x be a 24 by 24 image, represented as the pixel values in one 576 dimensional
vector. A WC consists of a window transform tj(x), a threshold θj and a parity
pj ∈ {−1, 1}. The suggestion the WC makes is either 1 for x being positive or
0 for x being negative. Remember that WC is called h in equations.

hj(x) =
{

1 if tj(x)pj < pjθj

0 else (3.2)

A weight α is assigned to each WC which corresponds to how well it did in the

14

Figure 3.3: Examples of background images from which the negative training
examples are taken

training compared to the other weak classi�ers. Thus, a big α-value means that
it is a good classi�er so that the SC can rely more on it.
Finally, the SC (H in equations) with the threshold Z and T weak classi�ers is
determined by:

H(x) =
{

1 if
∑T

j=1 hj(x)αj ≥ Z

0 else (3.3)

If H(x) = 1, the SC labels the image positive. The parameters of the WC as
well as Z are determined during the training.

3.5 The training sets
All statistical training methods require training examples. All a priori knowl-
edge we have is to which class the training images belong. The negative training
examples are easily found on the web and for starters 100 images were collected.
Two examples are seen in Figure 3.3. From these images a program randomly
picked out 24 by 24 sub images in di�erent scales.
Examples of negative images are found in Figure 3.4. There are ready-to-use

Figure 3.4: Examples of negative images resized to 24 by 24 pixels to use in the
training

databases for faces, but only the Olivetti Face Database was appropriate for
this case. All other databases were either non free, stored images in impossible
formats or were just not suitable for this task. In the Olivetti Face Database
there are ten pictures per person and 40 persons in total. The pictures are taken
for di�erent head poses but are considered to be frontal enough. Examples are
seen in Figure. 3.5.
Thank you AT&T Laboratories Cambridge for sharing these images without
any pro�t.

15

Figure 3.5: Examples of persons from the Olivetti Face Database

There are more examples of training images in chapter8.

3.6 The AdaBoost training
In this section the training of the classi�ers will be considered, �rst the positive
and negative examples. Denote the number of negatives training examples by
Nn and the number of positive training examples by Np. Each image xi is
associated with a weight, wi, which initially is set to

wi =

{
1

2Nn
if image xi is positive

1
2Np

if image xi is negative , where
Nn+Np∑

1

wi = 1

An image is also associated with its class, yi, which is zero or one, depending
on if it is negative or positive.
Now comes the tough part in which the best weak classi�er is picked out. The
word "best" is in the AdaBoost meaning and is based on the error ej . ej is the
sum of the weights of the not correctly classi�ed training examples which can
be written as

ej = min
θj ,pj

∑

∀i

wi|hj(xi, θj , pj)− yi| (3.4)

The WC with the the smallest ej = e is chosen.
Let us now make a note that one WC might be good at �nding, say perfectly
frontal faces and another good at �nding faces that are slightly rotated in some
direction. A good SC need contribution from WC that can point out all kinds
of faces and therefor the weights are updated so that the training examples that
are wrongly classi�ed by previous WC's are counted as more important. Put

wi ←
{

wi if image xi was not classi�ed correctly
wi

e
1−e if image xi was classi�ed correctly (3.5)

and normalize the weights so that
∑

∀i

wi = 1

Start over and continue until you have T WC's.
Z, the threshold in the SC can now be set and the user has to decide an ac-
ceptable number of false negatives, FN. The threshold Z is found by running

16

the SC over the positive training examples and set the value for Z for which the
number of false negatives equals the chosen level. In Figure 3.6 it is illustrated
how that Z-value is set so that four FN are allowed for that training set.

Figure 3.6:

One of the good features of the boosting is that the negative training examples
labelled negative by the SC are dropped from the training set. The previous
SC are able to �nd them so the next SC can concentrate on the false positives
instead. This will speed up the training because training time is linearly depen-
dent on the number of training images.
The algorithm starts over again to �nd the next H with the reduced set of
negative examples.

3.6.1 A �ow chart over window-AdaBoost
1. Prepare Chose the rectangle combinations t1 . . . tn, get the images to train
on x1 . . . xNp+Nn and calculate the window transform values ti(xj) on all the
images. The number of SC and WC have to be decided as well as how many
FN that are allowed for each SC.

2. Train

2a, main boosting loop.

• while the number of SC < Ns

• go to 2b

• remove all true negative that this SC �nds in the training set

• increase the number of SC

• end while

2b, loop to train one SC.

17

• Initiate weights for training images.

wi =

{
1

2Nn
if image xi is positive

1
2Np

if image xi is negative

• for j=1:T
Calculate error values for all nt transform dimensions.

ek = min
θk,pk

Nn+Np∑

i=1

wi|hk(xi, θk, pk)− yi| k = 1 · · ·nt (3.6)

The minimization problem give both ek, θk and pk for all dimensions.
hj is chosen by which of the nt dimension that has the lowest error ek, k =
1 · · ·nt.
The α-value for the WC is computed by:

αj = log
(

1− ej

ej

)
(3.7)

Update the weights for the training images

wi ←
{

wi

(
e

1−e

)
if image xi was classi�ed correctly

wi if image xi was not classi�ed correctly
(3.8)

and normalize the weights so that
∑Np+Nn

i=1 wi = 1 apply.

• end for

• Set threshold Z for the SC based on how many FN that are allowed

• return H

3.7 Test
A number of training programs were made with a little improvement every time.
When the training images are collected and the code is written it is time to set
the parameters for the training.

{ti} the set of transform windows.

Nn the number of negative training examples.

Np the number of positive training examples.

T the number of WC in one SC.

Ns the number of SC.

Fn the number of FN allowed for each SC.

18

Which parameters that have to be set and which don't depends on the design
of the program. Here is a little about the impact the parameters above make.
The types of transform windows available is important and an expansion to
more than the two types that is used here is probably a good idea.
Nn and Np have to be large enough so that the samples resembles reality. But
Nn and Np can't be too big because that will take to much time to train and
will at a certain number eventually crash the computer.
Large T and Ns will make the �nal classi�er more accurate, but slower. Fn

controls the rate FP
FN.

3.7.1 Test 1
Np = 400, Nn = 3000, T = 10, Ns = 20, Fn = 2 and there are 2075 transform
dimensions. All positive training examples are assumed to be equally hard to
�nd (= iid). The aim was set for a 90% detection rate for the positive training
examples: (0.90 = (1 − Fn/Np)Ns if Fn = 2). The training took about 3
hours and the result for this �rst classi�er was 2.2% FN and 4.5% FP, when the
detector was tested on the training set. 2.2% FN is better than expected (and
probably ruining the assumption of iid), but 4.5% FP makes the detector totally
useless. A manual investigation of which faces the detector could not �nd was
performed. There was only one black person in the training set which contained
40 persons and the images of him were more di�cult to detect. I believe that is
because the window transform compare intensities between di�erent parts of the
face. The window transform values probably get quite di�erent for white and
black persons. This �aw can be remedied by adding more black people to the
training set. There were several men with beard, but they were not di�cult to
detect even though one suspect the transform values to di�er from the standard
person of the training set which is a white male who is beardless and who is not
wearing glasses. My explanation to this is that the training examples contain
many enough beard-wearing men, but not enough examples of black persons.
The next test on the schedule was to see how changing T and Ns a�ect the
result.

3.7.2 Test 2
T was changed to 20 and Ns to 10 so that there were 200 weak classi�ers in
total for this test as well. Fn was set to 4 this time to aim at the same true
positive detection rate. All negative training examples were found and removed
after eight out of ten SC. The eight SC gave 4.6% false negatives and about
2% FP when tested on images from without the training set. Keeping the same
total number of weak classi�er, but grouping them di�erently did have an e�ect
on the training.
Since two strong classi�ers were missing the number of negative training exam-
ples had to be increased.

3.7.3 Test 3
Nn was increased to 20,000 and this time it was many enough. The result
though, is not okay since there still were to many FP. It took 13 hours to
complete the calculation.

19

To see how the number of false positives decreased for every strong classi�er
the program got to continue to run and �nd more SC. The detector was meant
to use ten strong classi�ers, so the additional ten were trained only made for
an investigative purpose and the results are seen in Figure 3.7. The number of
false positives seem to decrease logarithmical to the number of SC.
The question is why some of the negative training examples are so di�cult to
classify?

0 5 10 15 20
0

5

10

15

H

T
im

e
(h

)

0 5 10 15 20
10

1

10
2

10
3

10
4

10
5

H

F
al

se
 p

os
iti

ve
s

Figure 3.7: A plot of the time passed against the number of negative training
examples left in training (the FP) as a function of how many SC that yet have
been trained

3.7.4 Test 4

If the positive training examples are more alike, they will span a smaller volume
in the transform space. All faces were cropped so that hair and background
vanished. Up until now, the faces had not been really aligned, which cropping
them manually like in Figure 3.8 �xed.
The program was started with the parameters set to the same as before.Due to
the fact that the positive training examples were more alike after the cropping,
the negative training examples were too few again. Around 20,000 negative
training examples was the maximum number the computer could handle and
even if that could be �xed, it kind of felt like this was not the best way to
go. The �rst strong classi�ers get so many more negative examples than the
last, since the number of negative training examples decrease logarithmical in
number for each SC. It would be more fair if all SC had the same number of
examples to train on.

20

Figure 3.8: The image to the right is rescaled to 24 by 24 pixels, but due to a
smoothing that occurred when it was exported to the editor the pixels are not
directly visible

3.7.5 Test 5
If the program was to be operating in the original way, it would need a big load
of negative training examples when more WC and SC were to be added. That
cost training time as well as it is di�cult to make the computer to handle such
big matrices.
But few are the problems that have no solution. Start with a feasible number
of negative training examples randomized from some images, just like before.
After the �rst SC all the FP are removed from that set, as usual. Now, let a
program use the SC as a detector and scan some images that do not contain
any faces, and save all positive detections. These FP get transformed and are
added to the set of negative training examples. This solution is not solely
computationally e�cient, but is also correct from the original theory's point of
view. All that is done is simply to add some more negative training examples.
The same procedure is repeated after each SC.
The parameters were set to Nn = 10000, T = 20, Ns = 10 and Fn = 4.
The search for new negative examples is what took the most time. Finding
classi�ers was done in minutes but updating the negative training set was a
matter of hours.
Figure 3.9 show training time and false positives as a function of the number of
strong classi�ers. The result of the detector can be seen in Figure 3.10. There are
a lot of multiple detections as one can see, but they can be used to improve the
detection rate. If it is stated that it takes, for example three multiple detections,
for being classifying a face, all the single false positives will be removed. I did
not implement this improvement because it is more meaningful to use this to
tune a system on site, for example a detector at a door.
Counted clockwise and starting at the upper left, the size of the images are 200
by 100, 300 by 222, 57 by 57 and 90 by 290. The detector was set to rescale
the images by 0.8, which means that we merge the pixels so that 20% of them
vanish. Counted in the same order as before, the number of sub images to
be scanned is 29,537, 134,668, 1,931 and 38,634, which equals to 204,771 sub
images. If one assume that the images come from a tuned detector then all faces
but two in the lower right image would have been detected. I did an arbitrary
e�ort to try to count the FP and de�ned that to be detections which are not a

21

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

45

H

T
im

e
(h

)

0 2 4 6 8 10
0

1000

2000

3000

4000

5000

6000

7000

8000

H

F
al

se
 p

os
iti

ve
s

Figure 3.9: A plot of the time passed the number of negative training examples
left in training (the false positive) as a function of how many strong classi�ers
that yet have been trained

part of a multiple (true positive) detection. I got a total of 23 FP detections.
A ROC curve (Receiver Operating Characteristic) is a popular measure for
detectors, see for example [4]. A ROC curve plots the rate of true positives, TP,
against the rate of FP. The perfect detector reach the point (1, 0).
The four images that were scanned with this detector reach the point (0.78, 1.1 ·
10−5) in ROC space. The ROC is usually used to illustrate how a variable
a�ects a detector. In this case we only have one point in ROC space and that is
neither fun to look at nor that informative. Viola & Jones have an ROC curve
that has a TP rate of over 0.98 in a span of FP rate between 5 ·10−4 and 4 ·10−3,
which rather outclass the current result. One strong reason for that is because
they have more training images and that they have di�erent T in each strong
classi�er which they have manually tried out. It would be a fun experiment to
make an optimization program to �nd the perfect Tj :s for a given number of
strong classi�ers.
Viola & Jones �rst SC consists of only two WC and is claimed to reject 60%
of the negative training examples. The following 33 SC contain more and more
WC, even up to 200 in the last few.

3.7.6 Test 6
This is the �nal approach and we are going to see how altering the number of
WC will a�ect the �nal detector. Because of the cascade principle, the detector
will bene�t from few WC in the �rst SC and more WC in the last. The number
of WC have previously been kept constant.
I tried two methods. In the �rst one I copied Viola & Jones result that was
published in their paper. That test did not turn out very well.
The theory behind the second method is just to add more WC until the number

22

Figure 3.10: Four images scanned by the detector in Test 5. Clockwise and
starting from the upper left: Bu�y, Katie, Friends and Bush

of FP are few enough. Three tests were conducted before the result of the
detector was satisfying. Each of the tests used between 300 and 450 images
from which negative examples were taken. 200 more positive examples had to
be added for the last tests because the prior two tests had too high rate of FN.
These faces came from images found on the web. Here is the new, altered, �ow
chart of my version of windowed-AdaBoost. → are new items in the algorithm.

2a, main boosting loop.

• while the number of number of SC < Ns

• go to 2b

• remove all true positive that this H �nds in the training set

• → Search for new negative training examples using the SC that currently
exist as a detector.

• increase the number of SC

• end while

2b, loop to train one SC.

• →while the number of FP > chosen limit

• �nd the best WC in the same way as before

• →assemble current WC into one SC

23

• →calculate the number of FP on the training set for this SC

• end while

Below are the parameters with comparicy to earlier tests
{ti} = 2112, increased
Nn = 10, 000
Np, increased
T , not set. The limit of FP in the training set was instead set to 5500.
Ns = 19
Fn = 3

Setting Nn, Ns and the limit of FP to their values above is theoretically the
same as stating with 10, 000 ∗ 1.4517 = 5.5106 negative examples. That number
would produce a matrix that is impossible to handle for most computers.

Figure 3.11: The cast of Bu�y the vampire slayer

All faces in both Figure 3.11 and Figure 3.12 get multiple detection, so
the rate of TP is very close to 1. When tested on �ve images without any
faces in them the result was 108 FP out of 2.1 millon, which is a FP rate of
5.1 · 10−5%. The di�culty to measure ROC values lies in that the FP are not
evenly distributed between the images. One image got 89 FP while one one got

24

Figure 3.12: The royal family

zero FP. The two images were about the same size. Anyway, measured in ROC
space, this result is very close to what Viola & Jones got.

3.8 Further discussion about the window-AdaBoost
technique

I believe that this is almost as far as one can come using window-AdaBoost.
Updating the negative training set was quite a success which made it possible
to train the detector in about one week on an ordinary PC, but who will settle
for less then a detector that reach (100,0)% in ROC space?
There are two things I am eager to try. I want to see if the decision surface
can be improved and I want to see if I can make the computer to automatically
choose the rectangle combinations better than I have done.

25

Chapter 4

Support Vector Machine,
SVM

4.1 Preface
This chapter covers the classi�cation method called SVM. SVM is well known,
mathematically well founded and has a history of producing great results as a
classi�er. Both AdaBoost and SVM produce decision surfaces, but the decision
surfaces are usually not the same for the two methods.
In this chapter the most important theory behind SVM is presented and a couple
of tests are performed to investigate a SVM based detector. Only the two class
case is covered and all objects are images, since this master thesis focus on visual
detection.

4.2 Introduction
SVM is a method to �nd a decision surface that separates training data of two
(or more) classes. Once the decision surface is established, the classi�cation of
unknown objects is based simply and solely on which side of the decision surface,
in a transform space, the object is located. To reformulate in mathematical
terms one can say that SVM �nds a projection of the image x into R.

C(x) → R

The class of x is decided by sign(C(x)).
The image can be represented in any form, as long as it is a vector like pixel
values or, as in previous chapter, transform values.
SVM is a well know technique for classi�cation and relies on mathematical statis-
tics, which is appreciated in our �eld of work. My main source of information
was from Christopher J.C. Burges �ne work [5], which I found both comprehen-
sive and well written. Some of the mathematics were left out here, because I
did not �nd it necessary nor well founded to completely prove this well known
technique once again. However, all the theory needed to train a two class SVM
is included here. There is a vast array of papers and books on the subject, so
readers who are interested can easily grab deeper into the subject.

26

4.3 Linear SVM and separable data
For training we have a set of images xi ∈ Rn with corresponding class label
yi ∈ {−1, 1}. There are l number of images in training. Assume that the two
classes of training data can be separated by a hyperplane P . Any point x on P
satisfy x ·w+b = 0, where w is the normal to P . Continue to de�ne two parallel
planes to P which lie as close to the nearest point (or points) on each side of P
as possible. Name the parallel planes P+ and P− and the distances from them
to P d+ and d−. Figure 4.1 shows what it could look like when n = 2.

PP

P−

P+
++

++

++++

++

++

++

++

++

++

++
++

++

++

++

−−

−−

−−
−− −−

−−−−

−−

−−
−−

−−−−

−−
−−

−−

 dd−−

 dd++

Figure 4.1: In this 2D space the decision surface is a straight line and it separates
the two classes without any object being on the wrong side of it. That is called
a separable case.

If the training data is linearly separable, the points also satisfy the conditions
as follows.

xi ·w + b ≥ 1 for yi = 1 (4.1)

xi ·w + b ≤ −1 for yi = −1 (4.2)

The two equations above are combined into the following expression.

yi(xi ·w + b)− 1 ≥ 0 ∀i (4.3)

There is a bunch of candidates for P , so a de�nition of which one is the best is
required. It can be shown that the risk for misclassi�cation is lowest if d+ and
d− is maximized.
The perpendicular distance between the origin and P is |b|/‖w‖. The distance
between origin and the other two hyper planes is thus |b+1|/‖w‖ and |b−1|/‖w‖.
Subtraction yields d+ + d− = |2|/‖w‖.
The very essence of what just have been shown is that maximizing d+ and d− is
the same as minimizing ‖w‖. Here follows the de�nition of the �rst optimization
problem.

Primal

{
min ‖w‖2

2
subj. to yi(xi ·w + b)− 1 ≥ 0 i = 1 . . . l

(4.4)

27

This is a convex quadratic minimization problem. The bene�t of this fact is that
it guarantees convergence and that every minimum that is found is a global min-
imum. The problem can be rewritten into a Lagrange formulation. Minimizing
the objective function above is the same as minimizing the Lagrangian L. Pos-
itive constrains gives positive Lagrange multipliers αi.

L =
‖w‖2

2
−

l∑

i=1

αi(yi(xi ·w + b)− 1) (4.5)

Further constrains for the Lagrangian is that derivatives with respect to αi will
be zero.

Lagrangian





min L
subj. to ∂L

∂αi
= 0 i = 1 . . . l

αi ≥ 0
yi(xi ·w + b)− 1 ≥ 0

(4.6)

This is also a convex quadratic minimization program because the objective
function is quadratic and the constrains form a convex set as they are all linear
constrains. This fact makes it possible to de�ne the dual to the problem.
The dual objective function is to maximize L while requiring that derivatives
with respect to w and b are zero and that the Lagrange multipliers are positive.
This dual formulation is caller the Wolfe dual.

WolfeDual





max L
subj. to ∂L

∂b = 0
∇wL = 0
αi ≥ 0 i . . . l

(4.7)

The two equality constrains can be inserted into the objective function. They
are

w =
l∑

i=1

αiyixi (4.8)

and

l∑

i=1

αiyi = 0 (4.9)

When(4.8) and (4.9) are inserted into the lagrangian L, it becomes the dual
Lagrangian, LD. The maximization problem comes down to.

Final
Dual





max LD =
∑l

i=1 αi − 1
2

∑l,l
i=1,j=1 αiαj(xi · xj)

subj. to αi ≥ 0 i . . . l∑l
i=1 αiyi = 0

(4.10)

This program is more preferable from a computational point of view. w can be
computed directly from (4.8), but to retrieve b the KKT conditions will have to
be included, which for this kind of problem are booth necessary and su�cient
conditions. These are the KKT conditions for formulation in (4.6).

28

∇wL = 0 (4.11)

∂L
∂b = 0 (4.12)

yi(xi ·w + b)− 1 ≥ 0 (4.13)

αi(yi(xi ·w + b)− 1) = 0 (4.14)

αi ≥ 0 (4.15)
KKT condition (4.13) is used to compute b.

But where are the support vectors then? When (4.10) is solved, there are
some αi 6= 0. Corresponding xi are located on P+ or P−, and they are called
support vectors.

4.4 Linear SVM and non-separable data
Non-separable means that no hyperplane can be placed so that it has all the
training objects from class 1 on one side of the hyper plane and all from class
2 on the other side. This fact makes the solution in previous section infeasible,
since it does not ful�ll the constrains in (4.3). This problem is solved using slack
variables in the constraint. There are l slack variables εi in total.

xi ·w + b ≥ 1− εi for yi = 1 (4.16)
xi ·w + b ≤ −1 + εi for yi = 1 (4.17)

εi ≥ 0 (4.18)
If any training object want to trespass into the wrong side of the hyperplane,

the corresponding ε will be greater than 0. The goal is to have as few training
objects as possible on the wrong side of the hyperplane, so a penalty is added
for every trespass in the objective function ‖w‖2

2 + C(
∑l

i=1 εi)k. Together with
the three constrains above it is a convex minimization problem, if k is a positive
integer. For k = 1 or 2 it is also a quadratic problem. For k=1, the slack
variables will not show up in the (Wolfe) dual so that is the most common value
to choose for k.
C is set by the user. A big C will punish a lot for trespassing. For the case when
the decision surface can be other functions than a hyperplane (next section) a
big C will "bend" the surface more.

This time the Lagrangian is:

L =
1
2
‖w‖2 + C

l∑

i=1

εi −
l∑

i=1

αi(yi(xi ·w + b)− 1 + εi)−
l∑

i=1

γiεi (4.19)

γi are Lagrange multipliers for the constrain (4.18).
The KKT conditions turns out to be like this.

29

∇wL = w −
l∑

i=1

αiyixi = 0 (4.20)

yi(xi ·w + b)− 1 + εi ≥ 0 (4.21)

∂L

∂b
= −

l∑

i=1

αiyi = 0 (4.22)

∇εL = C− α− γ = 0 (4.23)

ε ≥ 0 (4.24)

αi ≥ 0 (4.25)

γi ≥ 0 (4.26)

αi(yi(xi ·w + b)− 1 + εi) = 0 for l = 1 . . . l (4.27)

γiεi = 0 for l = 1 . . . l (4.28)
Again, the same dual is used to compute the problem. Remember that C is a
parameter that the user sets.

Nonsep.
Dual





max LD =
∑l

i=1 αi −
∑l,l

i=1,j=1
1
2αiαjxixj

subj. to 0 ≤ αi ≤ C for i = 1 . . . l∑l
i=1 αiyi = 0

(4.29)

The solution to the hyperplane is retrieved from KKT condition (4.20) and
(4.27).

4.5 Non-linear SVM
In many cases it is not enough to use a hyperplane to separate the classes. It
de�nitely brings more possibilities to �nd a better decision surface if a curved
surface can be used. Instead of de�ning a function surface in the original space,
the data is mapped into another (multi dimensional) space Ω where a linear
SVM training can be done. Recall the dual maximization problem (4.29) in last
section. The training data appear only as scalar products. De�ne the mapping
function as Φ, then the training data will appear as Φ(xi) · Φ(xj). We de�ne a
kernel function K(xi,xj) ≡ Φ(xi)·Φ(xj). The reason for using a kernel function
is because it is faster to use the kernel as a functional than taking the long way
via the transform and scalar product. The optimization problem becomes as
follows.

Nonlinear
Dual





max LD =
∑l

i=1 αi −
∑l,l

i=1,j=1
1
2αiαjK(xi, xj)

subj. to 0 ≤ αi ≤ C for i = 1 . . . l∑l
i=1 αiyi = 0

(4.30)

30

The decision surface can now be retrieved to us a classi�er. b is to be found in
the modi�ed equation (4.27):

αi(yi(K(xi,w) + b)− 1 + εi) = 0 for i = 1 . . . l (4.31)

The w is not needed because the classi�er is used directly via the kernel function.
If si are the support vectors from the solution and there exist ns of them, the
�nal classi�er becomes as follows:

sign (C(x)) = sign

(
ns∑

i=1

αiyiK(si,x) + b

)
(4.32)

What really has changed from the linear case is the space in which the hyper-
plane is calculated. That was done by manipulating the scalar product which
was replaced by the kernel function K. But can any space and kernel function
be used, or are there any restrictions to them for the equations to hold? Yes,
there are restrictions and they are summarized in Mercer's Condition.

Mercer's condition
Let g(x) be a function with �nite L2 norm i.e

∫
(g(x))2dx < ∞. For any such

g, the following must hold:
∫

K(x,y)g(x)g(y)dxdy ≥ 0

That did not seem to be such a harsh condition? Well, bear in mind that
there are a fair number of functions with �nite L2 norm. Scientists have found
three possible kernel functions.

K(x,y) = (ax · y + b)p for p ∈ Z and ab ∈ R Polynomial
K(x,y) = e−‖x−y‖2/2σ2 for σ ∈ R Gaussian
K(x,y) = tanh(κx · y − δ) for κδ ∈ R Sigmoidal

The sigmoidal type is not valid for all values on the parameters and will therefor
not be used in this work.

4.6 Setting up a SVM test
The idea is to use the window transform from last chapter for feature extraction
and to see if the decision surface constructed by a SVM will make an improved
detector. However, there are a number of decisions to make and problems to
solve on the way when comparing SVM to AdaBoost.

4.6.1 Single detection or detection in stages?
A single detection means that all the transform dimensions of the features are
searched at one time. Detection in stages was used in last chapter and has the
advantage that it is way faster because of the cascade e�ect. A detector in
stages is on the other hand more di�cult to train.

31

4.6.2 Choosing dimensions
The size of the sub images that the detector checks are 24 by 24 pixels. That
gives the image a dimension of 576. The two window types used in last chapter
comes in 2075 di�erent shapes, or dimensions. It is quite obvious that only a
few of the 2075 dimensions can be used in order to gain any speed at all. In
last chapter some of the detector used up to 200 dimensions (transforms) and
a speci�c search strategy was provided. A strategy has to been found to select
which dimensions to use here.

4.6.3 Known problems with SVM
The SVM theory guarantees that the optimization will converge and that every
optimum is a global optimum, as shown before. That is until the computer
gets its hands on the problem anyway. Computing precision and bad ranked
matrixes can cause problems, but it can be controlled if the following is kept in
mind.

• Choosing a too big penalty parameter C can cause problems with conver-
gence.

• SVM:s can get in trouble if any dimension has a lot of scatter. To avoid
that we need to pick the right dimensions.

• Precision problem in training can occur if transform values between di-
mensions di�er too much.

4.6.4 Setting parameters
These are the parameters we can set.

• C controls the penalty for misclassi�ed objects in training. This parameter
has great in�uence on what the decision surface will look like. A big C
generally makes the decision surface to be more bent. C is a critical
parameter to set!

• ai, is a weight for each class. This parameter is multiplied with C so
that we can set di�erent penalties for misclassifying training objects from
di�erent classes.

• K, kernel function. Polynomial or gaussian.

• Np, number of positive training examples.

• Nn, number of negative training examples.

• d, the dimension of the SVM, i.e. how many transforms we use.

4.6.5 Software
There are a lot of program packages for SVM training available for free on the
market. Since all code so far is done in Matlab, I downloaded the OSU SVM
Classi�er Matlab Toolbox (ver 3.00) developed by Junshui Ma, Yi Zhao,
and Stanley Ahalt. It is fast thanks to C++ made mex-�les. No additional
optimization software is needed, just the training class data.

32

4.7 Test
4.7.1 SVM + using previous results
This test uses the dimensions selected in Test 5 (3.7.5). The test will �nd out
which one of AdaBoost and SVM that construct the best classi�er from these
dimensions.
Parameters were set as follows. C = 1, ai = 1, for all i, K was set as a linear
kernel (polynomial, degree 0), Np = 400, Nn = 4000, d = 20 and there are ten
stages in the �nal classi�er. The result is shown in Figure 4.2. It is easy to

Figure 4.2: The result of the SVM classi�er when the class threshold is set to
the default value 0

reduce the number of detections here, booth real and false detections. What
the SVM classi�er really returns when it search an image is not a binary yes or
no (given by sign(C)), but the whole value C. In Figure 4.2 zero is chosen as
threshold. The more an image resembles a face the higher the output value is.
If the bar for positive detection is raised to 1, the result is fewer detections as
seen in �gure 4.3. The fewer detections do not improve the quality, in measure
of true positives per false positives.
In order to see if the SVM could beat AdaBoost, the training had to be manip-
ulated. The OSU SVM trainer can be given an input value for the penalty for
misclassifying each class. When training AdaBoost, condition were given that
there would be at most one percent false negatives in the training set. The �rst
strong classi�er from the AdaBoost test had 61 false positives when trained on
10 000 negative images.
The task now is to simultaneously adjust C and the penalty ai for the two
classes until one percent false negatives is reached. If the rate of FP become
less than 0.61%, the SVM wins!
As stated earlier, the SVM trainer can be somewhat di�cult to get to converge,
and it sure was not easier when the class penalty was added. To make things
easier for the SVM the dimensions were normalized so that the largest norm, in
each dimension of the positives, was equal to one. Normalizing during training

33

Figure 4.3: The result of the SVM classi�er when the class threshold is set to 1

only requires rescaling of the support vectors after the training is complete.
For polynomials with degree greater than two, it was easy to get zero false de-
tections on the training set if penalty C was high enough. Therefor two sets
were required, one for training and one for testing. The training set contains
1000 negatives and 300 positives and for testing 1000 negative plus 100 positive.
The test result was not that uplifting and the conclusion is that SVM produced
very poor results on the test set compared to AdaBoost.
As comparison the corresponding strong classi�er from AdaBoost was tested on
5000 negative images and found 47 false positives.

kernel C class weight false pos./1000 false neg./100
linear 10 1:2 36 1

quadratic 10 1:10 31 1
cubic 10 1:10 108 1

gaussian 3 1:2 19 1
AdaBoost 9.4 1

4.7.2 Highest mean
Well, it seems like the SVM surfaces did not apply very well for the dimensions
chosen by AdaBoost. But, might there be another set of dimensions that a SVM
surface would be perfect for? Let us see what the maximum, minimum and mean
for the dimensions look like in Figure 4.4. Remember that every dimension
has either maximum one or minimum minus one because of the normalizing.
The norm of the highest mean is almost 0.5 for the positive examples which is
very high considering that all dimensions are normalized so that the maximum
norm of every dimension is one. The 20 dimensions with the highest mean in
norm were tried. The question is once again if this set of dimension could beat
AdaBoost with a lower rate of false positive under the constrain that at most
one percent false negatives would be given in the output. The training was
performed under the same conditions as last time.

34

0 500 1000 1500 2000 2500
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Mean of positives
Mean of negatives

Figure 4.4: Plot of the mean transform values of the training images. The
dimensions are sorted by rising mean in the dimensions of the positive training
images. The solid line is the dimension mean of positive images and the blur is
the corresponding mean from the negative training images

kernel C class weight false pos./1000 false neg./100
linear 1200 1:9 132 1

quadratic 30 1:20 750 1
cubic 26 1:10 652 1

gaussian 0.15 1:5 165 1
original update 9.4 1

4.7.3 Ransac
Ransac is a simple method for trying dimensions and train a SVM. However,
there is one problem that has to be taken into consideration. To �nd a 20D
classi�er takes a lot of manual work to adjust parameters so that the condition
to allow at most one percent false negatives comply. All sets of dimensions will
require di�erent values for the parameters. It is possible to make a constrained
optimization problem out of it, but there is a great risk that the optimization
problems are unfeasible, especially for larger C:s. Unfeasability is meant in the
sense that the OSU SVM classi�er has no interrupt of any kind and can get
stuck in a forever ongoing loop. I know this by experience.
There is another way around the problem though. A classi�er in 100-D with
a quadratic kernel function could quite easily be done and in this case no con-
straints are needed. The best set of dimensions can be picked out directly from
the ransac-training. The reason why this works is that 100 dimensions is pow-
erful enough to separate the classes with only a few misclassi�cations in either
direction. A short investigation of the parameters gave that C = 1 and the class
weights set to 1:1 seemed to be okay for a couple of tested dimension sets. This
is how ransac works.

35

while forever
Randomly pick out 100 dimensions
Train and test a SVM with the 100 dimensions
If the set of dimensions was the best one yet, then save the set

end

Every test round took approximately 16s. Assume that there is one set among
all the possible that is superior as classi�er, then how long time would it take
to �nd that set? There are 2075 dimensions in total and 100 are taken out at
one time. The probability that the �rst dimension belongs to the superior set is
100/2075. Under the assumption that the �rst dimension was picked out right,
the probability that the second dimension belongs to the optimum set will be
99/2074 and so on and so forth.

P (The best set is picked) =
100 . . . 1

2075 . . . 1875
=

(
2075
100

)−1

≈ 2 · 10−173

Since every set in ransac is equally likely, the mean number of trials that has
to be gone through is 1/2P , or 2.5 ·10172. If every trial takes 16s, the mean time
until the best set is found is 16 · 2.5 · 10172 = 4 · 10173 s, which equals to 10157

billion years. I don't really expect to �nd the optimum set of features during
my twenty weeks.
Let's instead hope that a good enough set is much easier to �nd. The computer
got to run over the weekend producing 4500 trials. The training was done
on 4000 negatives plus 350 negatives. Testing was done 571 negatives and 50
positives in an attempt to get an even rate between training and testing. The
total number of misclassi�ed test images was used as a measure. There were six
out of 4500 sets that produced one misclassi�cation in total. It is quite clear
that to further continue this training more images have to be used in testing,
and/or a later selection has to be added for the best runners up. The results of
the best single classi�er can be seen in Figure 4.5.

4.8 Conclusions on SVM
The task was to get a set of window transforms and to train a SVM as classi�er
on that set. The operator has to aim for a single detector or a detector in
stages. The latter alternative is better because it is much faster since most of
the negative sub-images are rejected using only a few windows (cascade e�ect).
A detector in stages is on the other hand more di�cult to train because of
constrains on the false negative rate.
Unlike AdaBoost, SVM does not provide a strategy for which dimensions to
use. A SVM was trained using the dimensions chosen by a comparable detector
trained with AdaBoost. The result was not as good as what was obtained using
AdaBoost as classi�er. The dimensions with highest mean was also tried for the
SVM, but it did not improve results for the classi�er.
A single detector in 100 dimensions was created using ransac. It was not a
success, but there is a possibility for improvement and the ransac algorithm will
de�nitely keep converging against a global minimum and within an in�nity or
so, the best 100 dimensions are sure to be found!

36

Figure 4.5: The result of the single 100 dimensional SVM classi�er trained with
ransac

37

Chapter 5

Genetic programming

5.1 Preface
In chapter 3 I suggested that we should not be limited to use only the two types
of rectangle combinations for the window transform as we previously have been
using. Genetic programming (GP) is easy to implement as a search algorithm
to �nd better rectangle combinations. Three tests using GP to �nd windows
for a detector are performed in this chapter. AdaBoost and nearest neighbor is
used as classi�ers. The second AdaBoost test gave better training results than
using the rectangle combinations that were done manually in chapter 3!

5.2 Introduction to GP
Genetic programming is a kind of optimization method used in special cases
like when gradients are not available or the function is not smooth enough to
use conventional optimization programming. The idea is taken directly from
nature via Darwin's famous work on the evolution theory. The �rst idea of evo-
lutionary computing was introduced in the 1960s by I. Rechenberg in his work
"Evolution strategies". His thoughts have been developed by many scientists
and we can now use this strategy to solve numerous problems thanks to the
great computing power we have today. The thing that struck me the most is
the theoretical simplicity, even though it is a bit more complicated to tune the
program in reality.
Most of the ideas and stages in GP have got parallels in nature. The goal is
to �nd, or evolve, the best possible individual. Being best refers to some quan-
ti�able test that has got to be able to do on each individual and that is called
the �t. Each individual has got a DNA that decides all its features and also
what �t it will get. The DNA is not surprisingly built up by genes, that are
considered to be the fundamentals of each individual. A bunch of individuals
together form a population. There can be several populations, separated from
each other, but there is always a chance that some individuals migrate to other
populations. Two individuals within a population can mate and produce o�-
spring. The children have got some genes from both parents. The parents DNA
is often of the same length and the copying starts from parent 1 until the �rst
crossover, where copying genes from parent 2 takes over. The crossovers can

38

occur exponentially distributed, set to a �xed length or maybe occur just once
at a random place in the DNA. It is a trial and error decision the user has to
make, or even better, implement as another genetic function! During mitosis
there can also occur mutation that alter one or more genes in a random fashion.
One last way of altering the DNA in the o�spring is to swap places for the genes
the new individual. The location of a gene in the DNA is often important, just
like in nature, so swapping places of genes must be done with care and prefer-
ably with some knowledge of the consequences or else the program might not
converge as desired.
After such a generation, the individuals within a population are compared with
respect to their �t and some of them (not necessarily the "weakest") are killed
and removed from the program.
Almost everything about GP can be found on the website
http://cs.felk.cvut.cz/∼xobitko/ga/

5.3 This speci�c GP
The SVM was supposed to �nd better decision surfaces, but without much
success. Another suggested improvement from chapter 3 was to �nd better
rectangle combinations for the window transform. The original windows are
rectangles lying right next to each other. An improvement and a step against
more arbitrary windows is if the rectangles were not �xed in size and did not
have to lay next to one and other. For a starter only two rectangles per window
transform was thought of, but this set of possible combination really blows up
(8.1 billion combinations for 24 by 24 size sub images), and that is why GP is
introduced. It is very time consuming to make all the windows by hand, not to
mention the time it would take to evaluate everything in the AdaBoost. Com-
putation time using AdaBoost is quite proportional to the number of windows
that are de�ned so the attempt is to use GP to �nd better windows and three
test have been conducted on this subject.
There are a lot of parameters to set, but I tried to make things as simple as possi-
ble just to see if there was any chance to improve the original Window-AdaBoost.
The possibility of multiple populations was excluded. That limitation increase
the risk of getting stuck on a local minimum, which may explain why the �rst
test was not successful. This is the list of parameters to set.

• L The numbers of genes per individual.

• N The Size of the population.

• mr1 Likelihood of type one mutation.

• mr2 Likelihood of type two mutation.

• cr If crossovers (in mitosis) are assumed to occur exponentially, the mean
length before a crossover is cr.

• Np Number of positive images in training.

• Nn Number of negative images in training.

39

5.3.1 Test AdaBoost 1
In this test one gene de�ned a pair of rectangles. Each individual had 20 genes
to make it comparable to previous tests. Starting out with ten individuals
with randomly built rectangles, six of them mated and produced three children
in each generation. The mitosis used exponentially occurring crossovers with
cr = 10. There were two kinds of mutations of the genes. Mutation type 1
changed one side of a rectangle one step in either (possible) direction. Mutation
type 2 was more drastic and remade the two rectangles randomly. Parents were
chosen to be the six ones with the smallest value τi.

τi = fiti (1 + |randn|)
Here, "randn" is a normal distributed random number. This tactic makes it
more likely to get a parent with a good �t to become a parent but does not
exclude individuals with bad �t value, just as in nature. The new children were
sent to an AdaBoost training, where they got to train on 5000 negative and 400
positive images. The threshold for the strong classi�er was set to �nd 99% of
the positive images, once again to make it comparable to previous tests. A suit-
ing �t value is of course the number of false positives in the training set, which
is also one of the fastest ways to make an evaluation. Due to the AdaBoost
training the genes could switch places. The hope was that the switching of
places would eventually end while converging because some windows are better
at the beginning while other windows are better at the end of the DNA. This
assumption is not mathematically founded in any way. The parameters are very
arbitrarily chosen and are set as follows.

L = 20
N = 10
mr1 = 0.1
mr2 = 0.01
cr = 10
Np = 400
Nn = 5000

In the beginning the program seemed to converge promising, but it did not
last long until a local minimum seemed to have been reached.

5.3.2 Test nearest neighbor
My colleges at Cecil suggested some changes in the program, among others to
use nearest neighbor instead of AdaBoost.
Nearest neighbor calculates the mean of each class. The mean refers to the mean
in each window transform dimension. To classify a 24 by 24 image, the image
�rst get window-transformed. The labelling is based on which class center is
the nearest.
Their second proposal was to let one gene be one rectangle instead of being a
pair of rectangles. The idea is that it would be more arbitrary and more dy-
namical to train.
Using nearest neighbor is much faster than using AdaBoost when training a clas-
si�er and that means that more generations can be evolved in the same amount
of time which let nearest neighbor test more combinations. Nearest neighbor

40

has on the other hand a much "weaker" decision surface than what AdaBoost
produce. The parameters were set to this.
L = 40
N = 10
mr1 = 0.1
mr2 = 0.1
cr cr was not used, but one randomly placed crossover allways occured
Np = 400
Nn = 5000

The fact that the decision surface is weaker for nearest neighbor was probably
more important than that more generations got tested and the best �t after
23 000 generations (17 hours) was 65, i.e. 65 false positives out of 5000. The
original method had 61 false positives out of 10 000 so nearest neighbor does
not seem to be a method that can improve the results.

5.3.3 Test AdaBoost 2
This test uses AdaBoost, but in this case each gene incorporate only one rect-
angle. Using AdaBoost had been so successful before, but training had to be
faster because every generation took too much time. What took the most time
was to get the pixel sum in all images after a mutation of a rectangle. Rectan-
gles that were not mutated did not have to be recalculated. The AdaBoost was
by then well optimized and very fast. There were 40 genes and if they formed
all possible rectangle combinations there would be 780 rectangle combinations
to try out in total. It sure was worth trying and I set the parameters to this.
L = 20
N = 10
mr1 = 0.1
mr2 = 0.05
cr cr was not used, but one randomly placed crossover allways occured
Np = 400
Nn = 5000

3866 generations (14 hours) gave a minimum �t of 26 false positives out of 5000.
If that value is comparable to the original window-AdaBoost training this GP
program produce better windows than I did myself. The original method had
61 false positives out of 10 000 which is 30.5 false positives out of 5000. The
windows evolved for the 20 weak classi�ers are found in Figure 5.1

One might be a little suspicious, because the windows are not left-right
symmetrical as one might expect them to be. They do in fact look a little
"strange". A program that constraint the rectangles to be left-right symmetrical
is easily constructed. It may be possible that the left-right symmetry constrain
makes the program converge better, but there was no time for more testing on
this subject. GP is only included to see if it might work in training and I state
that Window-AdaBoost with rectangles selected by GP does indeed work.

41

Figure 5.1: The rectangles evolved for the window transform

42

Chapter 6

CNN-Cellular Neural
Network

6.1 Preface
The CNN chip in this text is made for image processing. The chip is brie�y
presented as well as what operations that are best suited for it. A calculation is
included on how fast we can perform the window transform with the CNN chip
compared to an ordinary computer.

6.2 Motivation
Every person who has ever dealt with image processing, in the mathematical
sense, knows how computationally demanding it is. When we compute an image
it is most often represented by its pixel values, so that we can apply our math-
ematical operations in a familiar fashion. The ordinary desktop computer can
only operate on one pixel at one time, simply because that is how they work.
Let us relate to object detection, which is the subject of this thesis. If we recall
the methods mentioned in earlier chapters, they search in sub-images that are
24 by 24 pixels which equals to 576 pixels. The ordinary computer thus needs to
process all 576 pixels for every sub-image. The detector search a bigger image,
say 128 by 128 pixels and do that in all scales. For objects in the smallest scale,
24 by 24, there are 10.816 sub-images in such an image. That sums up to taking
6.23 million pixel values into account for that single scale.
The CNN chip is speci�cally made for parallel image processing, which means
that it process all pixels at one time. Parallel processing obviously requires fewer
operations compared to sequentially process each pixel one by one. However,
there are some limitations to what operations are available for the CNN chip.

6.3 Basics about CNN
The last generation of CNN works with image of size 128 by 128. Each pixel
is connected to its eight nearest neighbors and the input is �ve matrixes, a one
variable function and a constant term. A more arbitrary approach is to let each

43

pixel be connected to neighbors beyond the eight closest, but increasing that
radius complicates the chip design immensely for each step. We can describe
the process in the current chip with this di�erential equation. Index i and j
refer to location in space.

dxij

dt
= −xij+

i+1,j+1∑

k=i−1,l=j−1

Ak−i+2,l−j+2f(xkl)+
i+1,j+1∑

k=i−1,l=j−1

Bk−i+2,l−j+2ukl+Z+zij

(6.1)
The time derivative on the left side vanish after an instant and a steady state
solution arise. The solution in every pixel is then obtained if xi,j is taken to the
left side of (6.1).
The following list explain the variables in the equation.

• A is a 3 by 3 matrix for weights from a function f of the neighbors.

• f(xij) is often a step, ramp or sigmoidal function.

• B is also a 3 by 3 matrix for weights from another input image u.

• uij is a pixel value from the input image.

• Z is a bias for the whole image i.e. same for all pixels.

• zij is a bias speci�c for each pixel.

There are two more matrixes to use. The �rst one is a mask that can force
chosen pixels not to change their values during operation on the image. The
second matrix is another mask that allow chosen pixels to be stored in the
analogue memory. Pixels in the analogue memory that are not chosen by the
writing mask do not change their value.

6.4 CNN friendly operations
6.4.1 Filtering
One can get both high pass and low pass �ltering with CNN. Setting the matrixe
A and B like this will produce a high pass �ltering (edge detection).

A =




0 0 0
0 1 0
0 0 0


 B =




0 −0.5 0
−0.5 2 −0.5

0 −0.5 0


 (6.2)

A low pass �ltering (smoothing)is achieved if we set A and B like this.

A =




0 0 0
0 1 0
0 0 0


B =

1
9




1 1 1
1 1 1
1 1 1


 (6.3)

f can be a ramp function.

44

a. Grayscale image of
two parasites

b. Binary threshold of
image a

c. Binary image after
skeleton operation

d. N operations of
thinning

e. Objects in b retrieved
with aid from d.

f. The found parasites
in d are highlightened in a.

Figure 6.1: An example of what is attainable with basic and morphologic oper-
ation

6.4.2 Morphology
There are many applications in which morphological operations are used. These
operation often demand an immense computational e�ort. The parallelism of
CNN makes it run in just a few operations instead. Let us look at an example
where we want to detect parasites in a gray scale image.

6.4.3 Di�usion
The equation 6.1 can be set to work as the heat equation.

∇xxu(x, t) =
∂u

∂t
(6.4)

A steady state solution requires space boundary condition whereas the transient
solution also needs the initial values. The steady state is of less interest in image
processing than what transient solution are. Running the heat equation on the
initial image for a while will make the image di�use. The di�usion is made in
one single operation and the degree of di�usion is decided by the time you let
the di�usion run. Parameters are set like this.

A =




1 1 1
1 1 1
1 1 1


 B = ∅ (6.5)

f is once again a ramp function.

45

Chapter 7

Future work

I would like to make some suggestion on how future work in this subject could
proceed. This sums up the questions and problems that I have not studied due
to lack of time.

7.1 Better feature extraction
Under the assumption that this technique is to be applied to the CNN chip
there are two things I expect can be tested for improvement.

1. The size of the sub images have been 24 by 24 pixels throughout the whole
thesis. That size does not have to be the best one, especially since faces
by nature are higher than they are wide.

2. Start using other shapes than rectangles. Rectangles were used in the win-
dow transform solely because they are fast to calculate thanks to integral
representation of the images.
I suggest we look for a mask of two non overlapping and connected areas
using genetic programming. That would probably produce a better class
discriminating transform. While building this program I suggest a restric-
tion that the mask should be left-right symmetrical, because frontal faces
are just that. Genetic programming has shown good result so that is a
technique which probably is a good idea to use when looking for the two
non overlapping areas.

7.2 Better decision surface
There are two questions here left to answer. What is the optimal number of
weak classi�ers in each strong classi�er and how many strong classi�ers should
we use? These are both question we must answer using trial and error. Test 6
in chapter 3 show a way to solve the problem of how many weak classi�ers to
use.

46

Bibliography

[1] Paul Viola & Michael J. Jones.: "Robust Real-time Object Detection".
http://www.merl.com/people/viola/research/publications/CRL-TR-2001-
01.pdf

[2] Yoav Freund and Robert E. Schapire.: "A short introduction to boost-
ing". Journal of Japanese Society for Arti�cial Intelligence, 14(5):771-780,
September, 1999.

[3] Stan Z. Li, Long Zhu, ZhenQiu Zhang, Andrew Blake, Hongjiang Zhang &
Harry Shum.: "Statistical Learning of Multi-View Face Detection".
http://research.microsoft.com/∼szli/papers/FaceDet-ECCV2002.zip

[4] N.V. Chavla, K.W. Bowyer, L.O. Hall and W.P.Kegelmeyer.(2002):
"SMOTE: Synthetic Minority Over-sampling Technique" Journal of
Arti�cial Intellegence Research 16 321-357

[5] Christopher J.C. Burges editor Usama Fayyad.: "A Tutorial on Support
Vector Machines for Pattern Recognition"
Data Mining and Knowledge Discovery, 2, 121-167(1998) Kluwer Academic
Publishers, Boston

[6] Bernd Heisele, Tomas Poggio and Massimiliano Pontil.: "Face Detection in
Still Gray Images"
ftp://publications.ai.mit.edu/ai-publications/1500-1999/AIM-1687.pdf

47

Chapter 8

Appendix

8.1 Images for training

Figure 8.1: Negative training examples were taken from images like this. Up to
450 such images had to be used.

48

Figure 8.2: Here are 64 of the 600 positive training examples..

49

