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ABSTRACT

Motivation: To study lowly expressed genes in microarray
experiments, it is useful to increase the photometric gain in
the scanning. However, a large gain may cause some pixels
for highly expressed genes to become saturated. Spatial stat-
istical models that model spot shapes on the pixel level may
be used to infer information about the saturated pixel intensit-
ies. Other possible applications for spot shape models include
data quality control and accurate determination of spot centres
and spot diameters.

Results: Spatial statistical models for spotted microarrays are
studied including pixel level transformations and spot shape
models. The models are applied to a dataset from 50mer oligo-
nucleotide microarrays with 452 selected Arabidopsis genes.
Logarithmic, Box—Cox and inverse hyperbolic sine transfor-
mations are compared in combination with four spot shape
models: a cylindric plateau shape, an isotropic Gaussian
distribution and a difference of two-scaled Gaussian distri-
bution suggested in the literature, as well as a proposed
new polynomial-hyperbolic spot shape model. A substan-
tial improvement is obtained for the dataset studied by the
polynomial-hyperbolic spot shape model in combination with
the Box—Cox transformation. The spatial statistical models
are used to correct spot measurements with saturation by
extrapolating the censored data.

Availability: Source code for R is available at http://www.
matfys.kvl.dk/~ekstrom/spotshapes/

Contact: ekstrom@dina.kvl.dk

INTRODUCTION

pixel values become censored at the upper limit, which with
16-bit precision is # — 1 = 65535. Techniques for adjust-
ment of highly expressed signal intensities are given in Wit
and McClure (2003) based on a small set of available spot
summaries, such as spot mean, spot median and spot vari-
ance. As mentioned in Wit and McClure (2003), it should
be possible to get more accurate adjustments when all pixel
values are available. In the present paper, we study spatial
statistical models for pixel values that should enable such
adjustments.

A convenient type of modelling is to transform data to
become approximately Gaussian distributed with a mean
value function determined by gene intensities and spot shapes
and a corresponding covariance function. For such models,
censored pixel values can be estimated optimally. We invest-
igate several types of transformations on the pixel level such
as the logarithmic transformation, the Box—Cox family (Box
and Cox, 1964) and the inverse hyperbolic sine transforma-
tion (Huberet al., 2002; Durbinet al., 2002), also called the
generalized logarithm (Rocke and Durbin, 2003). The inverse
hyperbolic sine transformation has been proven useful for ana-
lyzing microarray spot intensities, but here we apply it at the
pixel level. The Box—Cox transformation with exponent 0.5,
i.e. a square root transformation optimal for Poisson distrib-
uted counts, has been used at pixel level analysis of microarray .
data by Glasbey and Ghazal (2003). !

The spot shapes studied include three types suggested by
Wierling et al. (2002): (i) a cylindric plateau spot distribution, =
(i) an isotropic two-dimensional (2D) Gaussian distribution
and (iii) a crater spot distribution consisting of a differ-
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In order to study lowly expressed genes in microarray experence between two scaled isotropic ZP Gauss?an diStl’ibutiOI"l.S.
iments, it is useful to increase the photometric gain in theThese models does not seem to provide a satisfactory descrip-
scanning. However, a large gain may cause some pixels fdion for the dataset considered, and we introduce a new class of
highly expressed genes to become saturated, i.e. the register@@dels with polynomial-hyperbolic spot shape. With asecond

*To whom correspondence should be addressed.

degree polynomial we get a considerably improved perform-
ance. This spot shape may be regarded as a generalization of

TPresent address: Poalis A/S, Billowsvej 25, 1870 Frederiksberg C, Denmatke cylindric plateau spot shape.
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The models are applied to a dataset obtained with a speciallyhere 11 is a positive offset parameter. A Box—Cox trans-
designed spotted 50mer oligonucleotide microarray. Here, thiormation
expression of 452 selected genes in transgénabidopsis
plants are compared with the corresponding genes in wild- y — {k((Z +a) —1/ap if A2 #0 3)
type plants. Data include scans with different photometric klog(Z + 11) if 22 =0,
gains ranging from no saturation to heavy saturation.
wherei1 > 0, and an inverse hyperbolic sine transformation

DATA, TRANSFORMATIONS AND S Z4
EXPLORATORY ANALYSIS Y =kaf3'”h< - ) A2 > 0. )

2
Materials ) , )
The constant is used in all three transformations to scale the

The data used for shape modelling a_nd da_lta transformatio ansformed pixel intensities such that a saturated pixel (i.e. a
are based on a transcriptome analysis (Kristensen and B ixel with intensityZ = 216 — 1 — 65535) corresponds to a
personal communication) of metabolically alters@bidop- value ofV = 1

sis plants (Tattersglbt al., 2090). The array is a custom Note that arsinh(z)= log(z + vz2+ 1) for z > 0, s0
getygned' S0mer ct):lgdorguc:\ji)/\t;gegrr?ythlS mm, 359“:“ . for large z we have arsinh(z)~ log(2z). As a result, the

ot spacing, spotted by | lotech Using a singie plnIogarithmictransformation is essentially (at least for large val-
on epoxy-coated glass slides. The array contains probes f es ofz) a special case of both the Box—Cox transformation
452 selectedhrabidopsis genes designed to cover the cyto- , . _ . L .
chrome P450 (Paquett al., 2000; Werck-Reichhagt al.. (W!th A2 = 0) and the inverse hyperbolic sine transformation

. . (with A2 = 2).

2002) (see http.//www.b|obase.dk/P4'50/) and g!ycosyltrans— Figure 1 shows the inverted grey scale image of the
ferase (UGT) (Paquetetal., 200.3) mqltlgeng famllles as vyell Y -intensities for the logarithmic transformation (2) with =
as genes that relate to aromatic amino acid biosynthesis, S€58 andk — 1/log(2%6 + 20 — 1) for the wild-type green
ondary metabolism and stress. The 50mer oligonucleotide, . . . . .
were )c/jesigned by MWG Biotech, essentially %s describegC y3) channel with phqtometrlc ga|n_60. Pixels withvalues
by Kaneet al. (2000 RNA o lated f 30 d lose to 1 are shown in black and pixels wkhvalues close

?:j :';g.d . ( t)t. r? was 'Sol\jt.e Prc:mA P aX“SA to 0 are light grey. The middle panel of Figure 1 shows the
° rabidopsis rosette leaves using MicroPoly(A)Pure corresponding saturated pixels whefe= 1. In the right

small-scale mRNA purification kit (Ambion). About3-3.fy panel, we show the intensities for three spots with photomet-

][lnRNA wa?dusedAfor d'rﬁCt n;tl:qorporagog_otf Cf" and §y5- ric gains 30, 40, 50 and 60, respectively, along horizontal lines
uorescen ye.s( mersham =harmacia blotec )gsmg uloe{ﬁrough the spot centres. Each of the intensity curve is given
script 11 kit (Invitrogen). Hybridizations and washings were

performed essentially according to the manufacturer’s instrucfor 25 pixels, the centre pixel and 12 pixels on each side. The
. . spots are the 6th, 10th and 12th spots in the 9th row in the
tions and subsequently scanned using a GMS 418 Arra b POtS | W

Yoft panel; these three spots have numbers 102, 106 and 108
Scanner (Affymetrix) using four different photomultiplier ' . . . L . '
gains: 30, 40, 50, 60 while keeping the laser power at 30, and show medium, high and low spot intensity, respectively,

Th ing 16-bit lo tiff-i 1abl and the intensity curves are overlayed for all four gains. Spots
€ resuiting 1o-bit grey scale t-mages are avallable, s, 106 and 108 are marked with boxes in the left panel of
for two varieties: wild-type wt, transgenic line 3x.8, four

photomultiplier gains: 30, 40, 50, 60 and two dye SwapFlgure L
experiments: cy3, cy5, for a total of 16 images.

SPOT SHAPE MODELS
Transfor mations Based on empirical observations of spot intensity profiles

Let Z = Z(x) denote the intensity of a pixal. Here,z is &S S€en in Figure 1 as well as in Duggenal. (1999)
a 16-bit integer, i.e. 0< Z < 216 — 1 — 65535. LetY (x) (Fig. 2) and Glasbey and Ghazal (2003) (Fig. 1), we desire
denote a transformation @‘(_x) a spatial spot shape model to have the following three prop-

erties: (i) isotropic, i.e. that the average intensity at a pixel
x only depends on the distance framto the spot centre
Y(x) = F(Z(x). 1), @ and not on the direction from the centre; (ii) should allow
) _ ) _ for spot-shapes resembling both ‘volcanos/craters/donuts’ and
where (-, ) is a family of transformation depending on the ‘p|ateaus’. Spot intensities are often highest near the edge of

parameter vec.tdr. _ _ the spot and smaller near the spot centre making the resulting
In the fO”OW|ng, we shall consider three tranSfOI’matlonS:Spot Shape resemble a volcano (m|dd|e pane| of F|g 1)1 and
A logarithmic transformation (iii) allow for spatial correlation, i.e. pixels close together and
with the same distance from the spot centre should be more
Y = klog(Z + A1), 2 correlated than pixels further apart.

2271

¥T0Z ‘82 1Hdy U0 31011919513 LISHIAINN SDHOFSTLOD 1 /BI0'SUINO[pIOSX0'SIIRWIOI0IG//:dNY WOI) papeojumoq


http://www.biobase.dk/P450/
http://bioinformatics.oxfordjournals.org/

C.T.Ekstrgm et al.

Relative intensity
07 09
1

0.5

0.3

20

25

Relative intensity
05 07 09
1

0.3
1

20

25

0.7 0@
I 1

Relative intensity
0.5

0.3
I

0 5 10 15

20

25

Q853109 P /610'SUIN0[PI0JXO'SOIEWLIOJU0I0//:dNY WO pepeojumod

Fig. 1. Inverted grey scale image of cy3 wild-type with photometric gain 60 (left panel) and the corresponding saturated pixels (middle panét).
Horizontal intensity profiles through spot centres for wild-type cy3 images with gains 30, 40, 50 and 60 are shown for three spots (right pangl).

The three spots depicted in the right panel are the ones marked with boxes on the left panel. The three spots marked with circles are u

Figure 5.

Let S denote the set of spots. With each sppt € S,

we associate a set; of pixels. We assume that no pixel
belongs to more than one such set, and some pixels may not
be associated with any spot. LBt= Y (x) denote the (pos-
sibly transformed) intensity at a pixet, with pixel centre

coordinatest = (x1,x2). We assume thak (x) and Y (x")

are independent ift and x’ are associated with different

spots.
Consider now a spetand pixelst € A;. Letey = (¢51, ¢52)
be the spot centre of spaet and letry(x) = ||x — ]|

be the distance from pixet to the spot centre. Assume

that

Y (x) = Byhs(rg(x)) + by + €(x),

where B, measures the intensity of spgtb; is a constant
representing the backgrountdy(r) is a spot shape function
ande(x) corresponds to zero-mean noiseratWe assume
that [Y(x),x € Ay] has a multivariate normal distribution

X € Ay,

(5)

s (x) = Bshy(rs(x)) + by,

h(r) = —510r < o),

with mean vectoy, and covariance matrig;. Thus

and the spot shape functi@n(r) may depend on parameters.
Some spot shape parameters may be common for all spots but
some may be spot-specific.
In the present paper, we only consider the simplest covar-
iance model where each pixel intensity is assumed inde-
pendent, i.e.e(x) ~ N(0,02I), wherel is the identity
matrix. More complicated spatial correlation structures will
be investigated further in a later publication.
We consider the following four spot shape models:

The cylindrical shape model. Let

(6)

where 1(P)= 1if P is true and 1(P)= 0 otherwise. The
parametet; > 0 is the radius of the spot.
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2 whereos; > 0 andg¢ is the standardized 1D normal density
3 b() = —= exp( = 2)
5 ] r)=—— —=re).

g o The Gaussian difference shape model.  Let
— O
c
= 1+ o r o r
2 h(r)=—¢<—>— ¢>< ) 8
E 3 * V2ro? \oy)  2m(Bso)?  \Bsoy ®)
@ whereo; > 0, > 0 and O< B, < 1.

N

© A polynomial-hyperbolic spot shape family. Put

o | ! a

L g(r) =Y bar' ————, 0<r <y,

0 5 10 15 20 25 i Vs — T
2 v wherel > 2,a; > 0 andy, > 1. Put further
8 ) K, .

2 :' : hy(r) = § of P& /00 O Sr <o)
2 0 if r> y,o5,
I ; :
§ S . . , whereo, represents the radius of the spot ang; is the
-g 4 AN - distance from the spot centre where there are no more signal
2 < -\ from the spot. The constag; is a function of the parameters
8 e : : bg1, ..., bsr,as, ys such that
o o~ 0o 27

o i / / hs(r)rdrdf =1,

= a condition that is also satisfied by the spot shapes (6), (7)

0 5 10 15 20 o5 and (8). The parametess andy, determine the steepness of
the spot edge. It may be noted that the spot function (9) is zero

2 outside a circle around the centre for y,0y, similar to the
cylindric spot function (6), which is zero for > o;. While
o | the cylindric spot shape function is discontinuous, the function
> e (9) is continuous and infinitely differentiable. However, the
[ ° S cylindric spot shape may be obtained as a limiting case of the
e S -9 \ polynomial-hyperbolic spot shape, see below.
C - - = . .y
° We require the boundary condition
2 <
5 < 2;(0) =0, (10)
o . . "
N i.e. that the spot intensities are flat near the centre of the spot.
Most often, we would also require that
= —— 8(1) =0, (11)
T T T T T T
0 5 1015 20 25 such that the spot intensity starts to decrease at value 1

_ _ (i.e.whenthe pixelis at distanegaway from the spot centre).
Fig. 2. Examples of transformations of spots 102, 106 and 108 Fgr7 — 2 the boundary conditions (10) and (11) result in

at gain 60. Original datowtem), logarithmic transformation (—).  the following constraints on the parameters in the polynomial:
inverse hyperbolic sine (- - -) and Box—Cox (- - -).

b1 = as/yxz
The Gaussian shape model.  Put by = s {; - i} ,
2 s =12 2
he(r) = 1 9 (L) , 7 vaye hgre leta, tend to zero a.n_gis tend to one we get the the
@052 oy cylindric spot shape as a limiting case.
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ESTIMATION OF PARAMETERS AND
SATURATED (CENSORED) VALUES

Parameter estimation

LetA, = {x € A;: Y (x) < £} andA] = {x € A1 Y(x) >

¢.} denote the set of pixels iA, that are uncensored and
censored, respectively, at the le¥gl Spot shape parameters
may be estimated by maximizing the log-likelihood function

Ly = L1+ Lo, 12)
where
L
and

where¢ and ® are the standardized normal density func-
tion and distribution function, respectively. The log-likelihood

(12) can be maximized by standard iterative maximization
techniques, e.g. quasi-Newton or Nelder-Mead.

We note that if the spot shape parameters are varied indi-
vidually for spots we get six parameters for the spot shape

models (6) and (7)Bs, cs1, ¢s2, bs, 0. andoy, and eight para-

meters for the models (8) and (9). The additional parameters

area, andg; for model (8) and:; andy, for model (9).

To estimate also parameters in the transformation (1), we

maximize

aY (x)
0Z

LZ=LY+ZIog< (13)

).

Fig. 3. Three-dimensional plot of observed intensities for spot 102 at
gain 60 (top surface) and estimated spot shape from the polynomiapr ediction of saturated (censored) values

hyperbolic shape model (bottom surface).

Forx € A7, we denote the transformed estimated (predicted)
intensity by . . A
Y (x) = Bshs(rs(x)) + by,

We will use the condition (11) in the sequel but it may be whereB, andb, denote estimated parameters @ndienotes

noted that if we specifg; (1) as a negative constant we may
obtain spot shapes with a dome shape, and if we spgity

the spot shape function with estimated parametery. i$
the transformation employed, e.g. (2), (3) or (4), then the

as a positive constant we may obtain more pronounced cratéprresponding estimated intensity is

shapes.

Data and estimated spot shape for the polynomial-O

hyperbolic spot shape model are shown in 3D in Figure
for spot 102 at gain 60, corresponding to the upper curve i
the right panel of Figure 1.

Z(x) = Y ().

Were completely observed.

Fitted cylindrical, Gaussian, Gaussian difference andRESULTS

polynomial-hyperbolic shape functions corresponding to the .
spots in the right panel of Figure 1 are shown in Figure 4. ItisChoice of transformation and spot shape model

clearly seen that the polynomial-hyperbolic spot shape moderhe Box—Cox (3) and the inverse hyperbolic sine transforma-

fits the data better than the three other models.

tion (4) both contain the logarithmic transformation (2) as

2274

nce the predicted values for the saturated pixels are obtained,
e can plug in these values and analyze the spot as if all pixels
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Fig. 4. Horizontal intensity profiles through the centres of spots 102, 106 and 108 (each spot represented by a row) together with estimeﬁed
spot shapes for each of the four spot shape models: cylindrical, Gaussian, Gaussian difference, polynomial-hyperbolic (corresponding to éact
column) for gains 30, 40, 50 and 60. Estimates are, for each spot, based on pixels 25 2fea, but are here (as well as in Fig. 5) displayed
as profiles through the spot centre.

Table 1. Comparison of transformations and spot shape models

Transformation Spot shape model
Cylindrical Gaussian Gaussian difference Polynomial-hyperbolic
Logarithnf 171.57 330.45 191.98 57.79
Logarithm 136.30 329.60 185.41 17.00
Arsinh 127.19 258.70 144.39 13.86
Box—Cox 134.32 320.30 178.23 0.00

Median increase in log-likelihood (13) for 25 spots and four gains relative to polynomial-hyperbolic spot shape model with Box—Cox transformation.
FixedA, to 1.
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a special case. Thus we can use log-likelihoods to test ibbjective was to study reconstruction of spots with saturated
either of them gives a significant improvement relative to thepixels.
logarithmic transformation for a given spot shape model. Table 1 shows that the polynomial-hyperbolic spot shape
The results shown in Table 1 are based on the analysis ghodel clearly turned out superior to the other spot shape
25 spots and for each of them four gains, which gives 100 datanodels studied with the log-likelihood as criterion. This
sets. The choice of spots was made so that both low, mediamas also suggested by Figure 4 where the polynomial-
and high-intensity levels were represented but with a slighhyperbolic shape gives a considerably better fit than the other
over-representation of high intensities as one of our mairthree spot shape models. The analyses also show, that the
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Box—Cox transformation provides the best transformatiora clear undershot. This undershotis even more pronounced for
for the polynomial-hyperbolic spot shape model, while thecensoring at level 0.5 (data not shown).
inverse hyperbolic sine transformation yields better fits for
the cylindrical, Gaussian and Gaussian difference models.

Interestingly, the second best fit is provided by the simpleDlSCUS’SION
cylindrical model while the two Gaussian models give theln this paper, we consider models for spot intensities on
worst fit. This was also suggested by Figure 4 where thehe pixel scale and different transformations to approximate
Gaussian models—in contrast to the cylindrical and the polyhormality and variance constance.
nomial hyperbolic shape models—fit equally bad on the spot An empirical observation is that a logarithmic transforma-
boundary and at the spot centres. tion with no offset is found to result in non-homogeneous

For comparison, we fitted the polynomial-hyperbolic spotvariation: low-range pixel intensities show larger variation
shape model using the Box—Cox transformation with fixedthan mid-range or high-range pixels. The results from the
values ofA1 = 1 andi, = 0.2. This model provides a bet- analyses show that inclusion of an offsat improves the
ter median fit (median log-likelihood increase of 7.03) thanlogarithmic transformation and that a further improvement
does the logarithmic and inverse hyperbolic transformationss obtained with either the inverse hyperbolic sine or the Box—
with variableA values. The logarithmic transformation with Cox transformation. The proposed polynomial-hyperbolic
variable offset parameter; turned out to be considerably spotshape model (9) is more flexible than both the cylindrical,
better than the standard logarithmic transformation with fixedsaussian and Gaussian difference models and is found to
A1 = 1 (we user; = 1 as fixed value rather than = 0 as  provide by far the best fit (Table 1). The results from Table 1
some pixel values were zero). also indicate, that a value @b near 0.2 (i.e. the 5th root) is

A priori, we can not formally test the Box—Cox and the optimal for the Box—Cox transformation in combination with
inverse hyperbolic sine transformations against each othehe polynomial-hyperbolic spot shape model.
as the statistical models are not nested. However, for the The results seen in Figure 5 indicate that with a small per-
polynomial-hyperbolic spot shape model it turned out thatcentage of censoring (<30%, say) it should be possible to
in most of the 100 datasets the logarithmic and inverse hyestimate parameters and predict pixel intensities for the cen-
perbolic sines were close, while the Box—Cox transformatiorsored pixels in a satisfactory way. An obvious consequence of g
gave a considerable improvement relative to the logarithmichis is, that the photometric laser gain in some situations may &

10°S [eUINO [0J0 X0°SO ITeWIO U0 10//:dNY W01} papeojumod

transformation. Therefore, we conclude that the Box—Coxbe increased such that some pixels are saturated in order toa
transformation also was superior to the inverse hyperbolic sinenprove the pixel intensities of the low intensity spots without Q
in the present study. any serious loss of information for the spot with highest pixels o
Selected median parameter estimates from the polynomialntensities. §
hyperbolic spot shape model with Box—Cox transformation Figure 5 also suggests that some pixels from the spot centre c
werea; = 0.68,7; = 1.75,01 = 0.99 andi, = 0.185. need to be observed in order to estimate censored pixel values
) well. When only the edge and the background pixels of the
Reconstruction of saturated values spot are observed (corresponding to the last column with arti-

Figure 5 shows the estimated spot profiles for the polynomialficial censoring at level 0.6 and even more pronounced at level
hyperbolic spot shape model when the pixels for spots 242).5, data not shown), the polynomial-hyperbolic spot shape
352 and 787 are artificially censored at different intensitiesmodels has difficulties in reconstructing the non-observed
These three spots were chosen as those with the highest lewsgturated pixel values.
not exceeding the upper limit. Thus the the leftmost diagrams It should also be possible to combine several runs with vary-
show for each of these spots the estimate without censoing gains, compare the right panel in Figure 1. For spots with
ing, while the other diagrams show reconstruction for varyingsaturated pixels, pixel values may be reconstructed as shown
degrees of censoring. In these diagrams, the Box—Cox tranfa this paper. But if the censoring is too hard the correspond-
formation was used with fixedhvalues 1 = 1andi, = 0.2.  ing estimate should be down-weighted when combined with
The parameters, andy; were also fixed and chosen empiric- signal intensities for runs with lower gains. To find optimal
ally to mimic the results from the previous sectiapn= 0.65  weights further studies are necessary.
andy, = 1.75. The proposed spot shape model may be improved by consid-
The conclusion from Figure 5 is that with a small degreeering several spots and/or combining data from both channels
of censoring corresponding to the second column in Figure Simultaneously. It can be argued that all spots should share
the reconstruction is satisfactory. For a higher degree of certhe same transformation parameteksg,and A, such that
soring corresponding to the third column in Figure 5 we gettheir estimates should be based on the joint analysis of all
some overshoot. With increasing degree of censoring an imspots. With measurements in two channels additional inform-
provement is in fact seen in the fourth column, while theation may be gained by estimating parameters common for
rightmost column corresponding to censoring atlevel 0.6 giveboth channels simultaneously. In particular, the spot centre

¥T02 '8z 1udy U0 XI1017919S13LISHIAN

2276


http://bioinformatics.oxfordjournals.org/

Llee

1.0
1.0
1.0

0.2
0.2

00 02 04 06 08
| | | | |
0.0 04 06 08
| | | | |
00 02 04 06 08
| | | | |
00 02 04 06 08 1.0
| | | | | |
0.0 04 06 08 1.0
| | | | |

o o o o o
c c c c c
T T T T T T T T T T T T T T T T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
< e <

T T T T T T T T T T T T T T T T T T T T T T T T T
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Fig. 5. Horizontal intensity profiles through the centres of spots 242, 352 and 787 (each spot represented by a row) at photometric gain 60 for the polynomial-hyperbolic s
model for different levels of (artificial) censoring as indicated by a horizontal line. For each profile both data (thin lines) and the reconstruction are shown. The average f
pixels that were censored among thex225 pixels regarded for each spot were (from the left) in the five columns: 0, 17, 29, 30 and 32%, respectively.
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parameterss;, = (cs1,¢s2) and the spot sizes; are obvious Durbin,B.P., Hardin,J.S., Hawkins,D.M. and Rocke,D.M. (2002).

choices, since they should be identical for both channels. A variance-stabilizing transformation for gene-expression micro-
We conclude by listing some additional items that may be array dataBioinformatics, 18(Suppl. 1), S105-S110.
studied by use of a good spot shape model: Glasbey,C. and Ghazal,P. (2003) Combinatorial image analysis of

DNA microarray featuresBioinformatics, 19, 194-203.
« To find accurate estimates of the local background levelHuber,W., von Heydebreck,A., Sultmann,H., Poustka,A. and

We note that the model (5) contains such a parantgter ~ Vingron,M. (2002) Variance stabilization applied to microarray
for the local background at spet data calibration and to the quantification of differential expression.

. o . Bioinformatics, 18(Suppl. 1), S96-S104.

* TO make a quality control by flr!dlng spots tha’[ qev'ateKane,M.D., Jatkoe, T.A., Stumpf,C.R., Lu,J., Thomas,J.D. and
in some way as may be seen in left panel in Figure 1 \adore,S.J. (2000) Assessment of the sensitivity and specificity
(e.g. the second spot to the right of the middle of oligonucleotide (50mer) microarrayllucleic Acids Res., 28,
circled spot and several spots in the upper part of the 4552-4557.
chip). Paquette,S.M., Bak,S. and Feyereisen,R. (2000) Intron—exon organ-

ization and phylogeny in a large superfamily, the paralogous

To find improved estimates of spot centres and spot
° P b P cytochrome P450 genes Afabidopsisthaliana. DNA Cell Biol.,

diameters. It is also possible that the estimate of the
. . 19, 307-317.
parameterB; in (5) could be used to estimate the total Paquette,S.M., Mgller,B.L. and Bak,S. (2003) On the origin of

intensity of a spot, but we rather think that an average gamjy 1 plant glycosyltransferaseRhytochemistry, 62, 399-413.
within an accurately determined circular disk would give Rocke, D.M. and Durbin,B. (2003) Approximate variance-

a more robust intensity estimate for spots with all pixels  stabilizing transformation for gene-expression microarray data.

uncensored. Bioinformatics, 19, 966-972.
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