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Abstract. These are lecture notes based on a mini course on percolation which
was given at the Jyväskylä summer school in mathematics in Jyväskylä, Fin-
land, August 2009. The point of the course was to try to touch on a number
of different topics in percolation in order to give people some feel for the field.
These notes follow fairly closely the lectures given in the summer school. How-
ever, some topics covered in these notes were not covered in the lectures (such
as continuity of the percolation function above the critical value) while other
topics covered in detail in the lectures are not proved in these notes (such as
conformal invariance).
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1. Introduction

Percolation is one of the simplest models in probability theory which exhibits what
is known as critical phenomena. This usually means that there is a natural pa-
rameter in the model at which the behavior of the system drastically changes.
Percolation theory is an especially attractive subject being an area in which the
major problems are easily stated but whose solutions, when they exist, often re-
quire ingenious methods. The standard reference for the field is [12]. For the study
of percolation on general graphs, see [23]. For a study of critical percolation on the
hexagonal lattice for which there have been extremely important developments,
see [36].

In the standard model of percolation theory, one considers the the d-dimensional
integer lattice which is the graph consisting of the set Zd as vertex set together
with an edge between any two points having Euclidean distance 1. Then one fixes
a parameter p and declares each edge of this graph to be open with probability p
and investigates the structural properties of the obtained random subgraph con-
sisting of Zd together with the set of open edges. The type of questions that one
is interested in are of the following sort.

Are there infinite components? Does this depend on p? Is there a critical
value for p at which infinite components appear? Can one compute this critical
value? How many infinite components are there? Is the probability that the origin
belongs to an infinite component a continuous function of p?

The study of percolation started in 1957 motivated by some physical con-
siderations and very much progress has occurred through the years in our under-
standing. In the last decade in particular, there has been tremendous progress
in our understanding of the 2-dimensional case (more accurately, for the hexago-
nal lattice) due to Smirnov’s proof of conformal invariance and Schramm’s SLE
processes which describe critical systems.

2. The model, nontriviality of the critical value and some other
basic facts

2.1. Percolation on Z2: The model

We now define the model. We start with the graph Z2 which, as a special case of
that described in the introduction, has vertices being the set Z2 and edges between
pairs of points at Euclidean distance 1. We will construct a random subgraph of Z2



A mini course on percolation theory 3

Figure 1. A percolation realization (from [12])

as follows. Fix p ∈ [0, 1] which will be the crucial parameter in the model. Letting
each edge be independenly open with probability p and closed with probability
1 − p, our random subgraph will be defined by having the same vertex set as Z2

but will only have the edges which were declared open. We think of the open edges
as retained or present. We will think of an edge which is open as being in state 1
and an edge which is closed as being in state 0. See Figure 1 for a realization.

Our first basic question is the following: What is the probability that the
origin (0, 0) (denoted by 0 from now on) can reach infinitely many vertices in our
random subgraph? By Exercise 2.1 below, this is the same as asking for an infinite
self-avoiding path from 0 using only open edges. Often this function (of p), denoted
here by θ(p), is called the percolation function. See Figure 2.

One should definitely not get hung up on any measure-theoretic details in
the model (essentially since there are no measure theoretic issues to speak of) but
nonetheless I say the above more rigorously. Let E denote the edge set of Z2. Let
Ω =

∏
e∈E{0, 1}, F be the σ-algebra generated by the cylinder sets (the events
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Figure 2. The percolation function (from [12])

which only depend on a finite number of edges) and let Pp =
∏
e∈E µp where

µp(1) = p, µp(0) = 1 − p. The latter is of course a product measure. Ω is the
set of possible outcomes of our random graph and Pp describes its distribution.
This paragraph can be basically ignored and is just for sticklers but we do use the
notation Pp to describe probabilities when the parameter used is p.

Let C(x) denote the component containing x in our random graph; this is just
the set of vertices connected to x via a path of open edges. Of course C(x) depends
on the realization which we denote by ω but we do not write this explicitly. We
abbreviate C(0) by C. Note that Pp(|C| =∞) = θ(p).

Exercise 2.1: For any subgraph of Z2 (i.e., for every ω), show that |C| =∞ if and
only if there is a self-avoiding path from 0 to ∞ consisting of open edges (i.e.,
containing infinitely many edges).

Exercise 2.2: Show that θ(p) is nondecreasing in p. Do NOT try to compute any-
thing!
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Exercise 2.3: Show that θ(p) cannot be 1 for any p < 1.

2.2. The existence of a nontrivial critical value

The main result in this section is that for p small (but positive) θ(p) = 0 and
for p large (but less than 1) θ(p) > 0. In view of this (and exercise 2.2), there
is a critical value pc ∈ (0, 1) at which the function θ(p) changes from being 0 to
being positive. This illustrates a so-called phase transition which is a change in the
global behavior of a system as we move past some critical value. We will see later
(see Exercises 2.7 and 2.8) the elementary fact that when θ(p) = 0, a.s. there is no
infinite component anywhere while when θ(p) > 0, there is an infinite component
somewhere a.s.

Let us finally get to proving our first result. We mention that the method of
proof of the first result is called the first moment method, which just means you
bound the probability that some nonnegative integer-valued random variable is
positive by its expected value (which is usually much easier to calculate). In the
proof below, we will implicitly apply this first moment method to the number of
self-avoiding paths of length n starting at 0 and for which all the edges of the path
are open.

Theorem 2.1. If p < 1/3, θ(p) = 0.

Proof. : Let Fn be the event that there is a self-avoiding path of length n starting at
0 using only open edges. For any given self-avoiding path of length n starting at 0
in Z2 (not worrying if the edges are open or not), the probability that all the edges
of this given path are open is pn. The number of such paths is at most 4(3n−1)
since there are 4 choices for the first step but at most 3 choices for any later step.
This implies that Pp(Fn) ≤ 4(3n−1)pn which → 0 as n → ∞ since p < 1/3. As
{|C| =∞} ⊆ Fn ∀n, we have that Pp{|C| =∞} = 0; i.e., θ(p) = 0. �

Theorem 2.2. For p sufficiently close to 1, we have that θ(p) > 0.

Proof. : The method of proof to be used is often called a contour or Peierls
argument, the latter named after the person who proved a phase transition for
another model in statistical mechanics called the Ising model.

The first key thing to do is to introduce the so-called dual graph (Z2)∗ which
is simply Z2 + ( 1

2 ,
1
2 ). This is nothing but our ordinary lattice translated by the

vector (1
2 ,

1
2 ). See Figure 3 for a picture of Z2 and its dual (Z2)∗. One then sees

that there is an obvious 1-1 correspondence between the edges of Z2 and those of
(Z2)∗. (Two corresponding edges cross each other at their centers.)

Given a realization of open and closed edges of Z2, we obtain a similar real-
ization for the edges of (Z2)∗ by simply calling an edge in the dual graph open if
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Figure 3. Z2 and its dual (Z2)∗ (from [12])

and only if the corresponding edge in Z2 is open. Observe that if the collection of
open edges of Z2 is chosen according to Pp (as it is), then the distribution of the
set of open edges for (Z2)∗ will trivially also be given by Pp.

A key step is a result due to Whitney which is pure graph theory. No proof
will be given here but by drawing some pictures, you will convince yourself it is
very believable. Looking at Figures 4 and 5 is also helpful.

Lemma 2.3. |C| < ∞ if and only if ∃ a simple cycle in (Z2)∗ surrounding 0
consisting of all closed edges.

Let Gn be the event that there is a simple cycle in (Z2)∗ surrounding 0 having
length n, all of whose edges are closed. Now, by Lemma 2.3, we have

Pp(|C| <∞) = Pp(∪∞n=4Gn) ≤
∞∑
n=4

Pp(Gn) ≤
∞∑
n=4

n4(3n−1)(1− p)n
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Figure 4. Whitney (from [12])

since one can show that the number of cycles around the origin of length n (not
worrying about the status of the edges) is at most n4(3n−1) (why?, see Exercise
2.4) and the probability that a given cycle has all its edges closed is (1 − p)n. If
p > 2

3 , then the sum is < ∞ and hence it can be made arbitrarily small if p is
chosen close to 1. In particular, the sum can be made less than 1 which would
imply that Pp(|C| =∞) > 0 for p close to 1. �
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Figure 5. Whitney (picture by Vincent Beffara)

Remark:
We actually showed that θ(p)→ 1 as p→ 1.

Exercise 2.4: Show that the number of cycles around the origin of length n is at
most n4(3n−1).

Exercise 2.5: Show that θ(p) > 0 for p > 2
3 .

Hint: Choose N so that
∑∞
n≥N n4(3n−1)(1− p)n < 1. Let E1 be the event that all

edges are open in [−N,N ]× [−N,N ] and E2 be the event that there are no simple
cycles in the dual surrounding [−N,N ]2 consisting of all closed edges. Look now
at E1 ∩ E2.

It is now natural to define the critical value pc by

pc := sup{p : θ(p) = 0} = inf{p : θ(p) > 0}.

With the help of Exercise 2.5, we have now proved that pc ∈ [1/3, 2/3]. (The
model would not have been interesting if pc were 0 or 1.) In 1960, Harris [16]
proved that θ(1/2) = 0 and the conjecture made at that point was that pc = 1/2
and there was indications that this should be true. However, it took 20 more years
before there was a proof and this was done by Kesten [18].

Theorem 2.4. [18] The critical value for Z2 is 1/2.
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In Chapter 7, we will give the proof of this very fundamental result.

2.3. Percolation on Zd

The model trivially generalizes to Zd which is the graph whose vertices are the
integer points in Rd with edges between vertices at distance 1. As before, we let
each edge be open with probability p and closed with probability 1−p. Everything
else is defined identically. We let θd(p) be the probability that there is a self-
avoiding open path from the origin to ∞ for this graph when the parameter p is
used. The subscript d will often be dropped. The definition of the critical value in
d dimensions is clear.

pc(d) := sup{p : θd(p) = 0} = inf{p : θd(p) > 0}.

In d = 1, it is trivial to check that the critical value is 1 and therefore things
are not interesting in this case. We saw previously that pc(2) ∈ (0, 1) and it turns
out that for d > 2, pc(d) is also strictly inside the interval (0, 1).

Exercise 2.6: Show that θd+1(p) ≥ θd(p) for all p and d and conclude that pc(d+
1) ≤ pc(d). Also find some lower bound on pc(d). How does your lower bound
behave as d→∞?

Exercise 2.7. Using Kolmogorov’s 0-1 law (which says that all tail events have
probability 0 or 1), show that Pp (some C(x) is infinite) is either 0 or 1. (If you
are unfamiliar with Kolmogorov’s 0-1 law, one should say that there are many
(relatively easy) theorems in probability theory which guarantee, under certain
circumstances, that a given type of event must have a probability which is either
0 or 1 (but they don’t tell which of 0 and 1 it is which is always the hard thing).)

Exercise 2.8. Show that θ(p) > 0 if and only if Pp (some C(x) is infinite)=1.

Nobody expects to ever know what pc(d) is for d ≥ 3 but a much more interesting
question to ask is what happens at the critical value itself; i.e. is θd(pc(d)) equal
to 0 or is it positive. The results mentioned in the previous section imply that it
is 0 for d = 2. Interestingly, this is also known to be the case for d ≥ 19 (a highly
nontrivial result by Hara and Slade ([15]) but for other d, it is viewed as one of
the major open questions in the field.

Open question: For Zd, for intermediate dimensions, such as d = 3, is there per-
colation at the critical value; i.e., is θd(pc(d)) > 0?

Everyone expects that the answer is no. We will see in the next subsection why
one expects this to be 0.

2.4. Elementary properties of the percolation function

Theorem 2.5. θd(p) is a right continuous function of p on [0, 1]. (This might be a
good exercise to attempt before looking at the proof.)
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Proof. : Let gn(p) := Pp (there is a self-avoiding path of open edges of length n
starting from the origin). gn(p) is a polynomial in p and gn(p) ↓ θ(p) as n→∞.
Now a decreasing limit of continuous functions is always upper semi-continuous
and a nondecreasing upper semi-continuous function is right continuous. �

Exercise 2.9. Why does gn(p) ↓ θ(p) as n → ∞ as claimed in the above proof?
Does this convergence hold uniformly in p?

Exercise 2.10. In the previous proof, if you don’t know what words like upper semi-
continuous mean (and even if you do), redo the second part of the above proof
with your hands, not using anything.

A much more difficult and deeper result is the following due to van den Berg and
Keane ([4]).

Theorem 2.6. θd(p) is continuous on (pc(d), 1].

The proof of this result will be outlined in Section 4. Observe that, given the
above results, we can conclude that there is a jump discontinuity at pc(d) if and
only if θd(pc(d)) > 0. Since nice functions should be continuous, we should believe
that θd(pc(d)) = 0.

3. Uniqueness of the infinite cluster

In terms of understanding the global picture of percolation, one of the most natural
questions to ask, assuming that there is an infinite cluster, is how many infinite
clusters are there?

My understanding is that before this problem was solved, it was not com-
pletely clear to people what the answer should be. Note that, for any k ∈ 0, 1, 2, . . . ,∞,
it is trivial to find a realization ω for which there are k infinite clusters. (Why?).
The following theorem was proved by Aizenman, Kesten and Newman ([1]). A
much simpler proof of this theorem was found by Burton and Keane ([8]) later on
and this later proof is the proof we will follow.

Theorem 3.1. If θ(p) > 0, then Pp(∃ a unique infinite cluster ) = 1.

Before starting the proof, we tell (or remind) the reader of another 0-1 Law which
is different from Kolmogorov’s theorem and whose proof we will not give. I will not
state it in its full generality but only in the context of percolation. (For people who
are familiar with ergodic theory, this is nothing but the statement that a product
measure is ergodic.)

Lemma 3.2. If an event is translation invariant, then its probability is either 0 or
1. (This result very importantly assumes that we are using a product measure, i.e,
doing things independently.)
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Translation invariance means that you can tell whether the event occurs or not
by looking at the percolation realization but not being told where the origin is.
For example, the events ‘there exists an infinite cluster’ and ‘there exists at least
3 infinite clusters’ are translation invariant while the event ‘|C(0)| =∞’ is not.

Proof of Theorem 3.1. Fix p with θ(p) > 0. We first show that the number of
infinite clusters is nonrandom, i.e. it is constant a.s. (where the constant may
depend on p). To see this, for any k ∈ {0, 1, 2, . . . ,∞}, let Ek be the event that the
number of infinite cluster is exactly k. Lemma 3.2 implies that Pp(Ek) = 0 or 1 for
each k. Since the Ek’s are disjoint and their union is our whole probability space,
there is some k with Pp(Ek) = 1, showing that the number of infinite clusters is
a.s. k.

The statement of the theorem is that the k for which Pp(Ek) = 1 is 1 assuming
θ(p) > 0; of course if θ(p) = 0, then k is 0. It turns out to be much easier to rule
out all finite k larger than 1 than it is to rule out k = ∞. The easier part, due
to Newman and Schulman ([25]), is stated in the following lemma. Before reading
the proof, the reader is urged to imagine for herself why it would be absurd that,
for example, there could be 2 infinite clusters a.s.

Lemma 3.3. For any k ∈ {2, 3, . . .}, it cannot be the case that Pp(Ek) = 1.

Proof. : The proof is the same for all k and so we assume that Pp(E5) = 1. Let
FM = {there are 5 infinite clusters and each intersects [−M,M ]d}. Observe that

F1 ⊆ F2 ⊆ . . . ⊆ . . . and ∪iFi = E5. Therefore Pp(Fi)
i→∞−→ 1. Choose N so that

Pp(FN ) > 0.

Now, let F̃N be the event that all infinite clusters touch the boundary of
[−N,N ]d. Observe that (1) this event is measurable with respect to the edges

outside of [−N,N ]d and that (2) FN ⊆ F̃N . Note however that these two events

are not the same. We therefore have that Pp(F̃N ) > 0. If we let G be the event

that all the edges in [−N,N ]d are open, then G and F̃N are independent and hence

Pp(G ∩ F̃N ) > 0. However, it is easy to see that G ∩ F̃N ⊆ E1 which implies that
Pp(E1) > 0 contradicting Pp(E5) = 1. �

It is much harder to rule out infinitely many infinite clusters, which we do
now. This proof is due to Burton and Keane. Let Q be the # of infinite clusters.
Assume Pp(Q =∞) = 1 and we will get a contradiction. We call z an “encounter
point” (e.p.) if

1. z belongs to an infinite cluster C and
2. C\{z} has no finite components and exactly 3 infinite components.

See Figure 6 for how an encounter points looks.

Lemma 3.4. If Pp(Q =∞) = 1, then Pp(0 is an e.p. ) > 0.
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Figure 6. An encounter point (from [12])

Proof. : Let FM = {at least 3 infinite clusters intersect [−M,M ]d}.
Since F1 ⊆ F2 ⊆ . . . and ∪iFi = {∃ ≥ 3 infinite clusters}, we have, under the

assumption that Pp(Q = ∞) = 1, that Pp(Fi)
i→∞−→ 1 and so we can choose N so

that Pp(FN ) > 0.

Now, let F̃N be the event that outside of [−N,N ]d, there are at least 3 infinite
clusters all of which touch the boundary of [−N,N ]d. Observe that (1) this event

is measurable with respect to the edges outside of [−N,N ]d and that (2) FN ⊆ F̃N
and so Pp(F̃N ) > 0. Now, if we have a configuration with at least 3 infinite clusters
all of which touch the boundary of [−N,N ]d, it is easy to see that one can find
a configuration within [−N,N ]d which, together with the outside configuration,
makes 0 an e.p. By independence, this occurs with positive probability and we have
Pp(0 is an e.p. ) > 0. [Of course the configuration we need inside depends on the
outside; convince yourself that this argument can be made completely precise.] �

Let δ = Pp (0 is an encounter point) which we have seen is positive under
the assumption that Pp(Q =∞) = 1. The next key lemma is the following.
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Lemma 3.5. For any configuration and for any N , the number of encounter points
in [−N,N ]d is at most the number of outer boundary points of [−N,N ]d.

Remark: This is a completely deterministic statement which has nothing to do
with probability.

Before proving it, let’s see how we finish the proof of Theorem 3.1. Choose N so
large that δ(2N + 1)d is strictly larger than the number of outer boundary points
of [−N,N ]d. Now consider the number of e.p.’s in [−N,N ]d. On the one hand, by
Lemma 3.5 and the way we chose N , this random variable is always strictly less
than δ(2N + 1)d. On the other hand, this random variable has an expected value
of δ(2N + 1)d, giving a contradiction. �

We are left with the following.

Proof of Lemma 3.5.
Observation 1: For any finite set S of encounter points contained in the same

infinite cluster, there is at least one point s in S which is outer in the sense that all
the other points in S are contained in the same infinite cluster after s is removed.
To see this, just draw a picture and convince yourself; it is easy.

Observation 2: For any finite set S of encounter points contained in the same
infinite cluster, if we remove all the elements of S, we break our infinite cluster
into at least |S|+ 2 infinite clusters. This is easily done by induction on |S|. It is
clear if |S| = 1. If |S| = k + 1, choose, by observation 1, an outer point s. By the
induction hypothesis, if we remove the points in S\s, we have broken the cluster
into at least k+2 clusters. By drawing a picture, one sees, since s is outer, removal
of s will create at least one more infinite cluster yielding k + 3, as desired.

Now fix N and order the infinite clusters touching [−N,N ]d, C1, C2, . . . , Ck,
assuming there are k of them. Let j1 be the number of encounter points inside
[−N,N ]d which are in C1. Define j2, . . . , jk in the same way. Clearly the number

of encounter points is
∑k
i=1 ji. Looking at the first cluster, removal of the j1

encounter points which are in [−N,N ]d ∩ C1 leaves (by observation 2 above) at
least j1+2 ≥ j1 infinite clusters. Each of these infinite clusters clearly intersects the
outer boundary of [−N,N ]d, denoted by ∂[−N,N ]d. Hence |C1∩∂[−N,N ]d| ≥ j1.
Similarly, |Ci ∩ ∂[−N,N ]d| ≥ ji. This yields

|∂[−N,N ]d| ≥
k∑
i=1

|Ci ∩ ∂[−N,N ]d| ≥
k∑
i=1

ji.

�

4. Continuity of the percolation function

The result concerning uniqueness of the infinite cluster that we proved will be
crucial in this section (although used in only one point).
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Proof of Theorem 2.6. Let p̃ > pc. We have already established right continuity and
so we need to show that limπ↗p̃ θ(π) = θ(p̃). The idea is to couple all percolation
realizations, as p varies, on the same probability space. This is not so hard. Let
{X(e) : e ∈ Ed} be a collection of independent random variables indexed by the
edges of Zd and having uniform distribution on [0, 1]. We say e ∈ Ed is p-open if
X(e) < p. Let P denote the probability measure on which all of these independent
uniform random variables are defined.

Remarks:
(i) P(e is p−open ) = p and these events are independent for different e’s. Hence,
for any p, the set of e’s which are p-open is just a percolation realization with
parameter p. In other words, studying percolation at parameter p is the same as
studying the structure of the p-open edges.
(ii) However, as p varies, everything is defined on the same probability space which
will be crucial for our proof. For example, if p1 < p2, then

{e : e is p1 open} ⊆ {e : e is p2 open}.

Now, let Cp be the p-open cluster of the origin (this just means the cluster of
the origin when we consider edges which are p-open). In view of Remark (ii) above,
obviously Cp1 ⊆ Cp2 if p1 < p2 and by Remark (i), for each p, θ(p) = P(|Cp| =∞).
Next, note that

lim
π↗p̃

θ(π) = lim
π↗p̃

P(|Cπ| =∞) = P(|Cπ| =∞ for some π < p̃).

The last equality follows from using countable additivity in our big prob-
ability space (one can take π going to p̃ along a sequence). (Note that we have
expressed the limit that we are interested in as the probability of a certain event
in our big probability space.) Since {|Cπ| =∞ for some π < p̃} ⊆ {|Cp̃| =∞}, we
need to show that

P({|Cp̃| =∞}\{|Cπ| =∞ for some π < p̃}) = 0.

If it is easier to think about, this is the same as saying

P({|Cp̃| =∞} ∩ {|Cπ| <∞ for all π < p̃}) = 0.

Let α be such that pc < α < p̃. Then a.s. there is an infinite α-open cluster
Iα (not necessarily containing the origin).

Now, if |Cp̃| =∞, then, by Theorem 3.1 applied to the p̃-open edges, we have
that Iα ⊆ Cp̃ a.s. If 0 ∈ Iα, we are of course done with π = α. Otherwise, there is
a p̃-open path ` from the origin to Iα. Let µ = max{X(e) : e ∈ `} which is < p̃.
Now, choosing π such that µ, α < π < p̃, we have that there is a π open path from
0 to Iα and therefore |Cπ| =∞, as we wanted to show. �
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5. The critical value for trees: the second moment method

Trees, graphs with no cycles, are much easier to analyze than Euclidean lattices
and other graphs. Lyons, in the early 90’s, determined the critical value for any
tree and also determined whether one percolates or not at the critical value (both
scenarios are possible). See [21] and [22]. Although this was done for general trees,
we will stick here to a certain subset of all trees, namely the spherically symmetric
trees, which is still a large enough class to be very interesting.

A spherically symmetric tree is a tree which has a root ρ which has a0 children,
each of which has a1 children, etc. So, all vertices in generation k have ak children.

Theorem 5.1. Let An be the number of vertices in the nth generation (which is of

course just
∏n−1
i=0 ai). Then

pc(T ) = 1/[lim inf
n

A1/n
n ].

Exercise 5.1 (this exercise explains the very important and often used second
moment method). Recall that the first moment method amounts to using the
(trivial) fact that for a nonnegative integer valued random variable X, P(X >
0) ≤ E[X].
(a). Show that the “converse” of the first moment method is false by showing that
for nonnegative integer valued random variables X, E[X] can be arbitrarily large
with P(X > 0) arbitrarily small. (This shows that you will never be able to show
that P(X > 0) is of reasonable size based on knowledge of only the first moment.)
(b). Show that for any nonnegative random variable X

P(X > 0) ≥ E[X]2

E[X2]
.

(This says that if the mean is large, then you can conclude that P(X > 0) might
be “reasonably” large provided you have a reasonably good upper bound on the
second moment E[X2].) Using the above inequality is called the second moment
method and it is a very powerful tool in probability.

We will see that the first moment method will be used to obtain a lower bound on
pc and the second moment method will be used to obtain an upper bound on pc.

Proof of Theorem 5.1.
Assume p < 1/[lim infnA

1/n
n ]. This easily yields (an exercise left to the reader)

that Anp
n approaches 0 along some subsequence {nk}. Now, the probability that

there is an open path to level n is at most the expected number of vertices on the
nth level connected to the root which is Anp

n. Hence the probability of having an
open path to level nk goes to 0 and hence the root percolates with probability 0.

Therefore pc(T ) ≥ 1/[lim infnA
1/n
n ].

To show the reverse inequality, we need to show that if p > 1/[lim infnA
1/n
n ],

then the root percolates with positive probability. Let Xn denote the number
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of vertices at the nth level connected to the root. By linearity, we know that
E(Xn) = Anp

n. If we can show that for some constant C, we have that for all n,

E(X2
n) ≤ CE(Xn)2, (5.1)

we would then have by the second moment method exercise that P(Xn > 0) ≥ 1/C
for all n. The events {Xn > 0} are decreasing and so countable additivity yields
P(Xn > 0 ∀n) ≥ 1/C. But the latter event is the same as the event that the root
is percolating and one is done.

We now bound the second moment in order to establish (5.1). Letting Uv,w
be the event that both v and w are connected to the root, we have that

E(X2
n) =

∑
v,w∈Tn

P(Uv,w)

where Tn is the nth level of the tree. Now P(Uv,w) = p2np−kv,w where kv,w is the
level at which v and w split. For a given v and k, the number of w with kv,w being
k is at most An/Ak. Hence (after a little computation) one gets that the second
moment above is

≤ An
n∑
k=0

p2np−kAn/Ak = E(Xn)2
n∑
k=0

1/(pkAk).

If
∑∞
k=0 1/(pkAk) <∞, then we would have (5.1). We have not yet used that p >

1/[lim infnA
1/n
n ] which we now use. If this holds, then lim infn(pnAn)1/n ≥ 1 + δ

for some δ > 0. This gives that 1/(pkAk) decays exponentially to 0 and we have
the desired convergence of the series. �

Remark: The above theorem determines the critical value but doesn’t say what
happens at the critical value. However, the proof gives more than this and some-
times tells us what happens even at the critical value. The proof gives that∑∞
k=0 1/(pkAk) < ∞ implies percolation at p and in certain cases we might have

convergence of this series at pc giving an interesting case where one percolates at
the critical value. For example if An � 2nnα (which means that the ratio of the
left and right sides are bounded away from 0 and ∞ uniformly in n and which is
possible to achieve) then Theorem 5.1 yields pc = 1/2 but furthermore, if α > 1,
then

∑n
k=0 1/(pkcAk) �

∑
1/nα <∞ and so we percolate at the critical value. For

α ≤ 1, the above sum diverges and so we don’t know what happens at pc. However,
in fact, Lyons showed that

∑n
k=0 1/(pkAk) < ∞ is also a necessary condition to

percolate at p. In particular, in the case above with α ≤ 1, we do not percolate at
the critical value. This yields a phase transition in α at a finer scale.

6. Some various tools

In this section, I will state two basic tools in percolation. Although they come up
all the time, we have managed to avoid their use until now. However, now we will
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need them both for the next section, Section 7, where we give the proof that the
critical value for Z2 is 1/2.

6.1. Harris’ inequality

Harris’ inequality (see [16]) tells us that certain random variables are positively
correlated. To state this, we need to first introduce the important property of a
function being increasing. Let Ω := {0, 1}J . There is a partial order on Ω given by
ω � ω′ if ωi ≤ ω′i for all i ∈ J .

Definition 6.1. A function f : {0, 1}J → R is increasing if ω � ω′ implies that
f(ω) ≤ f(ω′). An event is increasing if its indicator function is increasing.

If J is the set of edges in a graph and x and y are vertices, then the event
that there is an open path from x to y is an increasing event.

Theorem 6.2. Let X := {Xi}i∈J be independent random variables taking values 0
and 1. Let f and g be increasing functions as above. Then

E(f(X)g(X)) ≥ E(f(X))E(g(X)).

To understand this, note that an immediate application to percolation is the fol-
lowing. Let x, y, z and w be 4 vertices in Zd, A be the event that there is an open
path from x to y and B be the event that there is an open path from z to w. Then
P(A ∩B) ≥ P(A)P(B).

Proof. We do the proof only in the case that J is finite; to go to infinite J is done
by approximation. We prove this by induction on |J |. Assume |J | = 1. Let ω1 and
ω2 take values 0 or 1. Then since f and g are increasing, we have

(f(ω1)− f(ω2))(g(ω1)− g(ω2)) ≥ 0.

Now letting ω1 and ω2 be independent with distribution X1, one can take expec-
tation in the above inequality yielding

E[f(ω1)g(ω1)] + E[f(ω2)g(ω2)]− E[f(ω2)g(ω1)]− E[f(ω1)g(ω2)] ≥ 0.

This says 2E(f(X1)g(X1)) ≥ 2E(f(X1))E(g(X1)).
Now assuming it is true for |J | = k − 1 and f and g are functions of k

variables, we have, by the law of total expectation

E(f(X1, . . . , Xk)g(X1, . . . , Xk)) = E[E(f(X1, . . . , Xk)g(X1, . . . , Xk)) | X1, . . . , Xk−1].
(6.1)

The k = 1 case implies that for each X1, . . . , Xk−1,

E(f(X1, . . . , Xk)g(X1, . . . , Xk) | X1, . . . , Xk−1) ≥
E(f(X1, . . . , Xk) | X1, . . . , Xk−1)E(g(X1, . . . , Xk) | X1, . . . , Xk−1).

Hence (6.1) is

≥ E[E(f(X1, . . . , Xk) | X1, . . . , Xk−1)E(g(X1, . . . , Xk) | X1, . . . , Xk−1)]. (6.2)
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Now E(f(X1, . . . , Xk) | X1, . . . , Xk−1) and E(g(X1, . . . , Xk) | X1, . . . , Xk−1)
are each increasing functions of X1, . . . , Xk−1 as is easily checked and hence the
induction assumption gives that (6.2) is

≥ E[E(f(X1, . . . , Xk) | X1, . . . , Xk−1)]E[E(g(X1, . . . , Xk) | X1, . . . , Xk−1)] =

E(f(X1, . . . , Xk))E(g(X1, . . . , Xk))

and we are done. �

Remark: The above theorem is not true for all sets of random variables. Where
precisely in the above proof did we use the fact that the random variables are
independent?

6.2. Margulis-Russo Formula

This formula has been discovered by a number of people and it describes the
derivative with respect to p of the probability under Pp of an increasing event A in
terms of the very important concept of influence or pivotality. Let Pp be product
measure on {0, 1}J and let A be a subset of {0, 1}J which is increasing.

Exercise 6.1. Show that if A is an increasing event, then Pp(A) is nondecreasing
in p.

Definition 6.3. Given i ∈ J , and ω ∈ {0, 1}J , let ω(i) denote the sequence which
is equal to ω off of i and is 1 on i and ω(i) denote the sequence which is equal to

ω off of i and is 0 on i. Given a (not necessarily increasing) event A of {0, 1}J , let
Pivi(A) be the event, called that ‘i is pivotal for A’, that exactly one of ω(i) and
ω(i) is in A. Let Ipi (A) = Pp(Pivi(A)), which we call the influence at level p of i
on A.

Remarks: The last definition is perhaps a mouth full but contains fundamentally
important concepts in probability theory. In words, Pivi(A) is the event that chang-
ing the sequence at location i changes whether A occurs. It is an event which is
measurable with respect to ω off of i. Ipi (A) is then the probability under Pp that
Pivi(A) occurs. These concepts are fundamental in a number of different areas,
including theoretical computer science.

Exercise 6.2. Let J be a finite set and let A be the event in {0, 1}J that there are
an even number of 1’s. Determine Pivi(A) and Ipi (A) for each i and p.

Exercise 6.3. Assume that |J | is odd and let A be the event in {0, 1}J that there

are more 1’s than 0’s. Describe, for each i, Pivi(A) and I
1/2
i (A).

The following is the fundamental Margulis-Russo Formula. It was proved indepen-
dently in [24] and [27].

Theorem 6.4. Let A be an increasing event in {0, 1}J with J a finite set. Then

d(Pp(A))/dp =
∑
i∈J

Ipi (A).
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Exercise 6.4. Let A be the event in {0, 1}J corresponding to at least one of the
first two bits being 1. Verify the Margulis-Russo Formula in this case.

Outline of Proof. Let {Yi}i∈J be i.i.d. uniform variables on [0, 1] and let ωp be
defined by ωpi = 1 if and only if Yi ≤ p. Then Pp(A) = P(ωp ∈ A) and moreover
{ωp1 ∈ A} ⊆ {ωp2 ∈ A} if p1 ≤ p2. It follows that

Pp+δ(A)− Pp(A) = P({ωp+δ ∈ A}\{ωp ∈ A}).
The difference of these two events contains (with a little bit of thought)

∪i∈J ({ωp ∈ Pivi(A)} ∩ {Yi ∈ (p, p+ δ)}) (6.3)

and is contained in the union of the latter union (with the open intervals replaced
by closed intervals) together with

{Yi ∈ [p, p+ δ] for two different i’s}.
This latter event has probability at most Cδ2 for some constant C (depending

on |J |). Also, the union in (6.3) is disjoint up to an error of at most Cδ2. Hence

Pp+δ(A)−Pp(A) =
∑
i∈J

P({ωp ∈ Pivi(A)}∩{Yi ∈ (p, p+δ)})+O(δ2) =
∑
i∈J

Ipi (A)δ+O(δ2).

(Note that we are using here the fact that the event that i is pivotal is measurable
with respect to the other variables.) Divide by δ and let δ → 0 and we are done. �

Exercise 6.5. (The square root trick.) Let A1, A2, . . . , An be increasing events with
equal probabilities such that P(A1 ∪A2 ∪ . . . An) ≥ p. Show that

P(Ai) ≥ 1− (1− p)1/n.
Hint: Use Harris’ inequality.

7. The critical value for Z2 equals 1/2

There are a number of proofs of this result. Here we will stick more or less to the
original, following [27]. It however will be a little simpler since we will use only
the RSW theory (see below) for p = 1/2. The reason for my doing this older proof
is that it illustrates a number of important and interesting things.

7.1. Proof of pc(2) = 1/2 assuming RSW

First, L-R will stand for left-right and T-B for top-bottom. Let Jn,m be the event
that there is a L-R crossing of [0, n] × [0,m]. Let J ′n,m be the event that there is
a L-R crossing of [0, n]× (0,m) (i.e., of [0, n]× [1,m− 1]).

Our first lemma explains a very special property for p = 1/2 which already
hints that this might be the critical value.

Lemma 7.1. P1/2(Jn+1,n) = 1/2.



20 Jeffrey E. Steif

Proof. This is a symmetry argument using the dual lattice. Let B be the event that
there is a B-T crossing of [1/2, n+ 1/2]× [−1/2, n+ 1/2] using closed edges in the
dual lattice. By a version of Whitney’s theorem, Lemma 2.3, we have that Jn+1,n

occurs if and only if the event B fails. Hence for any p, Pp(Jn+1,n) + Pp(B) = 1.
If p = 1/2, we have by symmetry that these two events have the same probability
and hence each must have probability 1/2. �

The next theorem is crucial for this proof and is also crucial in Section 9. It will
be essentially proved in Subsection 7.2. It is called the Russo Seymour Welsh or
RSW Theorem and was proved independently in [31] and [26].

Theorem 7.2. For all k, there exists ck so that for all n, we have that

P1/2(Jkn,n) ≥ ck. (7.1)

Remarks: There is in fact a stronger version of this which holds for all p which says
that if Pp(Jn,n) ≥ τ , then Pp(Jkn,n) ≥ f(τ, k) where f does not depend on n or on
p. This stronger version together with (essentially) Lemma 7.1 immediately yields
Theorem 7.2 above. The proof of this stronger version can be found in [12] but
we will not need this stronger version here. The special case dealing only with the
case p = 1/2 above has a simpler proof due to Smirnov, especially in the context of
the so-called triangular lattice. (In [6], an alternative simpler proof of the stronger
version of RSW can be found.)

We will now apply Theorem 7.2 to prove that θ(1/2) = 0. This is the first important
step towards showing pc = 1/2 and was done in 1960 by Harris (although by a
different method since the RSW Theorem was not available in 1960). As already
stated, it took 20 more years before Kesten proved pc = 1/2. Before proving
θ(1/2) = 0, we first need a lemma which is important in itself.

Lemma 7.3. Let O(`) be the event that there exists an open circuit containing 0 in

Ann(`) := [−3`, 3`]2\[−`, `]2.
Then there exists c > 0 so that for all `,

P1/2(O(`)) ≥ c.

Proof. Ann(`) is the (non–disjoint) union of four 6`× 2` rectangles. By Theorem
7.2, we know that there is a constant c′ so that for each `, the probability of crossing
(in the longer direction) a 6`×2` rectangle is at least c′. By Harris’ inequality, the
probability of crossing each of the 4 rectangles whose union is Ann(`) is at least
c := c′4. However, if we have a crossing of each of these 4 rectangles, we clearly
have the circuit we are after. �

Lemma 7.4. θ(1/2) = 0.
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Proof. Let Ck be the event that there is a circuit in Ann(4k) + 1/2 in the dual
lattice around the origin consisting of closed edges. A picture shows that the Ck’s
are independent and Lemma 7.3 implies that P1/2(Ck) ≥ c for all k for some
c > 0. It follows that P1/2(Ck i.o. ) = 1 where as usual, Ck i.o. means that there
are infinitely many k so that Ck occurs. However, the latter event implies by
Lemma 2.3 that the origin does not percolate. Hence θ(1/2) = 0. �

The next lemma is very interesting in itself in that it gives a finite criterion
which implies percolation.

Proposition 7.5. (Finite size criterion) For any p, if there exists an n such that

Pp(J
′
2n,n) ≥ .98,

then Pp(|C(0)| =∞) > 0.

To prove this proposition, one first establishes

Lemma 7.6. For any ε ≤ .02, if Pp(J
′
2n,n) ≥ 1− ε, then Pp(J

′
4n,2n) ≥ 1− ε/2.

Proof. Let Bn be the event that there exists an L-R crossing of [n, 3n]× (0, n). Let
Cn be the event that there exists an L-R crossing of [2n, 4n] × (0, n). Let Dn be
the event that there exists a T-B crossing of [n, 2n] × [0, n]. Let En be the event
that there exists a T-B crossing of [2n, 3n]× [0, n].

We have Pp(Dn) = Pp(En) ≥ Pp(Bn) = Pp(Cn) = Pp(J
′
2n,n) ≥ 1 − ε.

Therefore Pp(J
′
2n,n ∩Bn ∩Cn ∩Dn ∩En) ≥ 1− 5ε. By drawing a picture, one sees

that the above intersection of 5 events is contained in J ′4n,n. Letting J̃ ′4n,n denote
the event that exists a L-R crossing of [0, 4n] × (n, 2n), we have that J ′4n,n and

J̃ ′4n,n are independent, each having probability at least 1− 5ε and so

Pp(J
′
4n,n ∪ J̃ ′4n,n) = 1− (1− Pp(J

′
4n,n))2 ≥ 1− 25ε2.

This is at least 1− ε/2 if ε ≤ .02. Since J ′4n,n ∪ J̃ ′4n,n ⊆ J ′4n,2n, we are done. �

Proof of Proposition 7.5.
Choose n0 such that Pp(J

′
2n0,n0

) ≥ .98. Lemma 7.6 and induction implies that for
all k ≥ 0

Pp(J
′
2k+1n0,2kn0

) ≥ 1− .02

2k

and hence ∑
k≥0

Pp((J
′
2k+1n0,2kn0

)c) <∞.

We will define events {Hk}k≥0 where Hk will be a crossing like J ′2k+1n0,2kn0
except

in a different location and perhaps with a different orientation. Let H0 = J ′2n0,n0
.
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Then let H1 be a T-B crossing of (0, 2n0) × [0, 4n0], H2 be a L-R crossing of
[0, 8n0] × (0, 4n0), H3 be a T-B crossing of (0, 8n0) × [0, 16n0], etc. Since the
probability of Hk is the same as for J ′2k+1n0,2kn0

, the Borel-Cantelli lemma implies

that a.s. all but finitely many of the Hk’s occur. However, it is clear geometrically
that if all but finitely many of the Hk’s occur, then there is percolation. �

Our main theorem in this section is

Theorem 7.7. pc = 1/2.

Before doing the proof, we make a digression and explain how the concept of
a sharp threshold yields the main result as explained in [28]. In order not to lose
track of the argument, this digression will be short and more details concerning
this approach will be discussed in subsection 7.3.

The underlying idea is that increasing events A which ’depend on lots of
random variables’ have “sharp thresholds” meaning that the function Pp(A), as p
increases from 0 to 1, goes very sharply from being very small to being very large.

Exercise 7.1. Let A be the event in {0, 1}J corresponding to the first bit being a
1. Note that Pp(A) = p and hence does not go quickly from 0 to 1 but then again
A does not depend on a lot of random variables. Look at what happens if n = |J |
is large and A is the event that at least half the random variables are 1.

Definition 7.8. A sequence of increasing events An has a sharp threshold if for all
ε > 0, there exists N such that for all n ≥ N , there is an interval [a, a+ ε] ⊆ [0, 1]
(depending on n) such that

Pp(An) < ε for p ≤ a
and

Pp(An) > 1− ε for p ≥ a+ ε.

We claim that if the sequence of events J ′2n,n has a sharp threshold, then pc ≤ 1/2.
The reason for this is that if pc were 1/2+δ with δ > 0, then, since the probability
of J ′2n,n at p = 1/2 is not too small due to Theorem 7.2, a sharp threshold would
tell us that, for large n, Pp(J

′
2n,n) would get very large way before p reaches 1/2+δ.

However, Proposition 7.5 would then contradict the definition of the critical value.
Slightly more formally, we have the following.

Proof of Theorem 7.7 assuming {J ′2n,n} has a sharp threshold.
First, Lemma 7.4 implies that pc ≥ 1/2. Assume pc = 1/2 + δ0 with δ0 > 0. Then
Theorem 7.2 tells us there is c > 0 such that

P1/2(J ′2n,n) ≥ c

for all n. Let ε = min{δ0/2, .02, c}. Choose N as given in the definition of a
sharp threshold and let [a, a + ε] be the corresponding interval for n = N . Since
P1/2(J ′2N,N ) ≥ c ≥ ε, a must be ≤ 1/2. Hence 1/2 + δ0/2 ≥ a+ δ0/2 ≥ a+ ε and
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hence P1/2+δ0/2(J ′2N,N ) ≥ 1−ε ≥ .98. By Proposition 7.5, we get P1/2+δ0/2(|C(0)| =
∞) > 0, a contradiction. �

We now follow Kesten’s proof as modified by Russo ([27]). We even do a
slight modification of that so that the stronger version of RSW is avoided; this
was explained to me by A. Bálint.

Proof of Theorem 7.7.
Note that Lemma 7.4 implies that pc ≥ 1/2. Assume now that pc = 1/2 + δ0 with
δ0 > 0. Let Vn be the number of pivotal edges for the event J4n,n. The key step is
the following proposition.

Proposition 7.9. If pc = 1/2 + δ0 with δ0 > 0, then

lim
n→∞

inf
p∈[1/2,1/2+δ0/2]

Ep[Vn] =∞.

Assuming this proposition, the Margulis-Russo formula would then give

lim
n→∞

inf
p∈[1/2,1/2+δ0/2]

(d/dp)Pp(J4n,n) =∞.

Since δ0 > 0 by assumption, this of course contradicts the fact that these proba-
bilities are bounded above by 1. �

Proof of Proposition 7.9.
Since J ′4n,n/2 is an increasing event, Theorem 7.2 implies that

inf
p∈[1/2,1/2+δ0/2],n

Pp(J
′
4n,n/2) := ε1 > 0.

Next, letting Un be the event that there is a B-T dual crossing of [2n +
1/2, 4n− 1/2]× [−1/2, n+ 1/2] consisting of closed edges, we claim that

inf
p∈[1/2,1/2+δ0/2],n

Pp(Un) := ε2 > 0.

The reason for this is that Pp(Un) is minimized for all n at p = 1/2 + δ0/2,
Proposition 7.5 implies that P1/2+δ0/2(J ′2n,n) ≤ .98 for all n since 1/2 + δ0/2 < pc,
and the fact that the event J ′2n,n translated to the right distance 2n and Un are
complementary events.

Now, if Un occurs, let σ be the right-most such crossing. (You need to think
about this and convince yourself it is reasonable that, when such a path exists,
there exists a right-most path; I would not worry about a precise proof of this
which can be topologically quite messy). Since σ is the right-most crossing, given
the path σ, we know nothing about what happens to the left of σ. (Although you
do not need to know this, it is worth pointing out that this is some complicated
analogue of what is known as a stopping time and the corresponding strong Markov
property.) Therefore, conditioned on σ, there is probability at least ε1 that there
is a path of open edges from the left of [0, 4n] × [0, n/2] all the way to 1 step to
the left of σ. Note that if this happens, then there is an edge one step away from
the end of this path which is pivotal for J4n,n! Let γ be the lowest such path if
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one exists. Conditioned on both σ and γ, we know nothing about the area to the
“top-left” of these curves. Let q be the point where σ and γ meet. For each n,
consider the annuli Ann(4k) + 1/2 + q (this is our previous annulus but centered
around q) but only for those k’s where 4k ≤ n/2. Lemma 7.3 together with the
fact that the events O(`) are increasing implies that there is a fixed probability
ε3, independent of n and p ∈ [1/2, 1/2 + δ0/2] and k (with 4k ≤ n/2), such that
with probability at least ε3, there is an open path from γ to 1 step to the left
of σ running within Ann(4k) + 1/2 + q in this “top-left” area. (For different k’s,
these events are independent but this is not needed). Note that each k where this
occurs gives us a different pivotal edge for the event J4n,n. Since the number of
k’s satisfying 4k ≤ n/2 goes to infinity with n, the proposition is established. �

7.2. RSW

In this section, we prove Theorem 7.2. However, it is more convenient to do this
for site percolation on the triangular lattice or equivalently the hexagonal lattice
instead. (In site percolation, the sites of the graph are independently declared to
be white or black with probability p and one asks for the existence of an infinite
path of white vertices; edges are not removed.)

(The reader will trust us that the result is equally true on Z2 and is welcome
to carry out the details.) This simpler proof of RSW for p = 1/2 on the triangular
lattice was discovered by Stas Smirnov and can be found in [13] or in [36].

We first quickly define what the triangular lattice and hexagonal lattice are.
The set of vertices consists of those points x+ eiπ/3y where x and y are integers.
Vertices having distance 1 have an edge between them. See Figure 7 which depicts
the triangular lattice. The triangular lattice is equivalent to the hexagonal lattice
where the vertices of the triangular lattice correspond to the hexagons. Figure
7 shows how one moves between these representations. It is somehow easier to
visual the hexagonal lattice compared to the triangular lattice. We mention that
the duality in Lemma 2.3 is much simpler in this context. For example, there is a
sequence of white hexagons from the origin out to infinity if and only if there is
no path encircling the origin consisting of black hexagons. So, in working with the
hexagonal lattice, one does not need to introduce the dual graph as we did for Z2.

Outline of proof of Theorem 7.2 for p = 1/2 for the hexagonal lattice instead. (We
follow exactly the argument in [36].)

The key step is to prove the following lemma. (The modification for the definition
of Jn,m for the triangular lattice should be pretty clear.)

Lemma 7.10.

P1/2(J2n,m) ≥ (1/4)(P1/2(Jn,m))2.
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Figure 7. From sites to cells (picture by O. Schramm and pro-
vided by W. Werner)

Proof. Write P for P1/2. If a L-R crossing of [0, n] × [0,m] exists, let γ be the
“highest” one. γ has a type of “Markov property” which says the following. If g
is a L-R path (not necessarily open) of [0, n] × [0,m] touching the left and right
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sides only once, then the event {γ = g} is independent of the percolation process
“below” g.

If g is such a L-R path (not necessarily open) of [0, n]× [0,m], let g′ be the
reflection of g about x = n (which is then a L-R crossing of [n, 2n]× [0,m]. Assume
g does not touch the x-axis (a similar argument can handle that case as well). Let
σ be the part of the boundary of [0, 2n]× [0,m] which is on the left side and below
g (this consists of 2 pieces, the x-axis between 0 and n and the positive y-axis
below the left point of g). Let σ′ be the reflection of σ about x = n. Symmetry
and duality gives that the probability that there is an open path from right below
g to σ′ is 1/2. Call this event A(g).

Observe that if g is a path as above which is open and A(g) occurs, then we
have a path from the left side of [0, 2n]× [0,m] to either the right side of this box
or to the bottom boundary on the right side; call this latter event F . We obtain

P(F ) = P(∪g(F ∩ {γ = g})) ≥ P(∪g(A(g) ∩ {γ = g})).
A(g) and {γ = g} are independent and we get that the above is therefore

1/2
∑
g

P({γ = g}) = P(Jn,m)/2.

If F ′ is defined to be the reflection about x = n of the event F , then by
Theorem 6.2, P(F ∩ F ′) ≥ (1/4)(P(Jn,m))2. Finally, one observes that F ∩ F ′ ⊆
J2n,m. �

Continuing with the proof, we first note that the analogue of Lemma 7.1
for the triangular lattice is that the probability of a crossing of white (or black)
hexagons of the 2n× 2n rhombus in Figure 8 is exactly 1/2 for all n. With some
elementary geometry, one sees that a crossing of such a rhombus yields a crossing
of a n ×

√
3n rectangle and hence P(Jn,

√
3n) ≥ 1/2 for all n. From here, Lemma

7.10 gives the result by induction. �

7.3. Other approaches.

We briefly mention in this section other approaches to computing the critical value
of 1/2.

Exercise 7.2. (Outline of alternative proof due to Yu Zhang for proving θ(1/2) = 0
using uniqueness of the infinite cluster; this does not use RSW).

Step 1: Assuming that θ(1/2) > 0, show that the probability that there is
an open path from the right side of [−n, n]× [−n, n] to infinity touching this box
only once (call this event E) approaches 1 as n → ∞. (Hint: Use the square-root
trick of the previous section, Exercise 6.5.)

Step 2: Let F be the event analogous to E but using the left side instead, G
the analogous event using closed edges in the dual graph and the top of the box
and H the analogous event to G using the bottom of the box. Using step 1, show
that for large n P(E ∩ F ∩G ∩H) > 0.

Step 3: Show how this contradicts uniqueness of the infinite cluster.
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Figure 8. White top-to-bottom crossing vs. black horizontal
crossing (picture provided by W. Werner)

In the next section, the following very nontrivial result is mentioned but not proved.

Theorem 7.11. In any dimension, if p < pc(d), then there exists c = c(p) > 0 so
that the probability that there is an open path from the origin to distance n away
is at most e−cn.

Exercise 7.3. Use Theorem 7.11 and Lemma 7.1 to show that pc(Z
2) ≤ 1/2.

Alternatively, there are at present fairly sophisticated and general results which
imply sharp thresholds, which we have seen is the key to proving that the critical
value is 1/2. An early version of such a result comes from [28], where the following
beautiful result was proved.

Theorem 7.12. Let An be a sequence of increasing events. If (recall Definition 6.3)

lim
n→∞

sup
p,i

Ipi (An) = 0,

then the sequence {An} has a sharp threshold.
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Exercise 7.4. Show that limn→∞ supp,i I
p
i (J ′2n,n) = 0.

Hint: Use the fact that θ(1/2) = 0. (This exercise together with Theorem 7.12
allows us, as we saw after Definition 7.8, to conclude that pc(Z

2) ≤ 1/2.)

Theorem 7.12 is however nontrivial to prove. In [6], the threshold property for
crossings is obtained by a different method. The authors realized that it could be
deduced from a sharp threshold result in [10] via a symmetrization argument. A
key element in the proof of the result in [10] is based on [17], where it is shown
that for p = 1/2 if an event on n variables has probability bounded away from 0
and 1, then there is a variable of influence at least log(n)/n for this event. (The
proof of this latter very interesting result uses Fourier analysis and the concept
of hypercontractivity). As pointed out in [10], the argument in [17] also yields
that if all the influences are small, then the sum of all the influences is very large
(provided again that the variance of the event is not too close to 0). A sharpened
version of this latter fact was also obtained in [35] after [17]. Using this, one can
avoid the symmetrization argument mentioned above. One of the big advantages
of the approach in [6] is that it can be applied to other models. In particular, with
the help of the sharp threshold result of [10], it is proved in [7] that the critical
probability for a model known as Voronoi percolation in the plane is 1/2. It seems
that at this time neither Theorem 7.12 nor other approaches can achieve this. This
approach has also been instrumental for handling certain dependent models.

8. Subexponential decay of the cluster size distribution

Lots of things decay exponentially in percolation when you are away from criticality
but not everything. I will first explain three objects related to the percolation
cluster which do decay exponentially and finally one which does not, which is the
point of this section. If you prefer, you could skip down to Theorem 8.1 if you only
want to see the main point of this section.

For our first exponential decay result, it was proved independently by Men-
shikov and by Aizenman and Barsky that in any dimension, if p < pc, the prob-
ability of a path from the origin to distance n away decays exponentially. This
was a highly nontrivial result which had been one of the major open questions
in percolation theory in the 1980’s. It easily implies that the expected size of the
cluster of the origin is finite for p < pc.

Exercise 8.1. Prove this last statement.

It had been proved by Aizenman and Newman before this that if the expected size
of the cluster of the origin is finite at parameter p, then the cluster size has an
exponential tail in the sense that

Pp(|C| ≥ n) ≤ e−cn

for all n for some c > 0 where c will depend on p. This does not follow from the
Menshikov and Aizenman-Barsky result since that result says that the radius of
the cluster of the origin decays exponentially while |C| is sort of like the radius
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raised to the dth power and random variables who have exponential tails don’t
necessary have the property that their powers also have exponential tails.

The above was all for the subcritical case. In the supercritical case, the radius,
conditioned on being finite, also decays exponentially, a result of Chayes, Chayes
and Newman. This says that for p > pc,

Pp(An) ≤ e−cn

for all n for some c = c(p) > 0 where An is the event that there is an open path
from the origin to distance n away and |C| < ∞. Interestingly, it turns out on
the other hand that the cluster size, conditioned on being finite, does not have an
exponential tail in the supercritical regime.

Theorem 8.1. For any p > pc, there exists c = c(p) <∞ so that for all n

Pp(n ≤ |C| <∞) ≥ e−cn
(d−1)/d

.

Note that this rules out the possible exponential decay of the tail of the cluster
size. (Why?) As can be seen by the proof, the reason for this decay rate is that
it is a surface area effect. Here is the 2 line ’proof’ of this theorem. By a law of
large numbers type thing (and more precisely an ergodic theorem), the number of
points belonging to the infinite cluster in a box with side length n1/d should be
about θ(p)n. However, with probability a fixed constant to the n(d−1)/d, the inner
boundary has all edges there while the outer boundary has no edges there which
gives what we want.

Lemma 8.2. Assume that θ(p) > 0. Fix m and let Xm be the number of points
in Bm := [−m,m]d which belong to the infinite cluster and Fm be the event that
{Xm ≥ |Bm|θ(p)/2}. Then

P(Fm) ≥ θ(p)/2.

Proof. Clearly E(Xm) = |Bm|θ(p). We also have

E(Xm) = E[Xm|Fm]P(Fm) + E[Xm|F cm]P(F cm) ≤ |Bm|P(Fm) + |Bm|θ(p)/2.

Now solve for P(Fm). �

Proof of Theorem 8.1.
Using the definition of Bm as in the previous lemma, we let F be the event that
there are at least |Bn1/d |θ(p)/2 points in [0, 2n1/d]d which reach the inner boundary.
Let G be the event that all edges between points in the inner boundary are on and
let H be the event that all edges between points in the inner boundary and points
in the outer boundary are closed. Clearly these three events are independent. The
probability of F has, by Lemma 8.2, a constant positive probability not depending

on n, and G and H each have probabilty at least e−cn
(d−1)/d

for some constant
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c <∞. The intersection of these three events implies that |Bn1/d |θ(p)/2 ≤ |C| <∞
yielding that

Pp(|Bn1/d |θ(p)/2 ≤ |C| <∞) ≥ e−cn
(d−1)/d

.

This easily yields the result. �

9. Conformal invariance and critical exponents

This section will touch on some very important recent developments in 2 dimen-
sional percolation theory that has occurred in the last 10 years. I would not call
this section even an overview since I will only touch on a few things. There is a
lot to be said here and this section will be somewhat less precise than the earlier
sections. See [36] for a thorough exposition of these topics.

9.1. Critical exponents

We begin by discussing the concept of critical exponents. We have mentioned in
Section 8 that below the critical value, the probability that the origin is connected
to distance n away decays exponentially in n, this being true for any dimension.
It had been conjectured for some time that in 2 dimensions, at the critical value
itself, the above probability decays like a power law with a certain power, called
a critical exponent. While this is believed for Z2, it has only been proved for the
hexagonal lattice. Recall that one does site percolation rather than bond (edge)
percolation on this lattice; in addition, the critical value for this lattice is also 1/2
as Kesten also showed.

Let An be the event that there is a white path from the origin to distance n
away.

Theorem 9.1. (Lawler, Schramm and Werner, [20]) For the hexagonal lattice, we
have

P1/2(An) = n−5/48+o(1)

where the o(1) is a function of n going to 0 as n→∞.

Remarks: Critical values (such as 1/2 for the Z2 and the hexagonal lattice) are
not considered universal since if you change the lattice in some way the critical
value will typically change. However, a critical exponent such as 5/48 is believed
to be universal as it is believed that if you take any 2-dimensional lattice and look
at the critical value, then the above event will again decay as the − 5

48 th power of
the distance.

Exercise 9.1. For Z2, show that there exists c > 0 so that for all n

P1/2(An) ≤ n−c.
Hint: Apply Lemma 7.3 to the dual graph.

Exercise 9.2. For Z2, show that for all n

P1/2(An) ≥ (1/4)n−1.
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Hint: Use Lemma 7.1.

There are actually an infinite number of other known critical exponents. Let Akn
be the event that there are k disjoint monochromatic paths starting from within
distance (say) 2k of the origin all of which reach distance n from the origin and
such that at least one of these monochromatic paths is white and at least one is

black. This is referred to as the k-arm event. Let Ak,HR be the analogous event but
where we restrict to the upper half plane and where the restriction of having at
least one white path and one black path may be dropped. This is referred to as
the half-plane k-arm event.

Theorem 9.2. (Smirnov and Werner, [33]) For the hexagonal lattice, we have

(i) For k ≥ 2, P1/2(Akn) = n−(k
2−1)/12+o(1)

(ii) For k ≥ 1, P1/2(Ak,Hn ) = n−k(k+1)/6+o(1) where again the o(1) is a function
of n going to 0 as n→∞.

The proofs of the above results crucially depended on “conformal invariance”,
a concept discussed in Section 9.3 and which was proved by Stas Smirnov.

9.2. “Elementary” critical exponents

Computing the exponents in Theorems 9.1 and 9.2 is highly nontrivial and relies
on the important concept of conformal invariance to be discussed in the next
subsection as well as an extremely important development called the Schramm-
Löwner evolution. We will not do any of these two proofs; a few special cases of
them are covered in [36]. (These cases are not the ones which can be done via the
“elementary” methods of the present subsection.)

It turns out however that some exponents can be computed by “elementary”
means. This section deals with a couple of them via some long exercises. Exercises
9.3 and 9.4 below are taken (with permission) (almost) completely verbatim from
[36]. In order to do these exercises, we need another important inequality, which
we managed so far without; this inequality, while arising quite often, is used only
in this subsection as far as these notes are concerned. It is called the BK inequality
named after van den Berg and Kesten; see [5]. The first ingredient is a somewhat
subtle operation on events.

Definition 9.3. Given two events A and B depending on only finitely many edges,
we define A◦B as the event that there are two disjoint sets of edges S and T such
that the status of edges in S guarantee that A occurs (no matter what the status
of edges outside of S are) and the status of edges in T guarantee that B occurs
(no matter what the status of edges outside of T are).

Example: To understand this concept, consider a finite graph G where percolation
is being performed, let x, y, z and w be four (not necessarily distinct) vertices, let
A be the event that there is an open path from x to y, let B be the event that
there is an open path from z to w and think about what A◦B is in this case. How
should the probability Pp(A ◦B) compare with that of Pp(A)Pp(B)?
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Theorem 9.4. (van den Berg and Kesten, [5]) (BK inequality).
If A and B are increasing events, then Pp(A ◦B) ≤ Pp(A)Pp(B).

While this might seem ’obvious’ in some sense, the proof is certainly non-
trivial. When it was proved, it was conjectured to hold for all events A and B.
However, it took 12 more years (with false proofs by many people given on the
way) before David Reimer proved the above inequality for general events A and
B.

Exercise 9.3. Two-arm exponent in the half-plane. Let p = 1/2. Let Λn be the
set of hexagons which are of distance at most n from the origin. We consider
Hn = {z ∈ Λn : =(z) ≥ 0} where =(z) is defined to be the imaginary part of the
center of z. The boundary of Hn can be decomposed into two parts: a horizontal
segment parallel to and close to the real axis and the “angular semi-circle” hn.
We say that a point x on the real line is n-good if there exist one open path
originating from x and one closed path originating from x + 1, that both stay in
x+Hn and join these points to x+ hn (these paths are called “arms”). Note that
the probability wn that a point x is n-good does not depend on x.

1) We consider percolation in H2n.
a) Prove that with a probability that is bounded from below independently of
n, there exists an open cluster O and a closed cluster C, that both intersect the
segment [−n/2, n/2] and h2n, such that C is “to the right” of O.
b) Prove that in the above case, the right-most point of the intersection of O with
the real line is n-good.
c) Deduce that for some absolute constant c, wn ≥ c/n.

2) We consider percolation in Hn.
a) Show that the probability that there exists at least k disjoint open paths joining
hn to [−n/2, n/2] in Hn is bounded by λk for some constant λ that does not depend
on n (hint: use the BK inequality). Show then that the number K of open clusters
that join hn to [−n/2, n/2] satisfies P(K ≥ k) ≤ λk.
b) Show that each 2n-good point in [−n/2, n/2] is the right-most point of the
intersection of one of these K clusters with the real line.
c) Deduce from this that for some absolute constant c′, (n+ 1)w2n ≤ E(K) ≤ c′.
3) Conclude that for some positive absolute constants c1 and c2, c1/n ≤ wn ≤ c2/n.

Exercise 9.4. Three-arm exponent in the half-plane. Let p = 1/2. We say that a
point x is n-Good (mind the capital G) if it is the unique lowest point in x+Hn

of an open cluster C such that C 6⊆ x + Hn. Note that the probability vn that a
point is n-Good does not depend on x.

1) Show that this event corresponds to the existence of three arms, having colors
black, white and black, originating from the neighborhood of x in x+Hn.

2) Show that the expected number of clusters inside Hn that join hn/2 to hn is
bounded. Compare this number of clusters with the number of 2n-Good points in
Hn/2 and deduce from this that for some constant c1, vn ≤ c1/n2.



A mini course on percolation theory 33

3) Show that with probability bounded from below independently of n, there
exists in Hn/2 an n-Good point (note that an argument is needed to show that
with positive probability, there exists a cluster with a unique lowest point). Deduce
that for some positive absolute constant c2, vn ≥ c2/n2.

9.3. Conformal invariance

One of the key steps in proving the above theorems is to prove conformal invariance
of percolation which is itself very important. Before even getting to this, we warm
up with posing the following question, which could be thought of in either the
context of Z2 or the hexagonal lattice.

Question: Letting an be the probability at criticality of having a crossing of [0, 2n]×
[0, n], does limn→∞ an exist?

Remark: We have seen in Section 7 that an ≤ 1/2 and that lim inf an > 0.
The central limit theorem in probability is a sort of scaling limit. It says

that if you add up many i.i.d. random variables and normalize them properly, you
get a nice limiting object (which is the normal distribution). We would like to do
something vaguely similar with percolation, where the lattice spacing goes to 0 and
we ask if some limiting object emerges. In this regard, note that an is exactly the
probability that there is a crossing of [0, 2]×[0, 1] on the lattice scaled down by 1/n.
In studying whether percolation performed on smaller and smaller lattices might
have some limiting behavior, looking at a crossing of [0, 2]× [0, 1] is one particular
(of many) global or macro-events that one may look at. If p is subcritical, then
an goes exponentially to 0, which implies that subcritical percolation on the 1/n
scaled down lattice has no interesting limiting behavior.

The conformal invariance conjecture contains 3 ingredients; (i) limits, such as
the sequence an above exist (ii) their values depend only on the ’structure’ of the
domain and hence are conformally invariant and (iii) exact values, due to Cardy,
of the values of these limits. We now make this precise.

Let Ω be a bounded simply connected domain of the plane and let A,B,C
and D be 4 points on the boundary of Ω in clockwise order. Scale a 2-dimensional
lattice, such as Z2 or the hexagonal lattice T , by 1/n and perform critical per-
colation on this scaled lattice. Let P(Ω, A,B,C,D, n) denote that the probability
that in the 1/n scaled hexagonal lattice, there is an open path in Ω going from the
boundary of Ω between A and B to the boundary of Ω between C and D. (For
Z2, an open path should be interpreted as a path of open edges while for T , it
should be interpreted as a path of white hexagons.) The first half of the following
conjecture is attributed to Michael Aizenman and the second half of the conjecture
to John Cardy.

Conjecture 9.5. (i) For all Ω and A,B,C and D as above,

P(Ω, A,B,C,D,∞) := lim
n→∞

P(Ω, A,B,C,D, n)

exists and is conformally invariant in the sense that if f is a conformal mapping,
then P(Ω, A,B,C,D,∞) = P(f(Ω), f(A), f(B), f(C), f(D),∞).



34 Jeffrey E. Steif

(ii) There is an explicit formula (which we do not state here) for P(Ω, A,B,C,D,∞),
called Cardy’s formula, when Ω is a rectangle and A,B,C and D are the 4 corner
points. (Since every Ω, A,B,C and D can be mapped to a unique such rectangle
(with A,B,C and D going to the 4 corner points), this would specify the above
limit in general assuming conformal invariance.)

Cardy’s formula was quite complicated involving hypergeometric functions
but Lennart Carleson realized that assuming conformal invariance, there is a nicer
set of “representing” domains with four specified points where the formula simplfies
tremendously. Namely, if Ω is an equilateral triangle (with side lengths 1), A,B and
C the three corner points and D (on the line between C and A) having distance x
from C, then the above probability would just be x. Using Carleson’s reformulation
of Cardy’s formula, Smirnov proved the above conjecture for the hexagonal lattice.

Theorem 9.6. [32] For the hexagonal lattice, both (i) and (ii) of the above conjecture
are true.

This conjecture is also believed to hold on Z2 but is not (yet) proved in that
case. An important related object is the interface between whites and blacks in
the upper half plane when one places white hexagons on the positive x–axis and
black hexagons on the negative x–axis; see Figure 9. In [29], Schramm described
what this interface should be as the lattice spacing goes to 0, assuming conformal
invariance. This paper is where the now famous SLE (for stochastic Löwner evo-
lution and later called the Schramm-Löwner evolution) was introduced. Smirnov
[32] proved the convergence for one interface and Camia and Newman [9] proved
a “full scaling limit”, which is a description of the behavior of all the interfaces
together. The critical exponents described in Theorems 9.1 and 9.2 are proved
by exploiting the SLE description of the interface. Theorem 9.1 and one case of
Theorem 9.2 are described in [36].

In the summer school, we went through the proof of Theorem 9.6 in detail
following precisely the argument in [2]. The argument can also be found on-line in
[13] or in [36] as well as in a number of other places. The argument differed from
[2] more or less only in presentation and so after some thought, I decided not to
detail this argument here.

10. Noise sensitivity and dynamical percolation

This last section gives an extremely quick overview of some other interesting de-
velopments in percolation most of which are surveyed in [34].

Noise sensitivity: In [3], the concept of noise sensitivity is introduced. Here we only
explain what this is in the context of percolation. Perform percolation with p = 1/2
and consider the event En that there is a L-R open crossing of an (n+ 1)×n box.
Recall from Lemma 7.1 that P(En) = 1/2 for each n. Now, fix ε > 0 and flip the
status of each edge (from open to closed or from closed to open) independently
with probability ε. Let Eεn be the event that there is a L-R open crossing of the
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Figure 9. The percolation interface (picture by Oded Schramm
and provided by Vincent Beffara)

same (n+ 1)×n box after the flipping procedure. Of course P(Eεn) = 1/2 for each
n. In [3], it was shown that for all ε > 0,

lim
n→∞

P(Eεn ∩ En) = 1/4.

This means that for any fixed ε, En and Eεn become, interestingly, asymptotically
independent as n tends to ∞. One then says that crossing probabilities are very
sensitive to noise. Later on, quantitative versions of this, where ε depends on n
and goes to 0 with n were obtained. For the hexagonal lattice (where the critical
exponents are known), it was shown in [30] that one still has asymptotic indepen-
dence if εn = (1/n)γ provided that γ < 1/8. It was later shown in [11] that this
asymptotic independence also holds for γ < 3/4 and that this is sharp in that the
correlation of Eεn and En goes to 1 if γ > 3/4.

Dynamical percolation: Dynamical percolation, which was introduced in [14], is a
model in which a time dynamics is introduced. In this model, given a fixed graph
G and a p, the edges of G switch back and forth according to independent 2-state
continuous time Markov chains where closed switches to open at rate p and open
switches to closed at rate 1 − p. Clearly, Pp is the unique stationary distribution
for this Markov process. The general question studied in dynamical percolation is
whether, when we start with distribution Pp, there exist atypical times at which
the percolation structure looks markedly different than that at a fixed time. In
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almost all cases, the term “markedly different” refers to the existence or nonexis-
tence of an infinite connected component. A number of results for this model were
obtained in [14] of which we mention the following.
(i) For p less than the critical value, there are no times at which percolation occurs
while for p larger than the critical value, percolation occurs at all times.
(ii) There exist graphs which do not percolate at criticality but for which there
exist exceptional times (necessarily of Lebesgue measure 0) at which percolation
occurs.
(iii) For large d, there are no exceptional times of percolation for dynamical per-
colation run at criticality on Zd. (Recall that we have seen, without proof, that
ordinary percolation on Zd for large d does not percolate.) The key property ex-
ploited for this result is that the percolation function has a ’finite derivative’ at
the critical value.

It was left open what occurs at Z2 where it is known that the percolation
function has an ’infinite derivative’ at the critical value. Using the known critical
exponents for the hexagonal lattice, it was proved in [30] that there are in fact
exceptional times of percolation for this lattice when run at criticality and that the
Hausdorff dimension of such times is in [1/6, 31/36] with the upper bound being
conjectured. In [11], it was then shown that the upper bound of 31/36 is correct
and that even Z2 has exceptional times of percolation at criticality and also that
this set has positive Hausdorff dimension.

While the relationship between noise sensitivity and dynamical percolation might
not be clear at first sight, it turns out that there is a strong relation between them
because the ‘2nd moment calculations’ necessary to carry out a second moment
argument for the dynamical percolation model involve terms which are closely
related to the correlations considered in the definition of noise sensitivity. See [34]
for many more details.
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