
Introduction to Algebraic Geometry

Bézout’s Theorem and Inflection Points

1. The resultant.

Let K be a field. Then the polynomial ring K[x] is a unique factorisation domain
(UFD). Another example of a UFD is the ring of integers Z. There is a strong analogy
between primes and irreducible polynomials. In general, given an integral domain A,
one has the concepts of prime and irreducible: let p ∈ A, p 6= 0, p not a unit, then p is
irreducible if p = ab implies a or b is a unit, and p is prime if p|ab implies p|a or p|b.
Every prime element is irreducible, but the converse is false in general.

Example. Let A = C[x, y, z]/(z2 − xy). The class of z is irreducible, but not prime,
as z|xy but neither z|x nor z|y. The ring A is an integral domain, but not a UFD: the
element z2 has two different factorisations: z2 = z · z and z2 = x · y.

In a UFD every irreducible element is prime. If A is a UFD, also A[x] is a UFD,
and by induction we obtain K[x1, . . . , xn] is a UFD (K a field), see exercises.

Let A be a unique factorisation domain. We are interested in the question when
two polynomials f(x), g(x) ∈ A[x] have a common factor. Cases of interest are A = K,
but also A = K[y, z] (cf. Ex. 1). Let:

f =a0x
m + a1x

m−1 + . . . + am,

g =b0x
n + b1x

n−1 + . . . + bn,

where the case that either a0 = 0 or b0 = 0 (but not both) is allowed.

Proposition 1. The polynomials f and g have a non-constant factor h in common,
if and only there exist polynomials u and v of degree less than m, resp. n, not both
vanishing, such that vf + ug = 0.

Proof . We may suppose that a0 6= 0. All irreducible factors of f have to occur in ug,
and not all can occur in u, because deg u < deg f ; therefore f and g have a factor in
common. Conversely, given h one finds a v and w, such that f = wh and g = vh, so
the equation vf + ug = 0 is satisfied with (u, v) = (−w, v). �

Now put:
u =u0x

m−1 + . . . + um−1,

v =v0x
n−1 + . . . + vn−1,

and consider the coefficients as indeterminates. Comparison of coefficients of powers of
x in vf + ug = 0 gives the system of linear equations:

a0v0 + b0u0 = 0
a1v0 + a0v1 + b1u0 + b0u1 = 0

...
amvn−1 + bnum−1 = 0 .

1



This system has a solution if and only if its determinant vanishes. After transposing we
get the following determinant, which is called the Resultant of f and g:

Rf,g =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . am

a0 a1 a2 . . . am

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a0 a1 a2 . . . am

b0 b1 . . . bn−1 bn

b0 b1 . . . bn−1 bn

. . . . . . . . . . . . . . . . . . . . . . . . . . .
b0 b1 . . . bn−1 bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We have shown:

Proposition 2. The polynomials f and g have a non-constant factor h in common, if
and only Rf,g = 0 ∈ A.

Now suppose that Rf,g 6= 0. Leaving out the last equation amvn−1 + bnum−1 = 0
describes the condition that vf + ug does not involve x. The maximal minors of the
matrix yield a solution (v, u) such that vf +ug = Rf,g (Cramer’s rule!). So for any two
polynomials f and g there exist u and v with deg u < deg f and deg v < deg g, such
that:

vf + ug = Rf,g.

Remark. If A is a polynomial ring, and ai and bi are homogeneous polynomials of
degree i, then Rf,g ∈ A is a polynomial of degree mn.

2. Bézout’s Theorem.

Theorem 3. Let k be an infinite field. Let F (X, Y, Z) and G(X, Y, Z) be homogeneous
polynomials in k[X, Y, Z] of degree m and n, without common factor. Then the number
of common zeroes of F and G in P2

k, counted with multiplicities, is at most mn, and
equal to mn, if k is algebraically closed.

We will use the resultant to define intersection multiplicities in such a way, that the
theorem becomes trivial. To this end we consider F and G as polynomials in X, with
coefficients in k[Y, Z]. By Prop. 1 the resultant RF,G is not identically zero, because F
and G have no factor in common. Therefore RF,G is a homogeneous polynomial of degree
mn in Y and Z, which vanishes only for a finite number of values (Y : Z). Eliminating
X from the equations F = G = 0 amounts geometrically to projecting onto the line
X = 0 (which has homogeneous coordinates (Y, Z)) from the point (1 : 0 : 0). The
common zeroes of F and G therefore lie on a finite number of lines through (1 : 0 : 0).
It is possible that such a line contains several zeroes, but the total number is finite.

Choose a point P , not on F = 0, not on G = 0, and outside all lines connecting two
common zeroes of F and G; this is possible, because k is infinite. Take new coordinates,
in which P is the point (1 : 0 : 0).

Definition. Let Q = (ξ : η : ζ) be a common zero of F and G; by construction it is
the only one on the line ζY − ηZ = 0. The intersection multiplicity of F and G in the
point Q is the multiplicity of (η : ζ) as zero of the resultant RF,G(Y, Z).
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Remark. As announced Bézout’s theorem now trivially holds. The only remaining
problem is that our definition of intersection multiplicity a priori depends on the choice
of the point P . Independence can be shown in a number of different ways. The most
abstract approach to the definition uses the axiomatic method: one gives a set of postu-
lates for intersection multiplicity and shows that there is at most one intersection theory
satisfying them, see [Fulton]. To show existence one has to give somehow an explicit
definition (as opposed to implicit by the axioms), and the one with the resultant is
an example. One can also argue by continuity, see [Brieskorn-Knörrer]: a 1-parameter
family of admissable points Pt gives a family of homogeneous polynomials of degree
mn with constant number of zeroes, counted without multiplicity. By the continuous
dependence of the roots of a polynomials in C[x] on the coefficients their multiplicities
have to be constant also. As stated this argument uses the topology of C. To make it
into a purely algebraic proof one needs the Zariski topology, cf. the remark in [Reid,
(2.10)]. Here I want to give a different motivation, using another, analytic definition of
the intersection multiplicity of a smooth analytic curve with a plane curve, and show
that it coincides with the definition above. This again works only for k = R or k = C;
I restrict myself to the complex case.

Definition. Let D ⊂ C be a domain containing 0. Let ϕ:D → C2 be an analytic map,
with ϕ(0) = 0, and ϕ′(0) 6= 0. Let f : C2 → C be a non constant analytic function with
f(0) = 0. The intersection multiplicity of the curve ϕ(t) with the curve f(x, y) = 0 at
the origin is the order in t of the analytic function f ◦ ϕ(t).

This definition generalises the definition of intersection multiplicities in the case of
the intersection of a line in P2

C with an algebraic curve. Note that it is not symmetric
in f and ϕ. I show now that both definitions the intersection multiplicity coincide (if
they both apply).

Lemma 4. If the curve G = 0 is smooth in a common zero Q of F and G, and the
point P does not lie on the tangent line of G = 0 in the point Q, then both definitions
give the same result.

Proof . Use affine coordinates, and suppose the intersection point is the origin. Write
f(x, y) = F (X, Y, 1), etc. We assume as before that P = (1 : 0 : 0) so we project
parallel to the x-axis. The condition on g is that its gradient does not vanish at the
origin. The x-axis is not allowed to be the tangent, so ∂g

∂x (0, 0) 6= 0. By the implicit
function theorem we can find a parametrisation x = ϕ(y), such that g(ϕ(y), y) ≡ 0.
From the equation vf + ug = R we get:

v(ϕ(y), y)f(ϕ(y), y) = R(y).

I claim that v(0, 0) 6= 0. Then the order of the zero y = 0 of R equals that of the
zero y = 0 of f(ϕ(y), y). Because g(0, 0) = 0, we can write g(x, 0) = xg1(x), and we
have bn(0) = 0 (remember that g(x, y) =

∑
bi(y)xn−i). Note that v(0, 0) = vn−1(0) is

a certain minor, which is itself a resultant, namely that of g1(x) and f(x, 0). As the
root x = 0 of g(x, 0) is a simple root (because ∂g

∂x (0, 0) 6= 0), which is the only common
root of g(x, 0) and f(x, 0) by our assumption on the choice of P , this resultant does not
vanish. �
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3. The Hessian.

Let Fd(X0, X1, X2) be the equation of a plane curve C, and P = (p0 : p1 : p2) a point
on it. The tangent line at P is given by the equation:

∂F

∂X0
(P )X0 +

∂F

∂X1
(P )X1 +

∂F

∂X2
(P )X2 = 0, (∗)

provided this linear form is not identically zero; if
(

∂F
∂X0

(P ), ∂F
∂X1

(P ), ∂F
∂X2

(P )
)

= 0, then
P is a singular point, and the tangent line is not defined.
There are several ways to understand the formula (∗).
• We can view F as equation on k3, and describe the tangent plane in any point on

the line, which projects onto P ∈ (k3 \ {0})/k∗. As this plane passes through the
origin, it is given by (∗).

• In affine coordinates (x1, x2), write f(x1, x2) = F (1, X1, X2); the tangent line is
∂f
∂x1

(P )(x1 − p1) + ∂f
∂x2

(P )(x2 − p2) = 0. By Euler’s formula:

∑
Xi

∂F

∂Xi
= dF,

and the fact that F (p0, p1, p2) = 0, we obtain in homogeneous coordinates the
expression (∗).

• Finally, the tangent line is the line which intersects F in P with multiplicity at least
two. Let Q = (Q0, Q1, Q2), and consider the line P + tQ. By Taylor’s formula:

F (P + tQ) = F (P ) + t
∑ ∂F

∂Xi
(P ) ·Qi + h.o.t.

The condition that t = 0 is at least a double root, gives that Q satisfies (∗).
Observe that differentiation of a polynomial can be defined purely algebraically (product
rule!), and involves no analysis. To avoid funny behaviour in characteristic p we assume
from now on that our field k has characteristic 0.

Definition. A tangent line L, tangent to C:F = 0 in the point P , is an inflexional
tangent, or flex for short, and P is an inflexion point, if the intersection multiplicity of
L and C at P is at least 3.

Definition. The Hessian HF of F is the curve, defined by the equation:

det
( ∂2F

∂Xi∂Xj

)
= 0.

Remarks.
1. The Hessian transforms under a projective transformation X ′ = AX as a quadratic

form (Exercise 7.3.i).
2. The Hessian curve passes through the singular points of F : by Euler’s formula

(d− 1) ∂F
∂Xj

=
∑

Xi
∂2F

∂Xi∂Xj
, so the columns of the matrix are dependent.
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Theorem 5. Let Fd(X0, X1, X2) define a curve C of degree d without lines as com-
ponents in P2

k, with k a field of characteristic zero. A nonsingular point P ∈ C is an
inflexion point with intersection multiplicity of the flex and the curve r + 2 if and only
if the Hessian HF intersects F in P with multiplicity r.

Proof . Choose coordinates such that P = (0 : 0 : 1) and the tangent line in P
is the line X = 0. Now we can write the equation of the curve in the form F =
XU(X, Y, Z) + Y r+2G(Y,Z) with U(0, 0, 1) 6= 0 and G(0, 1) 6= 0. For the Hessian we
do the same thing, collecting all terms containing X in a first summand. The result is
HF = XV (X, Y, Z) + Y rH(Y,Z), where the second summand is computed by putting
X = 0 in the determinant, defining HF :

Y rH(Y, Z) =

∣∣∣∣∣∣
2UX UY UZ

UY (r+2)(r+1)Y rG+2(r+2)Y r+1GY +Y r+2GY Y (r+2)Y r+1GZ+Y r+2GY Z

UZ (r+2)Y r+1GZ+Y r+2GY Z Y r+2GZZ

∣∣∣∣∣∣ .

As (deg U)U = XUX +Y UY +ZUZ , one has U(0, 0, 1) 6= 0 if and only if UZ(0, 0, 1) 6= 0,
and therefore H(0, 1) = −U2

Z(0, 0, 1)G(0, 1) 6= 0 (here we use char k = 0). This shows
that P ∈ HF if and only if r > 0.

To compute the intersection multiplicity of F and HF , we compute the resultant
to be of the form Y r+2GQ1 + Y rHQ2 with Q2(0, 1) itself the resultant of U(X, 0, Z)
and XV (X, 0, Z). By choosing suitable coordinates we can ensure that P is the only
intersection point of F and HF on Y = 0. �

Corollary 6. A nonsingular cubic curve over an algebraically closed field k with
char k = 0 has exactly nine distinct inflexion points.

Exercises.

1 (∼ 3.3). i) Prove Gauß’ Lemma: if A is a UFD and f , g ∈ A[x] are polynomials with
coefficients in A, then a prime element of A that is a common factor of the coefficients
of the product fg is a common factor of the coefficients of f or g.
ii) Let A be a UFD. Prove that A[x] is a UFD. For this you need to compare factori-
sations in A[x] with factorisations in Q[x], where Q is the field of fractions of A, using
Gauß’ lemma to clear denominators.
iii) If K is a field then K[x] is a UFD. Prove by induction on n that K[x1, . . . , xn] is a
UFD.

2. Let f(x, y) be the affine equation of a real or complex plane curve, and P = (p, q)
a point on it; suppose that ∂f

∂y (P ) 6= 0, so by the implicit function theorem y = ϕ(x) in
a neighbourhood of P . Prove that P is an inflexion point (in the sense that ϕ′′(p) = 0)
if and only if: ∣∣∣∣∣∣

fxx fxy fx

fxy fyy fy

fx fy 0

∣∣∣∣∣∣ = 0.

(Hint: differentiate f(x, ϕ(x)) ≡ 0 twice. Compute also the determinant) Use Euler’s
formula and f(p, q) = 0 to translate this condition into the condition on the vanishing
of the Hessian of the associated homogeneous function F (X, Y, Z).
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3 (= 2.10). Let C ⊂ P2
k, char k 6= 2, be a plane cubic with inflexion point P . Prove

that a change of coordinates can be used to bring C in the normal form Y 2Z = X3 +
aX2Z + bXZ2 + cZ3. Hint: take coordinates such that P = (0 : 1 : 0), and its tangent
is Z = 0; get rid of the linear term in Y by completing the square.

4. A real plane cubic with one inflexion point has two other inflexion points. Hint: use
the result of the previous exercise in affine coordinates, express y as function of x and
show that y′′(x) has to have a zero.

5. Find the inflexion points of the singular cubics ZY 2 = X2(X + Z) and Y 2Z = X3,
both in P2

R and in P2
C.

6. Let P and Q be inflexion points on a cubic curve C. Show that the third intersection
point of the line PQ with C is also an inflexion point. Hint: use coordinates in which
P = (0 : 1 : 0), Q = (0 : 0 : 1) and the flexes are Y = 0 and Z = 0.

7. Consider the cubic curve C in P2
C with equation:

X3 + Y 3 + Z3 − 3λXY Z = 0,

where λ3 6= 1. Find its inflexion points. Compute the inflexion lines. What are all
lines joining inflexion points? Determine the singular elements of the pencil of cubics
µ(X3 + Y 3 + Z3)− 3λXY Z.
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