## Partial Differential Equations with Numerical Methods

Stig Larsson and Vidar Thomée, Springer 2003, 2005
August 18, 2015.
p. 44, 1. 17: $a_{j} \pm \frac{1}{2} h b_{j} \geq 0$ should be $a_{j} \pm \frac{1}{2} h b_{j}>0$
p. 44, l. 6-: nonnegative should be positive

List of corrections, October 10, 2006. Page numbers refer to the second corrected printing 2005.
p. 94, l. Problem 6.6: Problem A. 15 should be Problem A. 14
p. 83, l. (6.16): $\quad\left\|v-\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}\right\| \leq C \lambda_{N+1}^{-1 / 2}$ should be $\left\|v-\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}\right\| \leq$ $\lambda_{N+1}^{-1 / 2}\|\nabla v\|$
p. 40, 1. 1-: $\quad \int_{\Omega} f \mathrm{~d} x$ should be $\frac{1}{|\Omega|} \int_{\Omega} f \mathrm{~d} x$
p. 31, 1. 2: $L_{1}\left(\mathbf{R}^{d}\right)$ should be $L_{1}(B)$ in view of (3.14)
p. 31, l. 5-: $\quad \int_{|x|=\epsilon} \varphi \frac{\partial U}{\partial n} \mathrm{~d} s$ should be $-\int_{|x|=\epsilon} \varphi \frac{\partial U}{\partial n} \mathrm{~d} s$

List of corrections, February 13, 2006. Page numbers refer to the second corrected printing 2005.
p. 88, l. 4: $\quad N_{\rho} \approx \rho^{2} b^{2} / \pi$ should be $N_{\rho} \approx \rho^{2} b^{2} /(4 \pi)$
p. 88, l. 5: $\lambda_{n}=\lambda_{m l} \approx \rho^{2} \approx \pi N_{\rho} / b^{2} \approx \pi n / b^{2}$ should be $\lambda_{n}=\lambda_{m l} \approx \rho^{2} \approx$ $4 \pi N_{\rho} / b^{2} \approx 4 \pi n / b^{2}$
p. 158, l. 4 : $n \geq 1$ should be $n \geq 0$
p. 236, l. 2: if it should be if it is

List of corrections, August 24, 2005.
Most of the following errors have been corrected in the second corrected printing 2005.
p. 3, l. 12-: $\rightarrow \infty$ should be $t \rightarrow \infty$
p. 6, 1. 1-: $\left(\int_{\Omega} v w \mathrm{~d} x\right)^{1 / 2}$ should be $\int_{\Omega} v w \mathrm{~d} x$
p. 7, l. 15: we we should be we
p. 9, 1. 1-: $\quad$ definition of $b$ should be $b=\frac{v_{\mathrm{f}} \sigma_{\mathrm{f}} L}{\lambda_{\mathrm{f}}} \frac{\sigma}{\sigma_{\mathrm{f}}} \frac{v}{v_{\mathrm{f}}}$
p. 10, 1. 1.21: $b-\nabla \cdot a$ should be $b-\nabla a$
p. 16, l. 2-: for $\epsilon$ should be for $\epsilon>0$
p. 23, l. Problem 2.2: where $c$ is a positive constant
p. 27, l. 1: $\leq$ should be $=$ (in two places)
p. 27, 1. 3: $\min _{\bar{\Omega}} u \leq \min \left\{\min _{\Gamma} u, 0\right\}$ should be $\min _{\bar{\Omega}} u \geq \min \left\{\min _{\Gamma} u, 0\right\}$
p. 30, l. 5: by parts should be by parts twice
p. 30, l. 6: . should be ,
p. 31, 1. 3-: $\left|\int_{|x|=\epsilon} \frac{\partial \varphi}{\partial n} U \mathrm{~d} s\right|=\left|\frac{1}{2 \pi} \log (\epsilon) \int_{|x|=\epsilon} \frac{\partial \varphi}{\partial n} \mathrm{~d} s\right| \leq \epsilon|\log (\epsilon)|\|\nabla \varphi\|_{\mathcal{C}} \rightarrow 0$
p. 33, l. 14-: formulation (3.23) should be formulation (3.20)
p. 35, 1. 5-: $\frac{\partial u}{\partial n}$ should be $a \frac{\partial u}{\partial n}$
p. 38, l. 14: $m, k=1$ should be $j, k=1$
p. 39, 1. 11-: Hint: $v(x)=v(y)+\int_{y_{1}}^{x_{1}} D_{1} v\left(s, x_{2}\right) \mathrm{d} s+\int_{y_{2}}^{x_{2}} D_{2} v\left(y_{1}, s\right) \mathrm{d} s$.
p. 44, l. 13: of the should be of the absolute values of the
p. 44, l. 12-: $\min _{j} U_{j} \leq \min \left\{U_{0}, U_{M}, 0\right\}$ should be $\min _{j} U_{j} \geq \min \left\{U_{0}, U_{M}, 0\right\}$
p. 45, 1. 2-: delete $+b_{j}\left(u^{\prime}\left(x_{j}\right)-\hat{\partial} u\left(x_{j}\right)\right)$
p. 46, l. 12-: inter should be interior
p. 49, 1. 17: dominant should be dominant, i.e., $\sum_{j \neq i}\left|a_{i j}\right| \leq a_{i i}$
p. 49, 1. 17: Hint: assume $a_{j} \pm \frac{1}{2} h b_{j} \geq 0$.
p. 54, l. 5: with $\|v\|_{K_{j}}=\|v\|_{L_{2}\left(K_{j}\right)}$ and $|v|_{2, K_{j}}=|v|_{H^{2}\left(K_{j}\right)}$
p. 54, l. 10: $)^{1 / 2}$ should be $)^{1 / 2}$
p. 55, l. 9: $v$ should be $u$
p. 56, l. 21: $\leq s$ should be $\leq k$
p. 61, l. 11-: . should be ,
p. 65, 1. 12: We then find should be We then find, for $2 \leq s \leq r$,
p. 65, l. 13: $r$ should be $s$
p. 65, l. 14: These ... should be These estimates thus show a reduced convergence rate $O\left(h^{s}\right)$ if $v \in H^{s}$ with $s<r$.
p. 73, 1. 20-: $\left\|I_{h} v-v\right\|_{\mathcal{C}\left(K_{j}\right)}$ should be $\left\|I_{h} v-v\right\|_{\mathcal{C}\left(K_{j}\right)}=\| I_{h}\left(v-Q_{1} v\right)+\left(Q_{1} v-\right.$ $v) \|_{\mathcal{C}\left(K_{j}\right)}$
p. 81, l. 11: dimension $n$ should be dimension $m$
p. 87, 1. Example 6.2: $\int_{0}^{1}$ should be $\int_{0}^{b}$
p. 88, l. 1: $a_{0}$ should be $a_{0}>0$
p. 88, l. 9: $\quad a_{j+1 / 2} U_{j+1}+\left(a_{j+1 / 2}+a_{j-1 / 2}\right) U_{j}-a_{j-1 / 2} U_{j-1}$
should be $a_{j+1 / 2} U_{j+1}-\left(a_{j+1 / 2}+a_{j-1 / 2}\right) U_{j}+a_{j-1 / 2} U_{j-1}$
p. 93, l. Problem 6.3: Assume that $\Omega$ is such that (3.36) holds.
p. 96, l. 3: he should be the
p. 97, l. 7-: $g=P^{-1} u$ should be $g=P^{-1} f$
p. 112, l. 11: Bu should be By
p. 112, l. 18: has should be have
p. 115, 1. 11: $\hat{v}_{j}^{k} \mathrm{e}^{-\lambda_{j} t}$ should be $\hat{v}_{i} \mathrm{e}^{-\lambda_{i} t}$
p. 115, l. 3-: $C_{1}$ should be $\frac{1}{2} C_{1}$
p. 117, l. 8: $t^{-k}$ should be $t^{-m-s / 2}$
p. 117, l. 3-: $\quad D_{t}^{m} E(t) v(\cdot, t)$ should be $D_{t}^{m} E(t) v$
p. 117, l. 15: (6.4) should be Theorem 6.4
p. 119, l. 4: $D_{t} e$ should be $D_{t} E$
p. 119, l. (8.27): = should be $\leq$
p. 123, l. 3: $(\bar{x}, \bar{t})$ should be $(\tilde{x}, \tilde{t})$
p. 124, l. 15: $|u(x, t)| \leq \mathrm{e}^{c|x|^{2}}$ should be $|u(x, t)| \leq M \mathrm{e}^{c|x|^{2}}$
p. 133, 1. 3: $\sum_{p} a_{p} \mathrm{e}^{\mathrm{i}(j-p) \xi_{0}}$ should be $\epsilon \sum_{p} a_{p} \mathrm{e}^{\mathrm{i}(j-p) \xi_{0}}$
p. 150, 1. 1-: $\quad$ should be Since $u_{h}(t) \in S_{h}$ we may choose $\chi=u_{h}(t) \ldots$
p. 150, 1. 1-: $U^{n} \in S_{h}$ should be $u_{h} \in S_{h}$
p. 150, l. 1-: $\quad \chi=u$ should be $\chi=u_{h}$
p. 154, l. 7: 10.1 should be 10.3
p. 155, 1. 1: $\left(\int_{0}^{t}\left\|\rho_{t}\right\|_{2} \mathrm{~d} s\right)^{1 / 2}$ should be $\left(\int_{0}^{t}\left\|\rho_{t}\right\|^{2} \mathrm{~d} s\right)^{1 / 2}$
p. 155, 1. 9-: $\quad v$ should be $w$ (four times)
p. 155, l. 3-: $v$ should be $w$
p. 156, l. 12: $\Phi$ should be $\Phi_{j}$
p. 158, l. 4-: method should be a method
p. 160, l. 2-: and (8.18). should be (8.18), and Problem 8.10.
p. 165, l. 9: delete which we may assume to be symmetric,
p. 169, l. 1: 11.2 should be 11.3
p. 169, l. 10-: bounded should be bounded or unbounded
p. 179, l. 16: $\quad+\|f\|\|u\|$ should be $+2\|f\|\|u\|$ and $C_{1}=1$
p. 204, l. 5: 13.3 should be 13.1
p. 226, 1. 6: $\quad w=\lambda v$ should be $w=\lambda v$ or $v=\lambda w$
p. 227, l. (A.4): $\quad w$ should be $u$
p. 233, 1. 14: for $1 \leq p<\infty$. should be for $1 \leq p<\infty$, if $\Gamma$ is sufficiently smooth.
p. 232, 1. 3: The latter should be If $\Omega$ is bounded, then the latter
p. 233, l. 8: $1 \leq p \leq \infty$, and should be $1 \leq p \leq \infty$ if $\Omega$ is bounded, and
p. 234, l. 9: $C^{1}$ should be $\mathcal{C}^{1}$
p. 235, l. 10: for any $l$. should be for any $l \geq k$, if $\Gamma$ is sufficiently smooth.
p. 237, 1. 14-: $\mathcal{C}(\bar{\Omega}) \subset H^{k}(\Omega)$ should be $H^{k}(\Omega) \subset \mathcal{C}(\bar{\Omega})$
p. 237, 1. 4-: $\quad \mathcal{C}^{\ell}(\bar{\Omega}) \subset H^{k}(\Omega)$ should be $H^{k}(\Omega) \subset \mathcal{C}^{\ell}(\bar{\Omega})$
p. 239, l. 4: $\quad L_{2}(\mathbf{R})$ should be $L_{2}\left(\mathbf{R}^{d}\right)$
p. 240, l. 3: $\mathrm{e}^{-\mathrm{i} x \cdot \xi}$ should be $\mathrm{e}^{-\mathrm{i} z \cdot \xi}$
p. 242, l. 5: $\|v\|_{W_{1}^{2}} \leq|\Omega|^{1 / 2}\|v\|_{H^{2}}$ should be $\|v\|_{W_{1}^{2}} \leq C\|v\|_{H^{2}}$
p. 242, l. 12: $\nabla \hat{v}$ should be $\hat{\nabla} \hat{v}$

Here is an improved version of Theorem 6.4.
Theorem 1. The eigenfunctions $\left\{\varphi_{j}\right\}_{j=1}^{\infty}$ of (6.5) form an orthonormal basis for $L_{2}$. The series $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}$ is convergent if and only if $v \in H_{0}^{1}$. Moreover,

$$
\begin{equation*}
\|\nabla v\|^{2}=a(v, v)=\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}, \quad \text { for all } v \in H_{0}^{1} \tag{1}
\end{equation*}
$$

Proof. By our above discussion it follows that for the first statement it suffices to show (6.13) for all $v$ in $H_{0}^{1}$, which is a dense subspace of $L_{2}$. We shall demonstrate that

$$
\begin{equation*}
\left\|v-\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}\right\| \leq \lambda_{N+1}^{-1 / 2}\|\nabla v\|, \quad \text { for all } v \in H_{0}^{1} \tag{2}
\end{equation*}
$$

which then implies (6.13) in view of Theorem 6.3.
To prove (2), set $v_{N}=\sum_{j=1}^{N}\left(v, \varphi_{j}\right) \varphi_{j}$ and $r_{N}=v-v_{N}$. Then $\left(r_{N}, \varphi_{j}\right)=0$ for $j=1, \ldots, N$, so that

$$
\frac{\left\|\nabla r_{N}\right\|^{2}}{\left\|r_{N}\right\|^{2}} \geq \inf \left\{\|\nabla v\|^{2}: v \in H_{0}^{1},\|v\|=1,\left(v, \varphi_{j}\right)=0, j=1, \ldots, N\right\}=\lambda_{N+1}
$$

and hence

$$
\left\|r_{N}\right\| \leq \lambda_{N+1}^{-1 / 2}\left\|\nabla r_{N}\right\|
$$

It now suffices to show that the sequence $\left\|\nabla r_{N}\right\|$ is bounded. We first recall from Theorem 6.1 that $a\left(\varphi_{i}, \varphi_{j}\right)=0$ for $i \neq j$, so that $a\left(r_{N}, v_{N}\right)=0$. Hence $a(v, v)=$ $a\left(v_{N}, v_{N}\right)+2 a\left(v_{N}, r_{N}\right)+a\left(r_{N}, r_{N}\right)=a\left(v_{N}, v_{N}\right)+a\left(r_{N}, r_{N}\right)$ and

$$
\left\|\nabla r_{N}\right\|^{2}=a\left(r_{N}, r_{N}\right)=a(v, v)-a\left(v_{N}, v_{N}\right) \leq a(v, v)=\|\nabla v\|^{2}
$$

which completes the proof of (2).
For the proof of the second statement, we first note that, for $v \in H_{0}^{1}$,

$$
\sum_{j=1}^{N} \lambda_{j}\left(v, \varphi_{j}\right)^{2}=a\left(v_{N}, v_{N}\right)=a(v, v)-a\left(r_{N}, r_{N}\right) \leq a(v, v)
$$

and we conclude that $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}<\infty$. Conversely, we assume that $v \in L_{2}$ and $\sum_{j=1}^{\infty} \lambda_{j}\left(v, \varphi_{j}\right)^{2}<\infty$. We already know that $v_{N} \rightarrow v$ in $L_{2}$ as $N \rightarrow \infty$. To obtain convergence in $H^{1}$ we note that, with $M>N$,

$$
\alpha\left\|v_{N}-v_{M}\right\|_{1}^{2} \leq\left\|\nabla\left(v_{N}-v_{M}\right)\right\|^{2}=\sum_{j=N+1}^{M} \lambda_{j}\left(v, \varphi_{j}\right)^{2} \rightarrow 0 \text { as } N \rightarrow \infty
$$

Hence, $v_{N}$ is a Cauchy sequence in $H^{1}$ and converges to a limit in $H^{1}$. Clearly, this limit is the same as $v$. By the trace theorem (Theorem A.4) $v_{N}$ is also a Cauchy sequence in $L_{2}(\Gamma)$, and since $v_{N}=0$ on $\Gamma$ we conclude that $v=0$ on $\Gamma$. Hence, $v \in$ $H_{0}^{1}$. Finally, (1) is obtained by letting $N \rightarrow \infty$ in $a\left(v_{N}, v_{N}\right)=\sum_{j=1}^{N} \lambda_{j}\left(v, \varphi_{j}\right)^{2}$.

Here is an improved version of Theorem 13.1.
Theorem 2. Let $u_{h}$ and $u$ be the solutions of (13.2) and (13.1). Then we have, for $t \geq 0$,

$$
\begin{aligned}
\left\|u_{h, t}(t)-u_{t}(t)\right\| \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h^{2}\left(\left\|u_{t}(t)\right\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{2} d s\right) \\
\left\|u_{h}(t)-u(t)\right\| \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h^{2}\left(\|u(t)\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{2} d s\right) \\
\left|u_{h}(t)-u(t)\right|_{1} \leq & C\left(\left|v_{h}-R_{h} v\right|_{1}+\left\|w_{h}-R_{h} w\right\|\right) \\
& +C h\left(\|u(t)\|_{2}+\int_{0}^{t}\left\|u_{t t}\right\|_{1} d s\right)
\end{aligned}
$$

Proof. Writing as usual

$$
u_{h}-u=\left(u_{h}-R_{h} u\right)+\left(R_{h} u-u\right)=\theta+\rho,
$$

we may bound $\rho$ and $\rho_{t}$ as in the proof of Theorem 10.1 by

$$
\begin{equation*}
\|\rho(t)\|+h|\rho(t)|_{1} \leq C h^{2}\|u(t)\|_{2}, \quad\left\|\rho_{t}(t)\right\| \leq C h^{2}\left\|u_{t}(t)\right\|_{2} \tag{3}
\end{equation*}
$$

For $\theta(t)$ we have, after a calculation analogous to that in (10.14),

$$
\begin{equation*}
\left(\theta_{t t}, \chi\right)+a(\theta, \chi)=-\left(\rho_{t t}, \chi\right), \quad \forall \chi \in S_{h}, \quad \text { for } t>0 \tag{4}
\end{equation*}
$$

Imitating the proof of Lemma 13.1, we choose $\chi=\theta_{t}$ :

$$
\frac{1}{2} \frac{d}{d t}\left(\left\|\theta_{t}\right\|^{2}+|\theta|_{1}^{2}\right) \leq\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\| .
$$

After integration in $t$ we obtain

$$
\begin{aligned}
\left\|\theta_{t}(t)\right\|^{2}+|\theta(t)|_{1}^{2} & \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2 \int_{0}^{t}\left\|\rho_{t t}\right\|\left\|\theta_{t}\right\| \mathrm{d} s \\
& \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2 \int_{0}^{t}\left\|\rho_{t t}\right\| \mathrm{d} s \max _{s \in[0, t]}\left\|\theta_{t}\right\| \\
& \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2}+\frac{1}{2}\left(\max _{s \in[0, T]}\left\|\theta_{t}\right\|\right)^{2}
\end{aligned}
$$

for $t \in[0, T]$. This implies

$$
\frac{1}{2}\left(\max _{s \in[0, T]}\left\|\theta_{t}\right\|\right)^{2} \leq\left\|\theta_{t}(0)\right\|^{2}+|\theta(0)|_{1}^{2}+2\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2}
$$

and hence

$$
\left\|\theta_{t}(t)\right\|^{2}+|\theta(t)|_{1}^{2} \leq 2\left\|\theta_{t}(0)\right\|^{2}+2|\theta(0)|_{1}^{2}+4\left(\int_{0}^{T}\left\|\rho_{t t}\right\| \mathrm{d} s\right)^{2}
$$

for $t \in[0, T]$. In particular this holds with $t=T$ where $T$ is arbitrary. Using also bounds for $\rho_{t t}$ similar to (3), we obtain

$$
\begin{aligned}
\left\|\theta_{t}(t)\right\|+\|\theta(t)\| & \leq C\left(\left\|\theta_{t}(t)\right\|+|\theta(t)|_{1}\right) \\
& \leq C\left(\left\|w_{h}-R_{h} w\right\|+\left|v_{h}-R_{h} v\right|_{1}\right)+C h^{2} \int_{0}^{t}\left\|u_{t t}\right\|_{2} \mathrm{~d} s
\end{aligned}
$$

and

$$
|\theta(t)|_{1} \leq C\left(\left\|w_{h}-R_{h} w\right\|+\left|v_{h}-R_{h} v\right|_{1}\right)+C h \int_{0}^{t}\left\|u_{t t}\right\|_{1} \mathrm{~d} s
$$

Together with the bounds in (3) this completes the proof.
We remark that the choices $v_{h}=R_{h} v$ and $w_{h}=R_{h} w$ in Theorem 2 give optimal order error estimates for all the three quantities considered, but that other optimal choices of $v_{h}$ could cause a loss of one power of $h$, because of the gradient in the first term on the right. This can be avoided by a more refined argument. The regularity requirement on the exact solution can also be reduced.
/stig

