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p. 44, l. 17: aj ± 1
2hbj ≥ 0 should be aj ± 1

2hbj > 0

p. 44, l. 6-: nonnegative should be positive

List of corrections, October 10, 2006. Page numbers refer to the second corrected
printing 2005.

p. 94, l. Problem 6.6: Problem A.15 should be Problem A.14

p. 83, l. (6.16):
∥∥∥v− N∑

j=1

(v, ϕj)ϕj

∥∥∥ ≤ Cλ−1/2
N+1 should be

∥∥∥v− N∑
j=1

(v, ϕj)ϕj

∥∥∥ ≤
λ
−1/2
N+1 ‖∇v‖

p. 40, l. 1-:

∫
Ω

f dx should be
1

|Ω|

∫
Ω

f dx

p. 31, l. 2: L1(Rd) should be L1(B) in view of (3.14)

p. 31, l. 5-:

∫
|x|=ε

ϕ
∂U

∂n
ds should be −

∫
|x|=ε

ϕ
∂U

∂n
ds

List of corrections, February 13, 2006. Page numbers refer to the second corrected
printing 2005.

p. 88, l. 4: Nρ ≈ ρ2b2/π should be Nρ ≈ ρ2b2/(4π)

p. 88, l. 5: λn = λml ≈ ρ2 ≈ πNρ/b
2 ≈ πn/b2 should be λn = λml ≈ ρ2 ≈

4πNρ/b
2 ≈ 4πn/b2

p. 158, l. 4: n ≥ 1 should be n ≥ 0

p. 236, l. 2: if it should be if it is

List of corrections, August 24, 2005.

Most of the following errors have been corrected in the second corrected printing
2005.

p. 3, l. 12-: →∞ should be t→∞

p. 6, l. 1-:
(∫

Ω

vw dx
)1/2

should be

∫
Ω

vw dx

p. 7, l. 15: we we should be we

p. 9, l. 1-: definition of b should be b =
vfσfL

λf

σ

σf

v

vf

p. 10, l. 1.21: b−∇ · a should be b−∇a
p. 16, l. 2-: for ε should be for ε > 0

p. 23, l. Problem 2.2: where c is a positive constant

p. 27, l. 1: ≤ should be = (in two places)

p. 27, l. 3: min
Ω̄
u ≤ min

{
min

Γ
u, 0
}

should be min
Ω̄
u ≥ min

{
min

Γ
u, 0
}

p. 30, l. 5: by parts should be by parts twice

p. 30, l. 6: . should be ,

p. 31, l. 3-:
∣∣∣ ∫
|x|=ε

∂ϕ

∂n
U ds

∣∣∣ =
∣∣∣ 1

2π
log(ε)

∫
|x|=ε

∂ϕ

∂n
ds
∣∣∣ ≤ ε| log(ε)|‖∇ϕ‖C → 0

p. 33, l. 14-: formulation (3.23) should be formulation (3.20)
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p. 35, l. 5-:
∂u

∂n
should be a

∂u

∂n
p. 38, l. 14: m, k = 1 should be j, k = 1

p. 39, l. 11-: Hint: v(x) = v(y) +
∫ x1

y1
D1v(s, x2) ds+

∫ x2

y2
D2v(y1, s) ds.

p. 44, l. 13: of the should be of the absolute values of the

p. 44, l. 12-: min
j
Uj ≤ min

{
U0, UM , 0

}
should be min

j
Uj ≥ min

{
U0, UM , 0

}
p. 45, l. 2-: delete +bj(u

′(xj)− ∂̂u(xj))

p. 46, l. 12-: inter should be interior

p. 49, l. 17: dominant should be dominant, i.e.,
∑
j 6=i |aij | ≤ aii

p. 49, l. 17: Hint: assume aj ± 1
2hbj ≥ 0.

p. 54, l. 5: with ‖v‖Kj
= ‖v‖L2(Kj) and |v|2,Kj

= |v|H2(Kj)

p. 54, l. 10: )1/2 should be
)1/2

p. 55, l. 9: v should be u

p. 56, l. 21: ≤ s should be ≤ k
p. 61, l. 11-: . should be ,

p. 65, l. 12: We then find should be We then find, for 2 ≤ s ≤ r,
p. 65, l. 13: r should be s

p. 65, l. 14: These ... should be These estimates thus show a reduced conver-
gence rate O(hs) if v ∈ Hs with s < r.

p. 73, l. 20-: ‖Ihv−v‖C(Kj) should be ‖Ihv−v‖C(Kj) = ‖Ih(v−Q1v)+(Q1v−
v)‖C(Kj)

p. 81, l. 11: dimension n should be dimension m

p. 87, l. Example 6.2:
∫ 1

0
should be

∫ b
0

p. 88, l. 1: a0 should be a0 > 0

p. 88, l. 9: aj+1/2Uj+1 + (aj+1/2 + aj−1/2)Uj − aj−1/2Uj−1

should be aj+1/2Uj+1 − (aj+1/2 + aj−1/2)Uj + aj−1/2Uj−1

p. 93, l. Problem 6.3: Assume that Ω is such that (3.36) holds.

p. 96, l. 3: he should be the

p. 97, l. 7-: g = P−1u should be g = P−1f

p. 112, l. 11: Bu should be By

p. 112, l. 18: has should be have

p. 115, l. 11: v̂kj e−λjt should be v̂ie
−λit

p. 115, l. 3-: C1 should be 1
2C1

p. 117, l. 8: t−k should be t−m−s/2

p. 117, l. 3-: Dm
t E(t)v(·, t) should be Dm

t E(t)v

p. 117, l. 15: (6.4) should be Theorem 6.4

p. 119, l. 4: Dte should be DtE

p. 119, l. (8.27): = should be ≤
p. 123, l. 3: (x̄, t̄) should be (x̃, t̃)

p. 124, l. 15: |u(x, t)| ≤ ec|x|
2

should be |u(x, t)| ≤Mec|x|
2

p. 133, l. 3:
∑
p

ape
i(j−p)ξ0 should be ε

∑
p

ape
i(j−p)ξ0

p. 150, l. 1-: should be Since uh(t) ∈ Sh we may choose χ = uh(t) ...
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p. 150, l. 1-: Un ∈ Sh should be uh ∈ Sh
p. 150, l. 1-: χ = u should be χ = uh

p. 154, l. 7: 10.1 should be 10.3

p. 155, l. 1:
(∫ t

0

‖ρt‖2 ds
)1/2

should be
(∫ t

0

‖ρt‖2 ds
)1/2

p. 155, l. 9-: v should be w (four times)

p. 155, l. 3-: v should be w

p. 156, l. 12: Φ should be Φj

p. 158, l. 4-: method should be a method

p. 160, l. 2-: and (8.18). should be (8.18), and Problem 8.10.

p. 165, l. 9: delete which we may assume to be symmetric,

p. 169, l. 1: 11.2 should be 11.3

p. 169, l. 10-: bounded should be bounded or unbounded

p. 179, l. 16: +‖f‖‖u‖ should be +2‖f‖‖u‖ and C1 = 1

p. 204, l. 5: 13.3 should be 13.1

p. 226, l. 6: w = λv should be w = λv or v = λw

p. 227, l. (A.4): w should be u

p. 233, l. 14: for 1 ≤ p < ∞. should be for 1 ≤ p < ∞, if Γ is sufficiently
smooth.

p. 232, l. 3: The latter should be If Ω is bounded, then the latter

p. 233, l. 8: 1 ≤ p ≤ ∞, and should be 1 ≤ p ≤ ∞ if Ω is bounded, and

p. 234, l. 9: C1 should be C1

p. 235, l. 10: for any l. should be for any l ≥ k, if Γ is sufficiently smooth.

p. 237, l. 14-: C(Ω̄) ⊂ Hk(Ω) should be Hk(Ω) ⊂ C(Ω̄)

p. 237, l. 4-: C`(Ω̄) ⊂ Hk(Ω) should be Hk(Ω) ⊂ C`(Ω̄)

p. 239, l. 4: L2(R) should be L2(Rd)

p. 240, l. 3: e−ix·ξ should be e−iz·ξ

p. 242, l. 5: ‖v‖W 2
1
≤ |Ω|1/2‖v‖H2 should be ‖v‖W 2

1
≤ C‖v‖H2

p. 242, l. 12: ∇v̂ should be ∇̂v̂
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Here is an improved version of Theorem 6.4.

Theorem 1. The eigenfunctions {ϕj}∞j=1 of (6.5) form an orthonormal basis for

L2. The series
∑∞
j=1 λj(v, ϕj)

2 is convergent if and only if v ∈ H1
0 . Moreover,

‖∇v‖2 = a(v, v) =

∞∑
j=1

λj(v, ϕj)
2, for all v ∈ H1

0 . (1)

Proof. By our above discussion it follows that for the first statement it suffices to
show (6.13) for all v in H1

0 , which is a dense subspace of L2. We shall demonstrate
that ∥∥∥v − N∑

j=1

(v, ϕj)ϕj

∥∥∥ ≤ λ−1/2
N+1 ‖∇v‖, for all v ∈ H1

0 , (2)

which then implies (6.13) in view of Theorem 6.3.

To prove (2), set vN =
∑N
j=1(v, ϕj)ϕj and rN = v − vN . Then (rN , ϕj) = 0 for

j = 1, . . . , N , so that

‖∇rN‖2

‖rN‖2
≥ inf

{
‖∇v‖2 : v ∈ H1

0 , ‖v‖ = 1, (v, ϕj) = 0, j = 1, . . . , N
}

= λN+1,

and hence
‖rN‖ ≤ λ−1/2

N+1 ‖∇rN‖.

It now suffices to show that the sequence ‖∇rN‖ is bounded. We first recall from
Theorem 6.1 that a(ϕi, ϕj) = 0 for i 6= j, so that a(rN , vN ) = 0. Hence a(v, v) =
a(vN , vN ) + 2a(vN , rN ) + a(rN , rN ) = a(vN , vN ) + a(rN , rN ) and

‖∇rN‖2 = a(rN , rN ) = a(v, v)− a(vN , vN ) ≤ a(v, v) = ‖∇v‖2,

which completes the proof of (2).

For the proof of the second statement, we first note that, for v ∈ H1
0 ,

N∑
j=1

λj(v, ϕj)
2 = a(vN , vN ) = a(v, v)− a(rN , rN ) ≤ a(v, v),

and we conclude that
∑∞
j=1 λj(v, ϕj)

2 < ∞. Conversely, we assume that v ∈ L2

and
∑∞
j=1 λj(v, ϕj)

2 < ∞. We already know that vN → v in L2 as N → ∞. To

obtain convergence in H1 we note that, with M > N ,

α‖vN − vM‖21 ≤ ‖∇(vN − vM )‖2 =

M∑
j=N+1

λj(v, ϕj)
2 → 0 as N →∞.

Hence, vN is a Cauchy sequence in H1 and converges to a limit in H1. Clearly, this
limit is the same as v. By the trace theorem (Theorem A.4) vN is also a Cauchy
sequence in L2(Γ), and since vN = 0 on Γ we conclude that v = 0 on Γ. Hence, v ∈
H1

0 . Finally, (1) is obtained by letting N →∞ in a(vN , vN ) =
∑N
j=1 λj(v, ϕj)

2.
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Here is an improved version of Theorem 13.1.

Theorem 2. Let uh and u be the solutions of (13.2) and (13.1). Then we have,
for t ≥ 0,

‖uh,t(t)− ut(t)‖ ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch2

(
‖ut(t)‖2 +

∫ t

0

‖utt‖2 ds
)
,

‖uh(t)− u(t)‖ ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch2

(
‖u(t)‖2 +

∫ t

0

‖utt‖2 ds
)
,

|uh(t)− u(t)|1 ≤ C
(
|vh −Rhv|1 + ‖wh −Rhw‖

)
+ Ch

(
‖u(t)‖2 +

∫ t

0

‖utt‖1 ds
)
.

Proof. Writing as usual

uh − u = (uh −Rhu) + (Rhu− u) = θ + ρ,

we may bound ρ and ρt as in the proof of Theorem 10.1 by

‖ρ(t)‖+ h|ρ(t)|1 ≤ Ch2‖u(t)‖2, ‖ρt(t)‖ ≤ Ch2‖ut(t)‖2. (3)

For θ(t) we have, after a calculation analogous to that in (10.14),

(θtt, χ) + a(θ, χ) = −(ρtt, χ), ∀χ ∈ Sh, for t > 0. (4)

Imitating the proof of Lemma 13.1, we choose χ = θt:

1
2

d

dt

(
‖θt‖2 + |θ|21

)
≤ ‖ρtt‖ ‖θt‖.

After integration in t we obtain

‖θt(t)‖2 + |θ(t)|21 ≤ ‖θt(0)‖2 + |θ(0)|21 + 2

∫ t

0

‖ρtt‖ ‖θt‖ ds

≤ ‖θt(0)‖2 + |θ(0)|21 + 2

∫ t

0

‖ρtt‖ ds max
s∈[0,t]

‖θt‖

≤ ‖θt(0)‖2 + |θ(0)|21 + 2
(∫ T

0

‖ρtt‖ ds
)2

+ 1
2

(
max
s∈[0,T ]

‖θt‖
)2

,

for t ∈ [0, T ]. This implies

1
2

(
max
s∈[0,T ]

‖θt‖
)2

≤ ‖θt(0)‖2 + |θ(0)|21 + 2
(∫ T

0

‖ρtt‖ ds
)2

and hence

‖θt(t)‖2 + |θ(t)|21 ≤ 2‖θt(0)‖2 + 2|θ(0)|21 + 4
(∫ T

0

‖ρtt‖ ds
)2

,

for t ∈ [0, T ]. In particular this holds with t = T where T is arbitrary. Using also
bounds for ρtt similar to (3), we obtain

‖θt(t)‖ + ‖θ(t)‖ ≤ C
(
‖θt(t)‖ + |θ(t)|1

)
≤ C

(
‖wh −Rhw‖ + |vh −Rhv|1

)
+ Ch2

∫ t

0

‖utt‖2 ds,
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and

|θ(t)|1 ≤ C
(
‖wh −Rhw‖ + |vh −Rhv|1

)
+ Ch

∫ t

0

‖utt‖1 ds.

Together with the bounds in (3) this completes the proof.

We remark that the choices vh = Rhv and wh = Rhw in Theorem 2 give optimal
order error estimates for all the three quantities considered, but that other optimal
choices of vh could cause a loss of one power of h, because of the gradient in the first
term on the right. This can be avoided by a more refined argument. The regularity
requirement on the exact solution can also be reduced.

/stig
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