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Abstract

The optimal manoeuvering of a vehicle during a collision
avoidance manoeuvre is investigated. A simple model
where the vehicle is modelled as point mass and the math-
ematical formulation of the optimal manoeuvre are pre-
sented. The resulting two-point boundary problem is solved
by an adaptive finite element method and the theory behind
this method is described.

Keywords: Vehicle dynamics, collision avoidance
manoeuvre, optimal control, boundary value prob-
lem, adaptive finite element method.

1 Introduction

Historically, active safety systems for vehicles are de-
signed to ensure that the driver can steer and brake
the vehicle. Automatic controls are being incorpo-
rated in conventional safety systems such as ESC with
the ability to minimise driver errors. It is important to
evaluate how such systems perform in various situa-
tions. For this purpose the American National High-
way Traffic Safety Administration has proposed a test
called ”sine with dwell” to evaluate the performance
of a car during a collision avoidance manoeuvre. In
such a manoeuvre the driver of a vehicle tries to avoid
an object that suddenly appears in front of the vehicle
[1].

This article is a theoretical investigation of how to
combine braking and steering to perform a collision
avoidance manoeuvre in an optimal way. The optimi-
sation function has two goals. The primary objective
is to achieve a vehicle trajectory distance to avoid col-
lision. If the primary objective cannot be met, then a
secondary objective is to minimise the final velocity
of the unavoidable collision. This is an optimal con-
trol problem, since we want to find controls and states
which minimise a quantity subject to constraints con-

sisting of a dynamical system.
Methods for solving optimal control problem can

be classified as either a direct or an indirect approach
[4]. The direct approach approximates the dynamical
system and then looks for a solution, such that the ob-
jective function is minimised. The indirect approach
determines the necessary conditions for optimality,
and then seeks their solution. Taking the indirect ap-
proach means that we have to derive the adjoint equa-
tions and optimality conditions explicitly. However,
we use this approach because the indirect approach
in combination with the finite element method gives
us the possibility to control the error in the numeri-
cal solution of the optimality conditions over the en-
tire interval. We believe that this is important for an
efficient solver. Our first attempts in this direction
are described in the present work. The most com-
mon numerical methods for solving optimal control
problems based on either a direct or an indirect ap-
proach are multiple shooting or collocation methods
[4]. However, in this work we use an adaptive finite
element method similar to the one in [8] to solve the
necessary optimality conditions that arise in an indi-
rect approach. In the presented adaptive finite ele-
ment method we derive an a posteriori error estimate
which is used as a basis for error control and adap-
tive mesh refinement. Since we estimate the error over
the entire time interval we can use the computational
power where it is best needed. This gives us the abil-
ity to choose the level of modelling for the FEM solver
and we also believe that we will be able to solve opti-
mal control problems for more advanced vehicle mod-
els.

2 The collision avoidance man-

oeuvre

A traffic situation that presents a safety risk is defined
for the investigation. A vehicle is driven on a plane



homogeneous surface. There is an obstacle in front of
the vehicle. How shall the driver manoeuver the ve-
hicle in the best way in order to avoid collision and,
if that is not possible, minimise the collision severity?
In Figure 1 we show a picture of the steering in a col-
lision avoidance manoeuvre. The driver performs the
avoidance manoeuvre by braking and steering simul-
taneously. The manoeuver starts at time t = 0, at a
distance a from the obstacle and with velocity U0. Af-
ter the manoeuvre the car hits or passes the obstacle
at time T , with velocity UT and at distance b from the
original track.

obstacle

damage
severe 

less
severe
damage

U0

UT

t = 0

t = T
a

b

Figure 1: The collision avoidance manoeuvre

We know that the higher speed the vehicle has at
the time of collision, the more severe the accident.
Therefore we want to determine the best braking and
steering strategy to avoid collision or minimise the
speed perpendicular to the object at impact. This opti-
misation problem can be formulated as follows: given
the manoeuvre distances a and b determine the brak-
ing and steering strategy that minimises the final ve-
locity component UT .

3 Point mass vehicle dynamics

model

The driver controls the braking and steering but it is
the friction forces acting on the car tyres that makes
the vehicle move in a certain direction. For our pur-
poses, the dynamics of the vehicle due to these forces
can be modelled as a point mass [10]. We introduce
the X-axis as the direction of the original track and
the Y -axis as the axis perpendicular to the X-axis. The
equations of planar motion for the vehicle then be-
come

Ẍ = −µg cos (β) ,

Ÿ = µg sin (β) ,
(1)

where β is the angle between the X-axis and the sum
of the forces between the tyres and the road, µ is the
friction coefficient and g is the gravitational accelera-
tion.

4 Optimal control theory for the

collision avoidance manoeuvre

4.1 State-space formulation

To derive the necessary conditions of optimality, the
final speed optimal control problem is formulated in
state space by transforming differential equations (1)
to first order differential equations. The equations of
planar motion for the vehicle then become

ż =







Ẋ

Ẏ

U̇

V̇







=







U

V

−µg cos(β)
µg sin(β)







, (2)

where U and V are the velocities in the X and Y di-
rections, respectively.

We want to minimise the speed at the time of the
accident in order to reduce the damage. Therefore we
formulate an optimal control problem: Find the state
z(t) ∈ R

n and control β(t) ∈ R
m which fulfill the fol-

lowing minimisation problem

min J (z, β) = cTz (T )

s.t. ż(t) = f(z, β),

J0z(0) = z0, JT z(T ) = zT .

(3)

Here J0 and JT are diagonal matrices with zeroes or
ones on the diagonals and f is given by the right hand
side of (1) and cT = (0, 0, 1, 0).

Since this problem has a free terminal time we
transform the time interval t ∈ [0, T ] into a normalised
time interval τ ∈ [0, 1] by introducing the new inde-
pendent variable

τ =
t

T
, (4)

rewrite the equations in (3) for the new variable τ and

add the trivial equation Ṫ = 0. This results in a prob-
lem of the form (3) but with a fixed time interval.

4.2 Necessary conditions of optimality

Introducing the Hamiltonian,

H = λTf(z, β),

and then applying variational calculus [6] to (3) leads
to the following necessary conditions of optimality.



The optimal solution (z∗(t), λ∗(t), β∗(t)) fulfills the
optimality conditions

ż =
∂H

∂λ
= f(z), (5)

λ̇ = −
∂H

∂z
= −

(
∂f

∂z

)T

λ, (6)

0 =
∂H

∂β
=

(
∂f

∂β

)T

λ, (7)

the boundary conditions

J0z(0) = z0, JT z(T ) = zT , (8)

and the transversality conditions

(J − J0)λ(0) = λ0, (J − JT )λ(T ) = λT , (9)

where λ0 and λT are obtained from J . We note here
that x0 ∈ R(J0) and xT ∈ R(JT ) which means that the
components of the adjoint variable λ that have bound-
ary values are the ones complementary to the compo-
nents of x that have boundary values. To simplify the
problem we assume that the optimality condition (7)
can be solved explicitly for β∗.

4.3 Reformulating the boundary value
problem into standard form

General purpose software for treating boundary value
problems for ordinary differential equations usually
requires the problem to be reformulated into standard
form [3]. We make this conversion by joining the
states z and the costates λ into a new variable x ∈ R

d

for d = 2n, and then redefining f by merging the right
hand sides of (5) and (6). The resulting system is a two
point boundary value problem with fixed time inter-
val and separated linear boundary conditions,

ẋ = f(x),

I0x(0) = x0, IT x(1) = xT ,
(10)

where ẋ denotes the derivative of x with respect to the
new independent variable τ .

5 An adaptive finite element

method

5.1 Weak formulation

In this section we derive an adaptive finite element
method. It consists of the discretisation of the problem
with definitions of the right function spaces and an a
posteriori error estimate. We start with the so called
weak formulation. To obtain the weak formulation we
multiply (10) by a test function v ∈ V = C1([0, T ]),

integrate over the interval [0, T ] and the weak formu-
lation of the problem is: Seek x ∈ V such that

I0x(0) = x0, IT x(T ) = xT ,

F (x, v) =

T∫

0

(ẋ − f(x), v) dt = 0, ∀v ∈ V,
(11)

where (·, ·) is the Cartesian scalar product in R
d.

5.2 Discretisation of the problem

The problem in (11) is an infinite dimensional problem
which we discretise as follows to get a finite problem.
We discretise the time axis and introduce the trial and
test spaces as follows.

• Mesh: 0 = t0 < t1 < t2 < . . . < tN = T ,
hn = tn − tn−1 and In = (tn−1, tn).

• Trial space: Wh = R
d×{w : w|In

∈ P 0(In)}×R
d,

discontinuous piecewise constant functions.

• Test space: Vh =
{
v : v|In

∈ P 1(In) ∩ C0([0, T ])
}

,
continuous piecewise linear functions.

The notation P k(In) refers to the R
d-valued polyno-

mials of degree k on the interval In. We also introduce
the left and right limits w±

n = limt→t
±
n

w(t), and jumps

[w]n = w+
n −w−

n . The two factors R
d in Wh contain the

boundary values w−
0 and w+

N . Now our finite element
problem can be stated: Find a function X ∈ Wh which
fulfills

I0X
−
0 = x0, IT X+

N = xT ,

F (X, v) =
N∑

n=1

∫

In

(Ẋ − f(X), v) dt

+

N∑

n=0

([X]n , vn) = 0, ∀v ∈ Vh.

(12)

Here the definition of the form F from (11) has been
extended to include the contributions from the jump
terms which appear since we use discontinuous trial
functions. Since the trial space consists of piecewise

constant functions, Ẋ = 0. Hence, (12) results in a
system of (N + 2)d equations that have to be solved,
more precisely, d boundary conditions and (N + 1)d
equations. With boundary conditions at both ends,
the equations are coupled and thus we cannot use
time stepping and therefore the equations in the sys-
tem have to be solved simultaneously.

5.3 An a posteriori error estimate

An adaptive finite element method gives us the pos-
sibility to control the error in the numerical solution.



In order to derive an a posteriori error estimate we
introduce φ as the solution to the adjoint problem to
(10) with data functional G. We want to construct an
equation for the error, e = X − x where e ∈ W =
R

d×
{
w|In

: w ∈ C1(In)
}
×R

d, the difference between
the real and the computed solution. The details of the
a posteriori error estimate are given below.

5.3.1 Proof of the error estimate

We subtract (11) from (12),

F (X, v) − F (x, v)
︸ ︷︷ ︸

=0,∀v∈V

=

N∑

n=1

∫

In

(Ẋ − ẋ − (f(X) − f(x)), v) dt

+
N∑

n=0

([X − x]n , vn).

(13)

Since f is nonlinear we linearise f(X)−f(x) by rewrit-
ing it as follows

f(X) − f(x)

=

1∫

0

d

dθ
f(θ(X(t) − x(t)) + x(t)) dθ

=

1∫

0

Df(θ(X(t) − x(t)) + x(t)) dθ

︸ ︷︷ ︸

=A(t)

(X(t) − x(t)).

Inserting this in (13) we get

F (X, v)

=

N∑

n=1

∫

In

(Ẋ − ẋ − (f(X) − f(x)), v) dt

+

N∑

n=0

([X − x]n , vn)

=

N∑

n=1

∫

In

(ė − A(t)e, v) dt

+

N∑

n=0

([e]n , vn), ∀v ∈ V.

(14)

Since (14) is linear in both e and v we introduce a bi-
linear form to simplify the notation. The bilinear form
B is defined as

B(w, v) =

N∑

n=1

∫

In

(ẇ − A(t)w, v) dt +

N∑

n=0

([w]n , vn)

+ (I0w
−
0 , v0) − (IT w+

N , vN ), w ∈ W, v ∈ V,

(15)

Now we can write the equation for the error (14) with
the bilinear form as

e ∈ W

B(e, v) = F (X, v), ∀v ∈ V.
(16)

Partial integration of (15) gives us the backward
form of the bilinear form

B(w, v) =
N∑

n=1

∫

In

(ẇ − A(t)w, v) dt

+

N∑

n=0

([w]n , vn)

+ (I0w
−
0 , v0) − (IT w+

N , vN )

=

N∑

n=1

∫

In

(w,−v̇ − A(t)Tv) dt

− (w−
0 , (I − I0)v0) + (w+

N , (I − IT )vN ),

w ∈ W, v ∈ V.

(17)

This suggests the dual problem with arbitrary data
functional G

φ ∈ V

B(w, φ) = G(w), ∀w ∈ W.
(18)

We put v = φ in (16) and w = e in (18) to obtain

G(e) = B(e, φ) = F (X,φ), (19)

that is

G(e) = B(e, φ)

= F (X,φ) =

N∑

n=1

∫

In

(Ẋ − f(X), φ) dt

+

N∑

n=0

([X]n , φn).

(20)

Subtracting a Lagrange node interpolant φ̃ ∈ Vh from
φ in the right hand side of (20) using (12) gives us

G(e) =

N∑

n=1

∫

In

(Ẋ−f(X), φ−φ̃) dt+

N∑

n=0

([X]n , φn−φ̃n).



Hence,

|G(e)| ≤
∣
∣
∣

N∑

n=1

∫

In

(Ẋ − f(X), φ − φ̃) dt
∣
∣
∣

+
∣
∣
∣

N∑

n=0

([X]n , φn − φ̃n)
∣
∣
∣

≤

N∑

n=1

∫

In

∥
∥Ẋ − f(X)

∥
∥
∥
∥φ − φ̃

∥
∥ dt

︸ ︷︷ ︸

I

+

N∑

n=0

∥
∥ [X]n

∥
∥
∥
∥φn − φ̃n

∥
∥

︸ ︷︷ ︸

II

.

(21)

Now we have the basis for an error estimate, but we
want the method to be symmetric, meaning that we
want each interior node to contribute to the error esti-
mate on both sides of the node. To do this we rewrite
the last term II in (21) as follows

N∑

n=0

∥
∥ [X]n

∥
∥
∥
∥φn − φ̃n

∥
∥ =

∥
∥ [X]0

∥
∥
∥
∥φ0 − φ̃0

∥
∥

+
h1

h1 + h2

∥
∥ [X]1

∥
∥
∥
∥φ1 − φ̃1

∥
∥

+

N−1∑

n=2

( hn

hn + hn+1

∥
∥ [X]n

∥
∥
∥
∥φn − φ̃n

∥
∥

+
hn

hn + hn−1

∥
∥ [X]n−1

∥
∥
∥
∥φn−1 − φ̃n−1

∥
∥

)

+
hN

hN−1 + hN

∥
∥ [X]N−1

∥
∥
∥
∥φN−1 − φ̃N−1

∥
∥

+
∥
∥ [X]N

∥
∥
∥
∥φN − φ̃N

∥
∥.

(22)

At this stage we introduce the notation ‖v‖In
=

maxIn
‖v‖ for the maximum norm of a function on an

interval. Now we note that φ − φ̃ ∈ V is continuous
and the following estimates

∥
∥φn − φ̃n

∥
∥ ≤

∥
∥φ − φ̃

∥
∥

In

and
∥
∥φn − φ̃n

∥
∥ ≤

∥
∥φ− φ̃

∥
∥

In+1
hold. Using this we can

estimate the last term in (22) by

N∑

n=0

∥
∥ [X]n

∥
∥
∥
∥φn − φ̃n

∥
∥

≤

(
∥
∥ [X]0

∥
∥ +

h1

h1 + h2

∥
∥ [X]1

∥
∥

)
∥
∥φ − φ̃

∥
∥

I1

+

N−1∑

n=2

( hn

hn + hn+1

∥
∥ [X]n

∥
∥

+
hn

hn + hn−1

∥
∥ [X]n−1

∥
∥

)∥
∥φ − φ̃

∥
∥

In

+

(
hN

hN−1 + hN

∥
∥ [X]N−1

∥
∥ +

∥
∥ [X]N

∥
∥

)
∥
∥φ − φ̃

∥
∥

IN

.

(23)

The term I in (21) (where Ẋ = 0) can be estimated as
follows

N∑

n=1

∫

In

∥
∥Ẋ − f(X)

∥
∥
∥
∥φ − φ̃

∥
∥ dt

≤

N∑

n=1

hn

∥
∥Ẋ − f(X−

n )
∥
∥

In

∥
∥φ − φ̃

∥
∥

In

.

(24)

Collecting the estimates (24) and (23) we now have

|G(e)| ≤
N∑

n=1

hn

∥
∥Ẋ − f(X)

∥
∥

In

∥
∥φ − φ̃

∥
∥

In

+

(
∥
∥ [X]0

∥
∥ +

h1

h1 + h2

∥
∥ [X]1

∥
∥

)
∥
∥φ − φ̃

∥
∥

I1

+

N−1∑

n=2

( hn

hn + hn+1

∥
∥ [X]n

∥
∥

+
hn

hn + hn−1

∥
∥ [X]n−1

∥
∥

)∥
∥φ − φ̃

∥
∥

In

+
( hN

hN−1 + hN

∥
∥ [X]N−1

∥
∥

+
∥
∥ [X]N

∥
∥

)∥
∥φ − φ̃

∥
∥

IN

.

According to [5] we have the following error bound

for the interpolant, φ̃,

∥
∥
∥φ − φ̃

∥
∥
∥

In

≤ Chn

∫

In

∥
∥
∥φ̈

∥
∥
∥ dt.

With

R1 = h1

∥
∥Ẋ − f(X)

∥
∥

I1

+ h1

∥
∥ [X]n−1

∥
∥ +

h1

h1 + h2

∥
∥ [X]1

∥
∥,

Rn = hn

∥
∥Ẋ − f(X)

∥
∥

In

+
hn

hn + hn+1

∥
∥ [X]n

∥
∥

+
hn

hn + hn−1

∥
∥ [X]n−1

∥
∥, n = 2, . . . , N − 1,

RN = hN

∥
∥Ẋ − f(X)

∥
∥

IN

+

hN

hN−1 + hN

∥
∥ [X]N−1

∥
∥ +

∥
∥ [X]n

∥
∥,

and

In = Chn

∫

In

∥
∥
∥φ̈

∥
∥
∥ dt,

we can write the error estimate as

|G(e)| ≤
N∑

n=1

RnIn, (25)



where e = X − x is the error and Rn is essentially

the residual, Ẋ − f(X), expressing how well the dif-
ferential equation is satisfied by the numerical solu-
tion. The weights In depend on the solution to the
adjoint problem, φ, and express the sensitivity of the
error quantity G(e) to the local residuals. The func-
tional G is chosen to be the quantity in which we want
to measure the error, for example, G(e) = e

‖e‖ . The

error resulting from approximate nonlinear equation
solver is small compared to the error resulting from
the discretisation and is therefore neglected in this es-
timate. Checking which intervals give large contribu-
tions to the error estimate (25), we can refine the inter-
vals where the contributions are large and vice versa.
Using (25) we obtain an adaptive procedure where we
refine those intervals that give large contributions to
the estimate and vice versa, see below.

5.4 Implementation

The finite element discretisation of (10) results in the
system (12) to be solved. Since we have boundary con-
ditions at both ends it is a coupled system of equations
that we have to solve simultaneously. The system is
also nonlinear and the nonlinearity is handled using
a damped Newton method [7] to extend the conver-
gence region. The initial guess is decided by a homo-
topy process [3]. Once a solution is calculated the er-
ror estimate above is computed. Then we apply the
criterion ∑

n=1

RnIn ≤ δ,

where δ is a given tolerance. If the error is too large
compared to the tolerance an iteration is made over
the intervals and the mesh is refined where the error
is large. New nodes are inserted according to the prin-
ciple of equidistribution, that is, we want to insert nodes
such that the contribution to the error is the same from
each time interval. A new solution is calculated on the
refined mesh and so on until the solution has reached
the desired accuracy. In theory the mesh can also be
coarsened but we have not implemented this.

The error estimate is dependent of the solution to
the dual problem. We need to approximate the un-
known data G(e) = e

‖e‖ to solve the dual problem nu-

merically. We do this by a Richardson extrapolation
using twice the number of nodes. Then the dual prob-
lem is solved with the finite element method.

The solver is a prototype solver and it has been im-
plemented in Matlab. More information regarding the
implementation can be found in [2].

6 Results

The indirect approach to our optimal control problem
results in a boundary value problem. This makes it

possible to compare our new approach to the bound-
ary value solver bvp4c in Matlab [11]. In Table 1 we
can see the results from various choices of the ma-
noeuvre distances a and b. We have used the same
initial velocity u0 = 90 km/h and constant friction µ

for all cases. We can see that the FEM code is almost
always about three times slower than bvp4c but it al-
ways uses fewer nodes. There is also a remarkable
case where bvp4c solves the problem in about 30 sec-
onds and with 3415 nodes compared to 1.3 seconds
and 21 nodes for the finite element solver. The prob-
lem becomes difficult to solve but our FEM solver per-
forms well, maybe due to the adaptivity. There is also
one problem that the finite element solver can solve
but bvp4c cannot.

In some cases where bvp4c finds a solution the
FEM solver seems to compute the wrong one, maybe
by missing a singularity. On the other side of the sin-
gularity it continues on another solution. Some results
about existence and uniqueness of solutions to bound-
ary value problems can be found in [7] and [9]. This
aspect of our solver is something that we have to in-
vestigate further.

Figure 2 and 3 show some results from the case
with initial velocity u0 = 90 km/h (25 m/s) and the
manoeuvre distances a = 50 m and b = 8 m. We see
in the figures that the solutions from the FEM solver
and bvp4c coincide. The final velocity is 53.32 km/h
from bvp4c and 53.37 km/h from the FEM solver.

FEM FEM bvp4c bvp4c
a [m] b [m] CPU [s] nodes CPU [s] nodes

40 6 2.54 15 0.27 25
50 9 1.59 90 0.36 41
50 8 0.61 10 0.24 28
50 5 0.52 10 0.27 37
50 3 1.45 10 - -
60 8 1.45 21 18.39 1287
60 6 1.46 10 0.63 81
60 5 3.45 10 3.06 286

Table 1: Performance of the FEM solver and bvp4c
measured in CPU time and number of nodes for dif-
ferent combinations of manoeuvre distances.
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Figure 2: The optimal velocities in the X and Y -
directions for the manoeuvre distances a = 50 m and
b = 8 m.
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Figure 3: The position of the vehicle when it is ma-
noeuvered in the optimal way for the manoeuvre dis-
tances a = 50 m and b = 8 m.

7 Conclusion

In this article we have presented an adaptive finite
element method for solving optimal control in vehi-
cle dynamics. Modelling the vehicle as a point mass,
we obtain a system of ordinary differential equations
which is solved, together with the constraints im-
posed by the manoeuvre, using the adaptive finite ele-
ment method. With this approach, we can control the
error and concentrate our resources to the most sensi-
tive parts of the computations.

We have compared the finite element method to
the Matlab solver bvp4c and found that there are
at least some cases where our solver outperforms
bvp4c. It is noteworthy that in all studied cases, our
method uses fewer nodes to find the same solution. At

the moment the finite element solver is slower than
bvp4c, but up to this point no extra effort has been
put in optimising the code. Thus, it is expected that
the computation time can be reduced by a more effi-
cient implementation. Further, these comparisions are
very preliminary, since the accuracies of both methods
depend on error tolerances that are not directly com-
parable. We are not sure that the settings are equal.
Still, since the quality of the solutions have been sim-
ilar throughout our computations, we feel confident
that our comparision is reasonable.

We have also noted that our solver is sensitive to
the initial guess. If we give the solver a poor initial
guess for some component, it may fail to solve the
problem or show a dramatical increase in computa-
tion time. To make the solver more useful we have to
make it more robust to poor initial guesses.

The model used in this article may look simple.
However, when it comes to evaluation of combined
steering and braking versus braking and then steer-
ing, the behaviour of this model gives insights into
the behaviour of the more realistic vehicle models and
manoeuvres we will consider. In our future work we
also intend to compare the performance of our indi-
rect approach to the direct approach.
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