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Abstract. This work focuses on numerical solutions of optimal control problems. A time
discretization error representation is derived for the approximation of the associated value function.
It concerns Symplectic Euler solutions of the Hamiltonian system connected with the optimal control
problem. The error representation has a leading order term consisting of an error density that is
computable from Symplectic Euler solutions. Under an assumption of the pathwise convergence of
the approximate dual function as the maximum time step goes to zero, we prove that the remainder
is of higher order than the leading error density part in the error representation. With the error
representation, it is possible to perform adaptive time stepping. We apply an adaptive algorithm
originally developed for ordinary differential equations. The performance is illustrated by numerical
tests.
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1. Introduction. In this work, we will present an asymptotic a posteriori error
estimate for optimal control problems. The estimate consists of a term that is a
posteriori computable from the solution, plus a remainder that is of higher order.
It is the main tool for construction of adaptive algorithms. We present and test
numerically one such algorithm.

The optimal control problem is to minimize the functional∫ T

0

h(X(t), α(t)) dt+ g(X(T )), (1.1)

with given functions h : Rd × B → R and g : Rd → R, with respect to the state
variable X : [0, T ]→ Rd and the control α : [0, T ]→ B, with control set, B, a subset
of some Euclidean space, Rd′ , such that the ODE constraint,

X ′(t) = f(X(t), α(t)), 0 < t ≤ T,
X(0) = x0,

(1.2)

is fulfilled. This optimal control problem can be solved (globally) using the Hamilton-
Jacobi-Bellman (HJB) equation

ut +H(x, ux) = 0, x ∈ Rd, 0 ≤ t < T,

u(·, T ) = g(·), x ∈ Rd,
(1.3)
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with ut and ux denoting the time derivative and spatial gradient of u, respectively,
and the Hamiltonian, H : Rd × Rd → R, defined by

H(x, λ) := min
α∈B

{
λ · f(x, α) + h(x, α)

}
, (1.4)

and value function

u(x, t) := inf
X:[t,T ]→Rd, α:[t,T ]→B

{∫ T

t

h(X(s), α(s)) ds+ g(X(T ))

}
, (1.5)

where

X ′(s) = f(X(s), α(s)), t < s ≤ T,
X(t) = x.

The global minimum to the optimal control problem (1.1)-(1.2) is thus given by
u(x0, 0).

If the Hamiltonian is sufficiently smooth, the bi-characteristics to the HJB equa-
tion (1.3) are given by the following Hamiltonian system:

X ′(t) = Hλ(X(t), λ(t)), 0 < t ≤ T,
X(0) = x0,

−λ′(t) = Hx(X(t), λ(t)), 0 ≤ t < T,

λ(T ) = gx(X(T )),

(1.6)

where Hλ, Hx, and gx denote gradients with respect to λ and x, respectively, and the
dual variable, λ : [0, T ]→ Rd, satisfies λ(t) = ux(X(t), t) along the characteristic.

In Section 2, we present an error representation for the following discretization of
(1.6), which is used as a cornerstone for an adaptive algorithm. It is the Symplectic
(forward) Euler method:

Xn+1 −Xn = ∆tnHλ(Xn, λn+1), n = 0, . . . , N − 1,

X0 = x0,

λn − λn+1 = ∆tnHx(Xn, λn+1), n = 0, . . . , N − 1,

λN = gx(XN ),

(1.7)

with 0 = t0 < t1 < . . . < tN = T , ∆tn := tn+1 − tn, and Xn, λn ∈ Rd. An alternative
approach uses the dual weighted residual method, see [4, 1], to adaptively refine finite
element solutions of the Euler-Lagrange equation associated with the optimal control
problem, see [7, 9, 8].

The adaptive algorithm in Section 2 uses a Hamiltonian that is of C2 regularity.
In [14, 13] first-order convergence of the so-called Symplectic Pontryagin method, a
Symplectic Euler scheme (1.7) with a regularized Hamiltonian Hδ replacing H, is
shown. The Symplectic Pontryagin scheme works in the more general optimal control
setting where the Hamiltonian is non-smooth. It uses the fact that if u and uδ are
the solutions to the Hamilton-Jacobi equation (1.3) with the original (possibly non-
smooth) Hamiltonian H, and the regularized Hamiltonian, Hδ, then∥∥u− uδ∥∥

L∞([0,T ]×Rd)
≤ T

∥∥H −Hδ
∥∥
L∞(Rd×Rd)

= O(δ), (1.8)
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if
∥∥H −Hδ

∥∥
L∞(Rd×Rd)

= O(δ). Equation (1.8) is a direct consequence of the maxi-

mum principle for viscosity solutions to Hamilton-Jacobi equations, see e.g., [2, 5, 3].
For the error representation result in Theorem 2.4, we need C2 regularity of H. A
possibility to use this error representation to find a solution adaptively in the case
where the Hamiltonian is non-differentiable, is to add the error from the time dis-
cretization (the TOL in Theorem 2.8) when the adaptive algorithm 2.6 is used with a
regularized Hamiltonian, Hδ, to the error O(δ), in (1.8). We show in Section 3 that
this method works well for a test case in which the Hamiltonian is non-differentiable.
Even though it works well in the cases we have studied, it is difficult to justify this
method theoretically. This is because the size of the remainder term in Theorem
2.4 depends on the size of the second-order derivatives of the Hamiltonian, H, which
typically are of order δ−1 when a regularized Hδ is used.

Remark 1.1 (Time-dependent Hamiltonian). The analysis in this paper is pre-
sented for the optimal control problem (1.1), (1.2), i.e., the case where the running
cost, h, and the flux, f , have no explicit time dependence. The more general situation
with explicit time dependence, to minimize∫ T

0

h(t,X(t), α(t)) dt+ g(X(T )),

for α ∈ B such that the constraint

X ′(t) = f(t,X(t), α(t)), 0 < t ≤ T,
X(0) = x0,

is fulfilled, can be put in the form (1.1), (1.2) by introducing a state variable, s(t) = t,
for the time dependence, i.e., to minimize∫ T

0

h(s(t), X(t), α(t)) dt+ g(X(T )),

such that the constraint

X ′(t) = f(s(t), X(t), α(t)), 0 < t ≤ T,
s′(t) = 1, 0 < t ≤ T,
X(0) = X0,

s(0) = 0,

is fulfilled. The Hamiltonian then becomes

H(x, s, λ1, λ2) := min
α∈B

{
λ1 · f(x, α, s) + λ2 + h(x, α, s)

}
,

where λ1 is the dual variable corresponding to X, while λ2 corresponds to s.

2. Error estimation and adaptivity. In this section, we present an error
representation for the Symplectic Euler scheme in Theorem 2.4. With this error
representation, it is possible to build an adaptive algorithm (alg. 2.6). The error
representation in Theorem 2.4 concerns approximation of the value function, u, defined
in (1.5). To define an approximate value function, ū, we need the following definition
of a running cost, a Legendre-type transform of the Hamiltonian:

L(x, β) = sup
λ∈Rd

(
− β · λ+H(x, λ)

)
, (2.1)
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for all x and β in Rd. The running cost function is convex in its second argument and
extended valued, i.e., its values belong to R∪{+∞}. If the Hamiltonian is real-valued
and concave in its second variable, it is possible to retrieve it from L:

H(x, λ) = inf
β∈Rd

(
λ · β + L(x, β)

)
. (2.2)

This is a consequence of the bijectivity of the Legendre-Fenchel transform, see [6, 13].
We now define a discrete value function:

ū(y, tm) := inf
{
J(y,tm)(βm, . . . , βN−1)|βm, . . . , βN−1 ∈ Rd

}
, (2.3)

where

J(y,tm)(βm, . . . , βN−1) :=

N−1∑
n=m

∆tnL(Xn, βn) + g(XN ), (2.4)

and

Xn+1 = Xn + ∆tnβn, for m ≤ n ≤ N − 1,

Xm = y.
(2.5)

The appearance of a discrete path denoted {Xn} in both the Symplectic Euler scheme
(1.7) and in the definition of ū in (2.5) is not just a coincidence. The following
theorem, taken from [13], shows that to the minimizing path {Xn} in the definition
of ū corresponds a discrete dual path {λn}, such that {Xn, λn} solves the Symplectic
Euler scheme (1.7). For the statement and proof of Theorem 2.3 we need the following
definitions.

Definition 2.1. Let S be a subset of Rd. We say that a function f : S → R is
semiconcave if there exists a nondecreasing upper semicontinuous function ω : R+ →
R+ such that limρ→0+ ω(ρ) = 0 and

wf(x) + (1− w)f(y)− f
(
wx+ (1− w)y

)
≤ w(1− w)|x− y|ω(|x− y|)

for any pair x, y ∈ S, such that the segment [x, y] is contained in S and for any
w ∈ [0, 1]. We say that f is locally semiconcave on S if it is semiconcave on every
compact subset of S. There exist alternative definitions of semiconcavity, see [5], but
this is the one used in this paper.

Definition 2.2. An element p ∈ Rd belongs to the superdifferential of the
function f : Rd → R at x, denoted D+f(x), if

lim sup
y→x

f(y)− f(x)− p · (y − x)

|y − x|
≤ 0.

Theorem 2.3. Let y be any element in Rd, and g : Rd → R a locally semiconcave
function such that g(x) ≥ −k(1 + |x|), for some constant k, and all x ∈ Rd. Let the
Hamiltonian H : Rd × Rd → R satisfy the following conditions:

• H is differentiable everywhere in Rd × Rd.
• Hλ(·, λ) is locally Lipschitz continuous for every λ ∈ Rd.
• Hx is continuous everywhere in Rd × Rd.
• There exists a convex, nondecreasing function µ : [0,∞) → R and positive

constants A and B such that

−H(x, λ) ≤ µ(|λ|) + |x|(A+B|λ|) for all (x, λ) ∈ Rd × Rd. (2.6)
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• H(x, ·) is concave for every x ∈ Rd.
Let L be defined by (2.1). Then, there exists a minimizer (βm, . . . , βN−1) of the
function J(y,tm) in (2.4). Let (Xm, . . . , XN ) be the corresponding solution to (2.5).
Then, for each λN ∈ D+g(XN ), there exists a discrete dual path (λm, . . . , λN−1), that
satisfies

Xn+1 = Xn + ∆tnHλ(Xn, λn+1), for all m ≤ n ≤ N − 1,

Xm = y

λn = λn+1 + ∆tnHx(Xn, λn+1), for all m ≤ n ≤ N − 1.

(2.7)

Hence,

βn = Hλ(Xn, λn+1) (2.8)

for all m ≤ n ≤ N − 1.
The proof of Theorem 2.3 from [13] is reproduced in the appendix.
With the correspondence between the Symplectic Euler scheme and discrete min-

imization in Theorem 2.3, we are now ready to formulate the error representation
result. We will use the terminology that a function is bounded in Ck if it belongs to
Ck and has bounded derivatives of order less than or equal to k.

Theorem 2.4. Assume that all conditions in Theorem 2.3 are satisfied, that the
Hamiltonian, H, is bounded in C2(Rd × Rd), and that there exists a constant, C,
such that for every discretization {tn} the difference between the discrete dual and the
gradient of the value function is bounded as

|λn − ux(Xn, tn)| ≤ C∆tmax,

where ∆tmax := maxn ∆tn. Assume further that either of the following two conditions
holds:

1. The value function, u, is bounded in C3((0, T )× Rd).
2. There exists a neighborhood in C([0, T ],Rd) around the minimizer X : [0, T ]→

Rd of u(x0, 0) in (1.5) in which the value function, u, is bounded in C3. More-
over, the discrete solutions {Xn} converge to the continuous solution X(t) in
the sense that

max
n
|Xn −X(tn)| → 0, as ∆tmax → 0.

If Condition 1 holds, then for every discretization {tn}, the error ū(x0, 0)−u(x0, 0)
is given as

ū(x0, 0)− u(x0, 0) =

N−1∑
n=0

∆t2nρn +R, (2.9)

with density

ρn := −Hλ(Xn, λn+1) ·Hx(Xn, λn+1)

2
(2.10)

and the remainder term, |R| ≤ C ′∆t2max, for some constant C ′.
If Condition 2 holds, then there exists a threshold time step, ∆tthres, such that

for every discretization with ∆tmax ≤ ∆tthres the error representation (2.9) holds.
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Remark 2.5. In the proof of the theorem, we show that equation (2.9) is satisfied
with the error density

ρ̃n :=
H(Xn, λn+1)

∆tn
− H(Xn, λn) +H(Xn+1, λn+1)

2∆tn

+
λn − λn+1

2
· Hλ(Xn, λn+1)

∆tn

(2.11)

replacing ρn. Under the assumption that the Hamiltonian, H, is bounded in C2,
we have that |ρn − ρ̃n| = O(∆tn). This follows by Taylor expansion and by using
that {Xn, λn} solves the Symplectic Euler scheme (1.7). Hence, the theorem holds
also with the error density ρn. An advantage of ρn is that it is given by a simple
expression. The error density ρ̃n has the advantage that it is the one that is obtained
in the proof, and then ρn is derived from it. One could therefore expect that ρ̃n would
give a slightly more accurate error representation. Moreover, ρ̃n is directly computable
(as is ρn) once a solution {Xn, λn} has been computed.

Proof. By Theorem 2.3, the error can be expressed as

(ū− u)(x0, 0) =

N−1∑
n=0

∆tnL(Xn, βn) + g(XN )− u(x0, 0), (2.12)

where

g(XN ) = u(XN , T ), βn = Hλ(Xn, λn+1).

Define the piecewise linear function X̄(t) to be

X̄(t) = Xn + (t− tn)Hλ(Xn, λn+1), t ∈ (tn, tn+1), n = 0, . . . , N − 1.

If Condition 2 in the theorem holds, we now assume that ∆tmax is small enough,
such that the path X̄(t) belongs to the neighborhood of X(t) in C([0, T ],Rd) where
the value function belongs to C3. If Condition 1 holds, the following analysis is also
valid, without restriction on ∆tmax. From (2.12) and the Hamilton-Jacobi-Bellman
equation, we have

(ū− u)(x0, 0) =

N−1∑
n=0

∆tnL(Xn, βn) + u(XN , T )− u(x0, 0)

=

N−1∑
n=0

∆tnL(Xn, βn) +

∫ T

0

d

dt
u(X̄(t), t) dt

=

N−1∑
n=0

∫ tn+1

tn

L(Xn, βn) dt

+

N−1∑
n=0

∫ tn+1

tn

ut(X̄(t), t) + ux(X̄(t), t) ·Hλ(Xn, λn+1) dt.

(2.13)

By (2.1) and (2.8) we have

H(Xn, λn+1) = λn+1 ·Hλ(Xn, λn+1) + L(Xn, βn),
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which together with the Hamilton-Jacobi equation

ut(X̄(t), t) = −H
(
X̄(t), ux(X̄(t), t)

)
implies that the error can be written as

(ū− u)(x0, 0) =

N−1∑
n=0

∫ tn+1

tn

H(Xn, λn+1)−H(X̄(t), ux(X̄(t), t)) dt

+

N−1∑
n=0

∫ tn+1

tn

(
ux(X̄(t), t)− λn+1

)
·Hλ(Xn, λn+1) dt

=:

N−1∑
n=0

En.

(2.14)

By the boundedness of the Hamiltonian, H, in C2 and the value function, u, in C3,
it follows that the trapezoidal rule can be applied to the integrals in (2.14) with an
error of order ∆t3n. Hence, we obtain that

En = ∆tn

(
H(Xn, λn+1)− H(Xn, ux(Xn, tn)) +H(Xn+1, ux(Xn+1, tn+1))

2

)
+ ∆tn

(ux(Xn, tn) + ux(Xn+1, tn+1)

2
− λn+1

)
·Hλ(Xn, λn+1) + R̄n

(2.15)

with remainder R̄n = O(∆t3n).
What remains for us to show is that we can exchange the gradient of the contin-

uous value function, u, in (2.15) with the discrete dual, λn, with an error bounded by
∆t2max. We write this difference using the error density, ρ̃n, from (2.11):

∆t2nρ̃n−En = −∆tn
2

(
H(Xn, λn)−H(Xn, ux(Xn, tn))

)
− ∆tn

2

(
H(Xn+1, λn+1)−H(Xn+1, ux(Xn+1, tn+1))

)
+

∆tn
2

(
λn − ux(Xn, tn) + λn+1 − ux(Xn+1, tn+1)

)
·Hλ(Xn, λn+1)− R̄n

=
∆tn

2

(
−EIn − EIn+1 + (ξn + ξn+1) ·Hλ(Xn, λn+1

)
− R̄n,

where

EIn := H(Xn, λn)−H(Xn, ux(Xn, tn)) = Hλ(Xn, λn) · ξn +O
(
|ξn|2

)
,

ξn := λn − ux(Xn, tn).

Further Taylor expansion gives the difference

EIn − ξn ·Hλ(Xn, λn+1) =
(
Hλ(Xn, λn)−Hλ(Xn, λn+1)

)
· ξn +O

(
|ξn|2

)
= O

(
∆tn|ξn|+ |ξn|2

)
= O

(
∆t2max

)
,

and similarly

EIn+1 − ξn+1 ·Hλ(Xn, λn+1) = O
(

∆t2max

)
.
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Finally, summing the difference ∆t2nρ̃n−En over n = 0, . . . , N −1 gives, together
with the above Taylor expansions, the bound |R| ≤ C∆t2max in the theorem.

In what follows, we formulate an adaptive algorithm (2.6) and three theorems
(2.7–2.9) on its performance. These are all taken from [11] more or less directly.
Since the proofs are practically unchanged, they are not repeated here.

Algorithm 2.6 (Adaptivity). Choose the error tolerance TOL, the initial grid
{tn}Nn=0, the parameters s and M , and repeat the following points:

1. Calculate {(Xn, λn)}Nn=0 with the symplectic Euler scheme (1.7).
2. Calculate error densities {ρn}N−1

n=0 and the corresponding approximate error
densities

ρ̄n := sgn(ρn) max(|ρn| ,K
√

∆tmax).

3. Break if

max
n

r̄n <
TOL

N

where the error indicators are defined by r̄n := |ρ̄n|∆t2n.
4. Traverse through the mesh and subdivide an interval (tn, tn+1) into M parts

if

r̄n > s
TOL

N
.

5. Update N and {tn}Nn=0 to reflect the new mesh.
The goal of the algorithm is to construct a partition of the time interval [0, T ]

such that

r̄n ≈
TOL

N
,

for all n. The constant s < 1 is present in order to achieve a substantial reduction of
the error, described further in Theorem 2.7. The constant K in the algorithm should
be chosen small (relative to the size of the solution). In the numerical experiments
presented in Section 3, we use K = 10−6.

Let ∆t(t)[k] be defined as the piecewise constant function that equals the local
time step

∆t(t) = ∆tn, if t ∈ [tn, tn+1),

on mesh refinement level k. As in [11], we have that

lim
TOL→0+

max
t

∆t(t)[J ] = 0,

where mesh J is the finest mesh where the algorithm stops. By the assumptions on
the convergence of the approximate paths {Xn, λn}, it follows that there exists a limit

|ρ̄| → |ρ̃| , as max ∆t→ 0.

We introduce a constant, c = c(t), such that

c ≤
∣∣∣∣ ρ̄(t)[parent(n, k)]

ρ̄(t)[k]

∣∣∣∣ ≤ c−1,

c ≤
∣∣∣∣ ρ̄(t)[k − 1]

ρ̄(t)[k]

∣∣∣∣ ≤ c−1,

(2.16)
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holds for all time steps, t ∈ ∆tn[k], and all refinement levels, k. Here, parent(n, k)
means the refinement level where a coarser interval was split into a number of finer
subintervals of which ∆tn[k] is one. Since |ρ̄| converges as TOL→ 0 and is bounded
away from zero, c will be close to 1 for sufficiently fine meshes.

Theorem 2.7. [Stopping] Assume that c satisfies (2.16) for the time steps cor-
responding to the maximal error indicator on each refinement level, and that

M2 > c−1, s ≤ c

M
. (2.17)

Then, each refinement level either decreases the maximal error indicator with the
factor

max
n

r̄n[k + 1] ≤ c−1

M2
max
n

r̄n[k],

or stops the algorithm.
The inequalities in (2.17) give (at least in principle) an idea how to determine

the parameters M and s. When the constant, c = c(t), has been determined approxi-
mately, say after one or a few refinements, M can be chosen using the first inequality
and then s can be chosen using the other.

Theorem 2.8. [Accuracy] The adaptive Algorithm 2.6 satisfies

lim sup
TOL→0+

(
TOL−1 |u(x0, 0)− ū(x0, 0)|

)
≤ 1.

Theorem 2.9. [Efficiency] Assume that c = c(t) satisfies (2.16) for all time
steps at the final refinement level, and that all initial time steps have been divided
when the algorithm stops. Then, there exists a constant, C > 0, bounded by M2s−1,
such that the final number of adaptive steps, N , of the Algorithm 2.6, satisfies

TOL N ≤ C
∥∥∥ ρ̄
c

∥∥∥
L

1
2

≤ ‖ρ̄‖
L

1
2

max
0≤t≤T

c(t)−1,

and ‖ρ̄‖
L

1
2
→ ‖ρ̃‖

L
1
2

asymptotically as TOL→ 0+.

Remark 2.10. Note that the optimal number Na of non-constant (i.e., adaptive)
time steps to have the error

∑
n ∆t2nρ̄n smaller than TOL satisfies TOLNa ≈ ‖ρ̄‖L1/2 ,

see [11], while the number of uniform time steps Nu required satisfies TOLNu ≈ ‖ρ̄‖L1 .

Remark 2.11. It is natural to use adaptivity when optimal control problems are
solved using the Hamiltonian system (1.6). Since it is a coupled ODE system with
a terminal condition linking the primal and dual functions, it is necessary to solve
using some iterative method. When an initial guess is to be provided to the iterative
method, it is natural to interpolate a solution obtained on a coarser mesh. Solutions
on several meshes therefore need be computed, as is the case when adaptivity is used.

3. Numerical examples. In this section, we consider three numerical exam-
ples. The first is an optimal control problem that satisfies the assumption of a C2

Hamiltonian in Theorem 2.4. The second is a problem in which the Hamiltonian is
non-differentiable, and hence does not fulfill the smoothness assumption of Theorem
2.4. We investigate the influence of a regularization of the Hamiltonian. The third
example is a problem in which the controlled ODE has an explicit time dependence
with a singularity.
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We will compare the work and error for the adaptive mesh refinement in Algorithm
2.6 with that of uniform mesh refinement. The work is represented by the cumulative
number of time steps on all refinement levels, and the error is represented by either
an estimation of the true error, using the value function from the finest unform mesh
as our true solution, or estimating the error by

E :=

∣∣∣∣∣
N−1∑
n=1

ρ̄n∆t2n

∣∣∣∣∣ , (3.1)

using the approximate error densities,

ρ̄n := sgn(ρn) max(|ρn| , 10−6
√

∆tmax).

In all examples, we let s = 0.25 and M = 2 (since c ≈ 1). On each mesh, the
discretized Hamiltonian system (1.7) is solved with MATLAB’s FSOLVE routine, with
default parameters and a user-supplied Jacobian, and using the solution from the
previous mesh as a starting guess.

Example 3.1 (Hyper-sensitive optimal control). This is a version of Example
6.1 in [8] and Example 51 in [12]. Minimize∫ 25

0

(
X(t)2 + α(t)2

)
dt+ γ(X(25)− 1)2,

subject to

X ′(t) = −X(t)3 + α(t), 0 < t ≤ 25,

X(0) = 1,

for some large γ > 0. The Hamiltonian is then given by

H(x, λ) := min
α

{
−λx3 + λα+ x2 + α2

}
= −λx3 − λ2/4 + x2.

First, we run the adaptive algorithm with tolerance, TOL, leading to the es-
timated error, Eadap. Finally, the problem is rerun using uniform refinement with
stopping criteria, Eunif ≤ Eadap.

Figure 3.1 shows the solution and final mesh when computed with the adaptive
Algorithm 2.6. Figure 3.2 shows the error density and error indicator, while Figure 3.3
gives a comparison between the error estimate from equation (3.1) with an estimate of
the error using a uniform mesh solution with a small step size as a reference. Figure
3.4 shows error estimates versus computational work as the cumulative number of
time steps.

The error representation in Theorem 2.4 concerns approximation of the value
function when the Symplectic Euler scheme is used with a C2 Hamiltonian. In general,
the minimizing α in the definition of the Hamiltonian (1.4) depends discontinuously on
x and λ, which most probably leads to a non-differentiable Hamiltonian. In Example
3.2 we consider a simple optimal control problem with an associated Hamiltonian that
is non-differentiable. We denote by Hδ a C2 regularization of the Hamiltonian, H,
such that ∥∥H −Hδ

∥∥
L∞(Rd×Rd)

= O(δ).
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Fig. 3.1. The solution, X, control, α, dual, λ, and mesh, ∆t, for the hyper-sensitive optimal
control problem in Example 3.1, with γ = 106 and TOL = 10−2.
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Fig. 3.2. Error densities, |ρ̄n|, and error indicators, r̄n, for the hyper-sensitive optimal control
problem in Example 3.1. The solid and dotted lines correspond to solutions with adaptive and
uniform time stepping, respectively.
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Fig. 3.3. Error estimates for the hyper-sensitive optimal control problem in Example 3.1. The
solid line indicates the error estimate in (3.1), and the dotted line indicates the difference between
the value function and the value function using a fine uniform mesh with 51200 time steps. The
error estimate from (3.1) for the uniform mesh is approximately as large as the estimate for the
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Fig. 3.4. Error estimates for the hyper-sensitive optimal control problem in Example 3.1 using
(3.1), versus the cumulative number of time steps on all refinement levels for the adaptive algorithm
(solid) and uniform meshes (dotted). The number of time steps in the uniform meshes is doubled
in each refinement.

Since the remainder term in Theorem 2.4 contains second-order derivatives of the
Hamiltonian, which are of order δ−1 if a regularization Hδ is used, it could be expected
that an estimate of the error using the error density term

N−1∑
n=0

∆t2nρn (3.2)
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Fig. 3.5. The true error (solid) and error estimation using (3.2) (dotted) for the simple optimal
control problem in Example 3.2 with regularization parameter δ = 10−10.

in (2.9) would be imprecise. However, the solution of Example 3.2 suggests that the
approximation of the error in (3.2) might be accurate even in cases where regulariza-
tion is needed and the regularization parameter, δ, is chosen to be small.

Example 3.2 (A simple optimal control problem). Minimize∫ 1

0

X(t)10 dt, (3.3)

subject to

X ′(t) = α(t) ∈ [−1, 1], 0 < t ≤ T,
X(0) = 0.5.

The Hamiltonian is then non-smooth:

H(x, λ) := min
α∈[−1,1]

{
λα+ x10

}
= − |λ|+ x10,

but can be regularized by

Hδ(x, λ) := −
√
λ2 + δ2 + x10,

for some small δ > 0.
The exact solution, without regularization, is X(t) = (0.5− t) for t ∈ [0, 0.5] and

X(t) = 0 elsewhere, with control α(t) = −1 for t ∈ [0, 0.5] and α(t) = 0 elsewhere.
This gives the optimal value of the cost functional (3.3) (the value function) to be
0.511/11.

In Figure 3.5, a comparison is made between the error estimate,
∑N−1
n=0 ∆t2nρn,

and the true error. It seems clear that the error estimate converges to the true error
as ∆t→ 0. In this numerical test, the regularization parameter, δ = 10−10, and hence
the part of the error from the regularization is negligible.
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Example 3.3 (A singular optimal control problem). This example is based on
the singular ODE example in [11], suitable for adaptive refinement. Consider the
optimal control problem to minimize∫ 4

0

(
α(t)−X(t)

)2
dt+

(
X(4)−Xref(4)

)2
(3.4)

under the constraint

X ′(t) =
α(t)(

(t− t0)2 + ε2
)β/2 ,

X(0) = Xref(0),

where t0 = 5/3. The reference Xref(t) solves

X ′ref(t) =
Xref(t)(

(t− 5/3)2 + ε2
)β/2

and is given explicitly by

Xref(t) = exp
( t− t0

εβ
2F1(

1

2
,
β

2
,

3

2
;− (t− t0)2

ε2
)
)
,

where 2F1 is the hypergeometric function.
The unique minimizer to (3.4) is therefore given by X(t) = α(t) = Xref(t) for

all t ∈ [0, 4]. Since Example (3.3) has running cost h and flux f with explicit time
dependence, we introduce an extra state dimension, s(t) = t, as in Remark 1.1. The
Hamiltonian is then given by

H(x, s;λ1, λ2) =
λ1x(

(s− t0)2 + ε2
)β/2 − λ2

1

4
(
(s− t0)2 + ε2

)β + λ2,

where λ2 is the dual corresponding to s.
Although the Hamiltonian is a smooth function, the problem is a regularization

of a controlled ODE with a singularity,

X ′(t) =
α(t)

|t− t0|β
,

and if the regularization parameter, ε, is small, the remainder term in Theorem 2.4
will be large unless the time steps are very small. As the minimum value of the
functional in (3.4) is zero (attained for α = X = Xref), it is immediately clear what
the error in this functional is for a numerical simulation. Figure 3.6 shows errors for
adaptive and uniform time stepping versus the total number of time steps, and Figure
3.7 shows the dependence of the mesh size on the time parameter.

4. Conclusions. We have presented an a posteriori error representation for op-
timal control problems with a bound for the remainder term. With the error repre-
sentation, it is possible to construct adaptive algorithms, and we have presented and
tested one such algorithm here. The error representation theorem assumes that the
Hamiltonian associated with the optimal control problem belongs to C2. As many op-
timal control problems have Hamiltonians that are only Lipschitz continuous, this is a
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Fig. 3.7. Mesh size versus time for the singular optimal control problem in Example 3.3. The
regularization paramaters are ε = 10−10 and β = 3/4.

serious restriction. We have illustrated with a simple test example that C2 smoothness
may not be necessary. To justify this rigorously remains an open problem.

Appendix. Proof of Theorem 2.3. Step 1. We show here that there exist a
constant K, and a continuous function S : [0,∞)→ R, such that lims→∞ S(s) =∞,
and

L(x, β) ≥ (|β| −B|x|)+S
(
(|β| −B|x|)+

)
−K(1 + |x|), (A.1)
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where y+ = max{y, 0}. We will show (A.1) with K = max{µ(0), A} and S defined by

S(ξ) =

∫ ξ

0

∣∣{χ : µ′(χ) ≤ t, χ ≥ 0
}∣∣dt/ξ.

We start by noting that the absolutely continuous (since it is convex) function
µ can be modified so that µ′ > 1 almost everywhere while (2.6) still holds. We will
henceforth assume that µ satisfies this condition.

By the bound on the Hamiltonian, H, and the definition of the running cost, L,
in (2.1), we have

L(x, β) ≥ sup
λ∈Rd

{
− β · λ− µ(|λ|)− |x|(A+B|λ|)

}
.

By choosing λ = −χβ/|β|, for χ ≥ 0, we have

L(x, β) ≥ χ|β| − µ(χ)− |x|(A+Bχ) =: Gx,β(χ).

Since Gx,β(·) is concave on [0,∞), at least one of the following alternatives must hold:
I. L(x, β) =∞.

II. Gx,β is maximized at χ = 0.
III. Gx,β is maximized at some χ∗ ∈ (0,∞).
IV. sup0≤χ<∞Gx,β(χ) = limχ→∞Gx,β(χ).
If alternative I holds, (A.1) is clearly satisfied with any S and K. If alternative

II holds, then

L(x, β) ≥ −µ(0)−A |x| .

Since χ = 0 maximizes Gx,β and µ is convex it follows that S
(
(|β| − B |x|)+

)
= 0.

Hence (A.1) holds.
If alternative III holds, we have

L(x, β) ≥ (|β| −B |x|)χ∗ − µ(χ∗)−A |x| .

Since µ is convex, it is absolutely continuous, and we have

µ(χ∗) = µ(0) +

∫ χ∗

0

µ′(χ) dχ.

Using a layer cake representation (see [10]) of this integral we get,∫ χ∗

0

µ′(χ) dχ =

∫ ∞
0

∣∣{χ : µ′(χ) > t, χ ∈ [0, χ∗]
}∣∣dt

=

∫ |β|−B|x|
0

∣∣{χ : µ′(χ) > t, χ ∈ [0, χ∗]
}∣∣dt,

where the absolute sign in the integrals denotes the Lebesgue measure, and the last
equality follows by the fact that µ′(χ) ≤ |β| −B |x| for χ ∈ [0, χ∗] since χ∗ maximizes
Gx,β(χ). Since

(|β| −B |x|)χ∗ =

∫ |β|−B|x|
0

∣∣[0, χ∗]∣∣ dt,
16



we have

(|β| −B |x|)χ∗ − µ(χ∗) = −µ(0) +

∫ |β|−B|x|
0

∣∣{χ : µ′(χ) ≤ t, χ ∈ [0, χ∗]
}∣∣dt

= −µ(0) +

∫ |β|−B|x|
0

∣∣{χ : µ′(χ) ≤ t, χ ≥ 0
}∣∣dt,

where the last inequality follows from the fact that µ′(χ) ≥ |β| −B |x|, when χ ≥ χ∗.
Since µ′ is finite-valued almost everywhere we have

lim
t→∞

∣∣{χ : µ′(χ) ≤ t, χ ≥ 0
}∣∣ =∞,

and therefore lims→∞ S(s) = ∞. Since µ′ ≥ 1, the function S is continuous. With
K = max{µ(0), A}, (A.1) is satisfied.

If alternative IV holds we can use that

L(x, β) ≥ (|β| −B |x| − ε)χ− µ(χ)−A |x| =: Gεx,β(χ)

for all 0 ≤ χ < ∞ and ε > 0. For every ε > 0 the function Gx,β is maximized at a
χ∗ε ∈ [0,∞). This gives, as the analysis for alternatives II and III shows, that

L(x, β) ≥ (|β| −B|x| − ε)+S
(
(|β| −B|x| − ε)+

)
−K(1 + |x|).

Since ε could be chosen arbitrarily small and positive (A.1) follows.
Step 2. We now show that for each time step tn, there exists a constant K, such

that

ū(x, tn) ≥ −K(1 + |x|). (A.2)

(The constant K is allowed to depend on the time step n and the step length ∆tn.)
Assume (A.2) is satisfied at the time step tn+1. We will show that this implies that
it is satisfied at tn as well.

The lower bound on ū(·, tn+1) and the lower bound on L in (A.1), together with
dynamic programming gives

ū(x, tn) = inf
β∈Rd

(
∆tnL(x, β) + ū(x+ ∆tnβ, tn+1)

)
≥ inf
β∈Rd

(
∆tn(|β| −B |x|)+S

(
(|β| −B |x|)+

)
− K̃ − K̃ |x| − K̃ |β|

)
=: inf

β∈Rd
J(x, β),

with a K̃ depending on ∆tn. Since the function S grows to infinity, there exists a
C ≥ 0, such that ξ ≥ C implies S(ξ) ≥ K̃/∆tn. For such β that satisfy |β|−B |x| ≥ C
it therefore holds that

J(x, β) ≥ K̃(|β| −B |x|)− K̃ − K̃ |x| − K̃ |β| = −K̃ − (K̃ + K̃B) |x| .

Since S is continuous the function

ξ 7→ ξ+S(ξ+)

attains a smallest value D on the set {ξ ∈ Rd : |ξ| ≤ C}. For every β satisfying
|β| −B |x| ≤ C we therefore have

J(x, β) ≥ D∆tn − K̃ − K̃ |x| − K̃ |β| ≥ D∆tn − K̃ − K̃C − (K̃ + K̃B) |x| .
17



With K̄ = max{K̃ + K̃B, K̃ + K̃C −D∆tn}, and hence independent of x, we have

ū(x, tn) ≥ −K̄(1 + |x|).

Since ū(·, tN ) satisfies (A.2) with K = k, by the lower bound on g, induction back-
wards in time shows that (A.2) holds for all n ≤ N , with different constants K.

Step 3. Assume that ū(·, tn+1) is locally semiconcave. It is then also continuous
(even locally Lipschitz continuous, see e.g. [5]). Since the Hamiltonian, H, is finite-
valued everywhere, L(x, ·) is lower semicontinuous, for every x ∈ Rd, see [6]. Let
{βi}∞i=1 be a sequence of controls such that

lim
i→∞

∆tnL(Xn, βi) + ū(Xn + ∆tβi, tn+1)→ ū(Xn, tn).

By the lower bounds (A.1) and (A.2) for the functions L and ū(·, tn+1), proved in
steps 1 and 2, it follows that the sequence {βi}∞i=1 is contained in a compact set in
Rd. It therefore contains a convergent subsequence

βij → βn.

Since ū(·, tn+1) is continuous, and L(Xn, ·) is lower semicontinuous, we have that

ū(Xn, tn) = ∆tnL(Xn, βn) + ū(Xn + ∆tnβn, tn+1).

Step 4. Assume that ū(·, tn+1) is locally semiconcave, and that λn+1 is an element
in D+ū(Xn+1, tn+1), where Xn+1 = Xn + ∆tnβn, and βn is the minimizer from the
previous step. We will show that this implies that

λn+1 · βn + L(Xn, βn) = H(Xn, λn+1). (A.3)

Consider a closed unit ball B centered at βn. By the local semiconcavity of
ū(·, tn+1) we have that there exists an ω : R+ → R+, such that limρ→0+ ω(ρ) = 0,
and

ū(Xn+∆tnβ, tn+1) ≤ ū(Xn+1, tn+1)+∆tnλn+1·(β−βn)+|β − βn|ω(|β − βn|), (A.4)

for all β in B, see [5]. Since we know that the function

β 7→ ū(Xn + ∆tnβ, tn+1) + ∆tnL(Xn, β)

is minimized for β = βn, the semiconcavity of ū in (A.4) implies that the function

β 7→ ∆tnλn+1 · β + |β − βn|ω(|β − βn|) + ∆tnL(Xn, β) (A.5)

is also minimized on B for β = βn (and therefore by the convexity of L(Xn, ·) also
minimized on Rd). We will prove that the function

β 7→ λn+1 · β + L(Xn, β) (A.6)

is minimized for β = βn. Let us assume that this is false, so that there exists an
β∗ ∈ Rd, and an ε > 0, such that

λn+1 · βn + L(Xn, βn)− λn+1 · β∗ − L(Xn, β
∗) ≥ ε. (A.7)
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Let ξ ∈ [0, 1], and β̂ = ξβ∗ + (1− ξ)βn. Insert β̂ into the function in (A.5):

∆tλn+1 · β̂ + |β̂ − βn|ω(|β̂ − βn|) + ∆tnL(Xn, β̂)

= ∆t(ξλn+1 · β∗ + (1− ξ)λn+1 · βn) + ξ |β∗ − βn|ω(ξ |β∗ − βn|)
+ ∆tnL(Xn, ξβ

∗ + (1− ξ)βn)

≤ ∆t(ξλn+1 · β∗ + (1− ξ)λn+1 · βn) + ξ |β∗ − βn|ω(ξ |β∗ − βn|)
+ ∆tnξL(Xn, β

∗) + ∆tn(1− ξ)L(Xn, βn)

≤ ∆tn(λn+1 · βn + L(Xn, βn)) + ξ |β∗ − βn|ω(ξ |β∗ − βn|)−∆tnξε

< ∆tn(λn+1 · βn + L(Xn, βn)),

for some small positive number ξ. This contradicts the fact that βn is a minimizer to
the function in (A.5). Hence we have shown that the function in (A.6) is minimized
at βn. By the relation between L and H in (2.2) our claim (A.3) follows.

Step 5. From the result in step 4, equation (A.3), and the definition of the running
cost L in (2.1) it follows that βn = Hλ(Xn, λn+1), for if this equation did not hold,
then λn+1 could not be the maximizer of −βn · λ+H(Xn, λ).

Step 6 We now show that under the assumption that ū(·, tn+1) is locally semi-
concave, then for each F > 0 there exists a G > 0, such that

|x| ≤ F =⇒ |βx| ≤ G, (A.8)

where βx is any optimal control at position (x, tn), i.e. ū(x, tn) = ū(x+∆tnβx, tn+1)+
∆tnL(x, βx). Step 5 proved that an optimal control is given by βn = Hλ(Xn, λn+1),
so that

ū(0, tn) = ū
(
∆tnHλ(0, p), tn+1

)
+ ∆tL

(
0, Hλ(0, p)

)
,

where p is an element in D+ū(∆tnβ0, tn+1). Let us now consider the control Hλ(x, p).
Since this control is not necessarily optimal except at (0, tn), we have

ū(x, tn) ≤ ū
(
x+ ∆tnHλ(x, p), tn+1

)
+ ∆tnL

(
x,Hλ(x, p)

)
.

Since ū(·, tn+1) is locally semiconcave it is also locally Lipschitz continuous (see [5]).
By the definition of L in (2.1) it follows that

L
(
x,Hλ(x, p)

)
= −Hλ(x, p) · p+H(x, p).

Since both H(·, p) and Hλ(·, p) are locally Lipschitz continuous by assumption it
follows that there exists a constant E > 0 such that

ū(x, tn)− ū(0, tn) ≤ E, (A.9)

for all |x| ≤ F .
The inequalities (A.1) from step 1 and (A.2) from step 2, together with (A.9) give

(A.8).
Step 7. In this step, we show that if ū(·, tn+1) is locally semiconcave, then so is

ū(·, tn). Furthermore, if βx is an optimal control at (x, tn), and p is an element in
D+ū(x+ ∆tnβx, tn), then

p+ ∆tnHx(x, p) ∈ D+ū(x, tn).
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We denote by Br the closed ball centered at the origin with radius r. In order to
prove that ū(·, tn) is locally semiconcave it is enough to show that it is semiconcave
on Br, where r is any positive radius. To accomplish this we will use the result from
step 6. We therefore take the radius r = F , which according to step 6 can be taken
arbitrarily large.

In step 3 we showed that an optimal control βx exists at every point x ∈ Rd at
time tn, under the assumption that ū(·, tn+1) is locally semiconcave. In step 6 we
showed that given any radius F and |x| ≤ F , there exists a constant G such that all
optimal controls must satisfy |βx| ≤ G.

A locally semiconcave function from Rd to R is locally Lipschitz continuous (see
[5]). Hence, for every x ∈ BF+G∆tn , and every p ∈ D+ū(x, tn+1), we have |p| ≤ E,
for some constant E. By continuity, there exists some constant J such that |Hλ| ≤ J
on BF ×BE .

Let R := max{F + G∆tn, F + J∆tn}. By the assumed local semiconcavity of
ū(·, tn+1) we have that there exists an ω : R+ → R+, such that limρ→0 ω(ρ) = 0, and

ū(x, tn+1) ≤ ū(z, tn+1) + p · (x− z) + |x− z|ω(|x− z|),

for all x and z in BR, and p in D+ū(z, tn+1), see [5]. We take ω to be non-decreasing,
which is clearly possible. Let us now consider the control Hλ(x, p), where p ∈ D+ū(y+
∆tnβy, tn+1), and βy is an optimal control at the point y ∈ BF (βy = Hλ(y, p)
according to step 5). Since this control is not necessarily optimal except at (y, tn), we
have

ū(x, tn) ≤ ū
(
x+ ∆tnHλ(x, p), tn+1

)
+ ∆tnL

(
x,Hλ(x, p)

)
≤ ū(y + ∆tnβy, tn+1) + p ·

(
x+ ∆tnHλ(x, p)− (y + ∆tnβy)

)
+ ∆tnL

(
x,Hλ(x, p)

)
+ |x+ ∆tnHλ(x, p)− (y + ∆tnβy)|ω(|x+ ∆tnHλ(x, p)− (y + ∆tnβy)|). (A.10)

By the bound on |Hλ|, this inequality holds for every x and y in BF . By the definition
of L in (2.1) it follows that

L
(
x,Hλ(x, p)

)
= −Hλ(x, p) · p+H(x, p). (A.11)

With this fact in (A.10), and using that βy = Hλ(y, p), we have

ū(x, tn) ≤ ū(y + ∆tnHλ(y, p), tn+1) + p · (x− (y + ∆tnHλ(y, p))) + ∆tnH(x, p)

+ |x+ ∆tnHλ(x, p)− (y+ ∆tnHλ(y, p))|ω(|x+ ∆tnHλ(x, p)− (y+ ∆tnHλ(y, p))|).
(A.12)

By the fact that Hλ(·, p) is locally Lipschitz continuous,

|x− y + ∆t
(
Hλ(x, p)−Hλ(y, p)

)
| ≤ K|x− y|, (A.13)

for all x and y in BF , and some constant K. We also need the fact that

ū(y, tn) = ū(y + ∆tnHλ(y, p), tn+1) + ∆tnL(y,Hλ(y, p)). (A.14)

We insert the results(A.11), (A.13), and (A.14), into (A.12) to get

ū(x, tn)

≤ ū(y, tn) + p · (x− y) + ∆tn
(
H(x, p)−H(y, p)

)
+K |x− y|ω(K |x− y|)

≤ ū(y, tn) +
(
p+ ∆tnHx(y, p)

)
· (x− y) + |x− y| ω̃(|x− y|)

(A.15)
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where

ω̃(ρ) = Kω(Kρ) + max{|Hx(z, q)−Hx(y, q)| : |z − y| ≤ ρ, (z, y) ∈ BF ×BF },

and limρ→0+ ω̃(ρ) = 0, since Hx is assumed to be continuous.
We will now use equation (A.15) to show that ū(·, tn) is semiconcave on BF . Let

x and z be any elements in BF , and let y = wx + (1 − w)z, where w ∈ [0, 1]. As
before, p is an element in D+ū(y + ∆tnβy, tn+1). The inequality in (A.15) with this
choice of y gives

ū(x, tn) ≤ ū(wx+ (1− w)z, tn)

+ (1−w)
(
p+ ∆tnHx(wx+ (1−w)z, p)

)
· (x− z) + (1−w) |x− z| ω̃((1−w) |x− z|),

(A.16)

and with x exchanged by z,

ū(z, tn) ≤ ū(wx+ (1− w)z, tn)

+ w
(
p+ ∆tnHx(wx+ (1− w)z, p)

)
· (z − x) + w |x− z| ω̃(w |x− z|). (A.17)

We multiply (A.16) by w, and (A.17) by 1 − w, and add the resulting equations, to
get

wū(x, tn) + (1− w)ū(z, tn)

≤ ū(wx+ (1− w)z, tn) + w(1− w) |x− z|
(
ω̃((1− w) |x− z|) + ω̃(w |x− z|)

)
≤ ū(wx+ (1− w)z, tn) + w(1− w) |x− z| ω̂(|x− z|),

if we let

ω̂(ρ) := 2ω̃(ρ).

Since x and z can be any points in BF , this shows that ū(·, tn) is locally semiconcave.
By (A.15) it also follows that

p+ ∆tnHx(y, p) ∈ D+ū(y, tn).

Step 8. Since ū(x, T ) = g(x), which is locally semiconcave, step 7 and induction
backwards in time shows that ū(·, tn) is locally semiconcave for all n. In step 3
we showed that optimal controls exist at every position in Rd at time tn, provided
ū(·, tn+1) is locally semiconcave. Hence there exists a minimizer (βm, . . . , βN−1) to
the discrete minimization functional J(y,tm) in (2.4), for every y ∈ Rd and 0 ≤ m ≤
N . Let (Xm, . . . , XN ) be a corresponding solution to (2.5), and λN an element in
D+g(XN ). From steps 5 and 7, we have that βN−1 = Hλ(XN−1, λN ), and λN−1 :=
λN +∆tN−1Hx(XN−1, λN ) ∈ D+ū(XN−1, tN−1). Induction backwards in time shows
that there exists a dual path λn, n = m, . . . , N − 1, such that it together with Xn,
n = m, . . . , N , satisfies the discretized Hamiltonian system (2.7).
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