
Abstract

We present an abstract framework for semilinear parabolic

problems based on analytic semigroup theory. The same frame-

work is used for numerical discretization based on the finite el-

ement method. We prove local existence of solutions and local

error estimates. These are applied in the context of dynamical

systems. The framework is also used to analyze the finite ele-

ment method for a stochastic parabolic equation.
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1 The continuous problem

We consider the following initial-boundary value problem for a reaction-

diffusion equation,

ut −∆u = f̃ (u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(·,0) = u0, x ∈ Ω,

(1.1)

where Ω is a bounded domain in Rd , d = 1,2,3, u = u(x, t), ut = ∂u/∂t,

∆u = ∑
d
i=1 ∂2u/∂x2

i , and f̃ : R → R is twice continuously differentiable.
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If d = 2,3 we assume, in addition, that the derivatives of f̃ satisfy the

growth condition

| f̃ (l)(ξ)| ≤C(1+ |ξ|δ+1−l), ξ ∈ R, l = 1,2, (1.2)

where | · | denotes the Euclidean norm on R and the induced operator

norms, and where δ = 2 if d = 3, δ ∈ [1,∞) if d = 2.

Example 1.1. The Allen-Cahn equation. Let f̃ be

f̃ (ξ) =−V ′(ξ) =−(ξ3−ξ),

where V is the quadratic potential

V (ξ) =
1
4

ξ
4− 1

2
ξ

2.

Then the differential equation in (1.1) becomes

ut −∆u =−(u3−u).

Clearly, f̃ satisfies (1.2) with δ = 2 so we can have d ≤ 3.

We assume that Ω is a convex polygonal domain (a polygon if d = 2,

or polyhedron if d = 3), so that we have access to the elliptic regularity

theory and so that finite element meshes can be fitted exactly to the

domain. This is further explained below.

In the sequel we use the Hilbert space H = L2(Ω), with its standard

norm and inner product

‖v‖ =
(∫

Ω

|v|2 dx
)1/2

, (v,w) =
∫

Ω

vwdx. (1.3)

The norms in the Sobolev spaces Hm(Ω), m ≥ 0, are denoted by

‖v‖m =

(
∑

|α|≤m
‖Dαv‖2

)1/2

. (1.4)
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The space V = H1
0 (Ω), with norm ‖·‖1, consists of the functions in

H1(Ω) that vanish on ∂Ω. V ∗ = H−1(Ω) is the dual space of V with

norm

‖v‖−1 = sup
χ∈V

|(v,χ)|
‖χ‖1

. (1.5)

If X ,Y are Banach spaces, then by L(X ,Y ) we denote the space of

bounded linear operators from X into Y , L(X) = L(X ,X), and BX(x,R)

denotes the closed ball in X with center x and radius R. In particular, we

let BR = BV (0,R) denote the the closed ball of radius R in V :

BR = {v ∈V : ‖v‖1 ≤ R}. (1.6)

We also use the notation C([0,T ],X) for the Banach space of continuous

functions v : [0,T ]→ X with norm

‖v‖L∞([0,T ],X) = sup
t∈[0,T ]

‖v(t)‖X . (1.7)

We set the problem up in the framework of [8]. We define the

unbounded operator A = −∆ on H with domain of definition D(A) =

H2(Ω)∩H1
0 (Ω). Then A is a closed, densely defined, and self-adjoint

positive definite operator in H with compact inverse. Moreover, our

assumption (1.2) guarantees that the mapping f̃ induces a nonlinear op-

erator f : V →H through f (v)(x) = f̃ (v(x)), see Lemma 1.1 below. The

initial-boundary value problem (1.1) may then be formulated as an ini-

tial value problem in V : find u(t) ∈V such that

u′+Au = f (u), t > 0; u(0) = u0. (1.8)

The operator −A is the infinitesimal generator of the analytic semi-
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group E(t) = exp(−tA) defined by

E(t)v =
∞

∑
j=1

e−tλ j(v,ϕ j)ϕ j, v ∈ H, t ≥ 0, (1.9)

where λ j and ϕ j denote the eigenvalues and a corresponding orthonor-

mal basis of eigenvectors of A, i.e., Aϕ j = λ jϕ j, and

0 < λ1 < λ2 ≤ ·· · ≤ λ j ≤ λ j+1 → ∞, (ϕ j,ϕi) = δi j,

v =
∞

∑
j=1

(v,ϕ j)ϕ j, ‖v‖ =
( ∞

∑
j=1

(v,ϕ j)2
)1/2

, v ∈ H.
(1.10)

This is based on the spectral theorem for self-adjoint operators with

compact inverse; in more general situations where the operator A is not

self-adjoint the analytic semigroup E(t) = exp(−tA) can still be defined

under suitable assumptions on the generator −A without using the spec-

tral theorem, see [8].

The semigroup E(t) is the solution operator of the initial value prob-

lem for the homogeneous equation,

u′+Au = 0, t > 0; u(0) = v. (1.11)

The solution of (1.11) is thus given by u(t) = E(t)v. By Duhamel’s

principle it follows that solutions of (1.8) satisfy the equation

u(t) = E(t)u0 +
∫ t

0
E(t− s) f (u(s))ds, t ≥ 0. (1.12)

Conversely, we will see that appropriately defined solutions of the non-

linear integral equation (1.12) are solutions of the differential equation

(1.8); this is Theorem 1.3 below. We shall mainly work with (1.12) and

discretized variants of it.
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An important ingredient in our framework is that f can be controlled

by fractional powers of A. We define the fractional powers of A by

means of the spectral theorem and we have, for any exponent α ∈ R,

Aαv =
∞

∑
j=1

λ
α
j (v,ϕ j)ϕ j,

‖Aαv‖ =
( ∞

∑
j=1

(
λ

α
j (v,ϕ j)

)2)1/2
,

D(Aα) =
{

v : ‖Aαv‖ < ∞

}
.

(1.13)

We also need the elliptic regularity estimate,

‖v‖2 ≤C‖Av‖, v ∈ H2(Ω)∩H1
0 (Ω). (1.14)

This is true for any domain Ω with smooth boundary, but also under our

present assumption that Ω is a convex polygonal domain. It means that,

for any f ∈ L2(Ω) the solution of the elliptic problem

−∆v = f in Ω; v = 0 on ∂Ω,

belongs to H2(Ω)∩H1
0 (Ω) and obeys the inequality

‖v‖2 ≤C‖ f‖, f ∈ L2(Ω).

Since f = −∆v = Av we obtain (1.14). For the proof you must consult

an advanced book on partial differential equations. Using also the trace

inequality,

‖v‖L2(∂Ω) ≤C‖v‖1, v ∈ H1(Ω),

and the Poincaré inequality

‖v‖ ≤C‖∇v‖, v ∈V = H1
0 (Ω), (1.15)
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we obtain D(Al/2) = H l(Ω)∩H1
0 (Ω), l = 1,2, with the equivalence of

norms

c‖v‖l ≤ ‖Al/2v‖ ≤C‖v‖l, v ∈ D(Al/2), l = 1,2. (1.16)

The tricky part is to show that the spaces are equal, D(A1/2) = H1
0 (Ω)

and D(A) = H2(Ω)∩H1
0 (Ω), we refer to [11, Theorem 6.4] or [12,

Chapt. 3] for a proof. The norm equivalences follow more or less di-

rectly from (1.15) and (1.14).

A simple exercise using the special case l = 1 of (1.16) shows that

D(A−1/2) = H−1(Ω) and

c‖v‖−1 ≤ ‖A−1/2v‖ ≤C‖v‖−1; (1.17)

cf. (3.7) below.

The analyticity of the semigroup E(t) is reflected in the inequalities

(where Dt = ∂/∂t)

‖Dl
tE(t)v‖ = ‖AlE(t)v‖ ≤Clt−l‖v‖, t > 0, v ∈ H, l ≥ 0. (1.18)

These follow easily from (1.9) and Parseval’s identity. For example, we

prove (1.18) as follows:

‖AlE(t)v‖2 =
∞

∑
j=1

λ
2l
j e−2tλ j(v,ϕ j)2 = t−2l

∞

∑
j=1

(
(tλ j)le−tλ j

)2(v,ϕ j)2

≤Clt−2l
∞

∑
j=1

(v,ϕ j)2 = Clt−2l‖v‖2.

Combining (1.18) with the norm equivalences (1.16), (1.17) we ob-

tain the smoothing property

‖Dl
tE(t)v‖β ≤Ct−l−(β−α)/2‖v‖α, t > 0, v ∈ D(Aα/2),

−1 ≤ α ≤ β ≤ 2, l = 0,1.
(1.19)
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This means that the solution u(t) = E(t)v of the linear homogeneous

problem (1.11) has β spatial derivatives and l temporal derivatives in

L2(Ω) even if the initial value v is only in D(Aα/2). Note however that

the corresponding norm may blow up as t approaches 0.

We need the fact that the operator f : V → H satisfies a local Lip-

schitz condition. This is contained in our first lemma. We also prove

that the Fréchet derivative f ′ : V → L(V,H) satisfies a local Lipschitz

condition. The proof is based on the assumption (1.2) and Sobolev’s

inequality, where p = 6 if d = 3, p < ∞ if d = 2, and p = ∞ if d = 1,

‖v‖Lp ≤C‖v‖1, (1.20)

and on Hölder’s inequality in the form

‖vδw‖Lr ≤ ‖v‖δ
Lq
‖w‖Lp,

δ

q + 1
p = 1

r , δ > 0. (1.21)

Lemma 1.1. For each nonnegative number R there is a constant C(R)

such that, for all u,v,w ∈ BR, l = 0,1,

‖ f ′(u)‖L(V,H) ≤C(R), (1.22)

‖ f ′(u)‖L(H,V ∗) ≤C(R), (1.23)

‖ f (u)− f (v)‖ ≤C(R)‖u− v‖1, (1.24)

‖ f (u)− f (v)‖−1 ≤C(R)‖u− v‖, (1.25)

‖ f ′(u)− f ′(v)‖L(V,H) ≤C(R)‖u− v‖1, (1.26)

‖ f ′(u)− f ′(v)‖L(H,V ∗) ≤C(R)‖u− v‖1, (1.27)

‖ f (u)− f (v)− f ′(w)(u− v)‖l−1 ≤C(R)
(
‖u−w‖1

+‖v−w‖1
)
‖u− v‖l. (1.28)
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If, in addition, u ∈ H2(Ω) and z ∈ H2(Ω)∩V , then

‖A1/2( f ′(u)z)‖ ≤C(R)
(
‖z‖2 +‖u‖2‖z‖1

)
. (1.29)

Note that the Lipschitz constant C(R) depends on the size of u,v,w

in the H1-norm through the assumption u,v,w ∈ BR, see (1.6). This is

why we say local Lipschitz condition.

Proof. We have in view of (1.2) and the Hölder and Sobolev inequali-

ties, for z ∈V ,

‖ f ′(u)z‖L2 ≤C
(
1+‖u‖δ

Lq

)
‖z‖Lp

≤C
(
1+‖u‖δ

1
)
‖z‖1,

where 1
p + δ

q = 1
2 with p = q = 6 if d = 3, and with arbitrary p ∈ (1,∞)

if d ≤ 2. This proves (1.22) and (1.24) follows. Similarly, for any z ∈V ,

‖( f ′(u)− f ′(v))z‖L2 ≤C
(
1+‖u‖δ−1

Lq
+‖v‖δ−1

Lq

)
‖u− v‖Lp‖z‖Lq

≤C
(
1+‖u‖δ−1

1 +‖v‖δ−1
1
)
‖u− v‖1‖z‖1,

with the same p and q as before. This proves (1.26).

Moreover, for any z,χ ∈V ,

( f ′(u)z,χ)≤C
(
1+‖u‖δ

Lq

)
‖z‖L2‖χ‖Lp

≤C
(
1+‖u‖δ

1
)
‖z‖ ‖χ‖1,

and

(( f ′(u)− f ′(v))z,χ)≤C
(
1+‖u‖δ−1

Lq
+‖v‖δ−1

Lq

)
‖u− v‖L2‖z‖Lq‖χ‖Lp

≤C
(
1+‖u‖δ−1

1 +‖v‖δ−1
1
)
‖u− v‖‖z‖1‖χ‖1,
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where δ

q + 1
2 + 1

p = 1, i.e., with the same p and q as before. This proves

(1.23) and (1.27); (1.25) follows from (1.23).

Next, (1.28) is obtained by applying (1.26) and (1.27) to the identity

f (u)− f (v)− f ′(w)(u−v) =
∫ 1

0

(
f ′(su+(1− s)v)− f ′(w)

)
ds(u−v).

Finally, (1.29) is proved in a similar way, by using the equivalence of

norms (1.16) and computing the first order partial derivatives of f ′(u)z.

Note that this uses the fact that f ′(u)z ∈V , i.e., f ′(u)z = 0 on ∂Ω.

We may now prove local existence of solutions of (1.12) and hence

of (1.8).

Theorem 1.2. For any R0 > 0 there is τ = τ(R0) such that (1.12) has a

unique solution u∈C([0,τ],V ) for any initial value u0 ∈V with ‖u0‖1 ≤
R0. Moreover, there is c such that ‖u‖L∞([0,τ],V ) ≤ cR0.

Proof. Let u0 ∈ BR0 , define

S(u)(t) = E(t)u0 +
∫ t

0
E(t− s) f (u(s))ds,

and note that (1.12) is a fixed point equation, u = S(u). We shall choose

τ and R such that we can apply Banach’s fixed point theorem (the con-

traction mapping theorem) in the closed ball

B = {u ∈C([0,τ],V ) : ‖u‖L∞([0,τ],V ) ≤ R}

in the Banach space C([0,τ],V ), cf. (1.7).

We must show (i) that S maps B into itself, (ii) that S is a contraction

on B . In order to prove (i) we take u∈B and first note that the Lipschitz
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condition (1.24) implies that

‖ f (u(t))‖ ≤ ‖ f (0)‖+‖ f (u(t))− f (0)‖

≤ ‖ f (0)‖+C(R)‖u(t)‖1

≤ ‖ f (0)‖+C(R)R, 0 ≤ t ≤ τ.

(1.30)

Hence, using also (1.19), we get

‖S(u)(t)‖1 ≤ ‖E(t)u0‖1 +
∫ t

0
‖E(t− s) f (u(s))‖1 ds

≤ c0‖u0‖1 + c1

∫ t

0
(t− s)−1/2‖ f (u(s))‖ ds

≤ c0R0 +2c1τ
1/2(‖ f (0)‖+C(R)R

)
, 0 ≤ t ≤ τ.

This implies

‖S(u)‖L∞([0,τ],V ) ≤ c0R0 +2c1τ
1/2(‖ f (0)‖+C(R)R

)
.

Choose R = 2c0R0 and τ = τ(R0) so small that

2c1τ
1/2(‖ f (0)‖+C(R)R

)
≤ 1

2R. (1.31)

Then ‖S(u)‖L∞([0,τ],V ) ≤ R and we conclude that S maps B into itself.

To show (ii) we take u,v ∈ B and note that

‖ f (u(t))− f (v(t))‖ ≤C(R)‖u− v‖L∞([0,τ],V ), 0 ≤ t ≤ τ.

Hence

‖S(u)(t)−S(v(t))‖1 ≤
∫ t

0
‖E(t− s)( f (u(s))− f (v(s)))‖1 ds

≤ c1

∫ t

0
(t− s)−1/2‖ f (u(s))− f (v(s))‖ ds

≤ 2c1τ
1/2C(R)‖u− v‖L∞([0,τ],V ), 0 ≤ t ≤ τ,
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so that

‖S(u)−S(v)‖L∞([0,τ],V ) ≤ 2c1τ
1/2C(R)‖u− v‖L∞([0,τ],V ).

It follows from (1.31) that 2c1τ1/2C(R)≤ 1
2 and we conclude that S is a

contraction on B . Hence S has a unique fixed point u ∈ B .

The integral equation (1.12) thus has a unique local solution for any

initial datum u0 ∈ V . We denote by S(t, ·) the corresponding (local)

solution operator, so that u(t) = S(t,u0) is the solution of (1.12). By

uniqueness of solutions it is clear that S satisfies the semigroup property:

S(t + s,u0) = S(t,S(s,u0)), t,s ≥ 0, t + s ≤ τ. (1.32)

The following theorem provides regularity estimates for solutions u

of (1.12). These will be used in our error analysis, but the theorem also

shows that u′(t) ∈ H and Au(t) ∈ H for t > 0, so that the solution of

the integral equation (1.12) is also a solution of the differential equation

(1.8).

Theorem 1.3. Let R≥ 0 and τ > 0 be given and let u ∈C([0,τ],V ) be a

solution of (1.12). If ‖u(t)‖1 ≤ R for t ∈ [0,τ], then

‖u(t)‖2 ≤C(R,τ)t−1/2, t ∈ (0,τ], (1.33)

‖u′(t)‖s ≤C(R,τ)t−1−(s−1)/2, t ∈ (0,τ], s = 0,1,2. (1.34)

Proof. We shall not present a complete proof here but refer to [8, Theo-

rem 3.5.2] for the missing parts. The argument is based on a generaliza-

tion of Gronwall’s lemma, Lemma 1.4 below. The tricky part is to show

that u is differentiable with respect to t and that u′(t) belongs to H, V
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and H2(Ω). In order to illustrate the techniques involved, we only show

that u′(t) ∈H. A simple calculation shows, assuming for simplicity that

h > 0,

u(t +h)−u(t) =
(
E(t +h)−E(t)

)
u0

+
∫ t+h

0
E(t +h− s) f (u(s))ds−

∫ t

0
E(t− s) f (u(s))ds

=
(
E(h)− I

)
E(t)u0

+
∫ t+h

0
E(s) f (u(t +h− s))ds−

∫ t

0
E(s) f (u(t− s))ds

=
(
E(h)− I

)
E(t)u0 +

∫ t+h

t
E(s) f (u(t +h− s))ds

+
∫ t

0
E(s)

(
f (u(t +h− s))− f (u(t− s))

)
ds

=
(
E(h)− I

)
E(t)u0 +

∫ h

0
E(t +h− s) f (u(s))ds

+
∫ t

0
E(t− s)

(
f (u(s+h))− f (u(s))

)
ds.

We will take norms in the above identity. In the first term we use the

identity
(
E(h)− I

)
E(t)u0 = A−1(E(h)− I

)
AE(t)u0 and

‖A−1(E(h)− I
)
v‖ ≤Ch‖v‖,

which is proved in a similar way as (1.18). Hence,

‖
(
E(h)− I

)
E(t)u0‖ ≤Ch‖AE(t)u0‖ ≤Cht−1/2‖u0‖1 ≤C(R)ht−1/2.

In view of (1.24) we have ‖ f (u(s))‖ ≤C(R), s ∈ [0,τ], cf. (1.30). Also,

from (1.25) follows

‖ f (u(s+h))− f (u(s))‖−1 ≤C(R)‖u(s+h)−u(s)‖.

13



Using the smoothing property (1.19) with α = β = 0 and α =−1, β = 0,

we obtain

‖u(t +h)−u(t)‖ ≤C(R)ht−1/2 +C(R)h

+C(R)
∫ t

0
(t− s)−1/2‖u(s+h)−u(s)‖ ds

≤C(R)
(

ht−1/2 +
∫ t

0
(t− s)−1/2‖u(s+h)−u(s)‖ ds

)
,

for 0 < t ≤ τ. By using Lemma 1.4 we conclude

‖u(t +h)−u(t)‖ ≤C(R,τ)ht−1/2,

which (essentially) proves that u′(t) ∈ H together with the bound in

(1.34) with s = 0.

Lemma 1.4. (Generalized Gronwall lemma.) Let A,B ≥ 0, α,β > 0, be

constants and 0≤ t0 < t ≤ T . There is a constant C = C(B,T,α,β) such

that, if the function ϕ(t, t0)≥ 0 is continuous and

ϕ(t, t0)≤ A(t− t0)−1+α +B
∫ t

t0
(t− s)−1+β

ϕ(s, t0)ds, 0 ≤ t0 < t ≤ T,

then

ϕ(t, t0)≤CA(t− t0)−1+α, 0 ≤ t0 < t ≤ T.

Proof. Iterating the given inequality N−1 times, using the identity∫ t

t0
(t− s)−1+α(s− t0)−1+β ds = C(α,β)(t− t0)−1+α+β, α,β > 0,

(Abel’s integral) and estimating (t− t0)β by T β, we obtain

ϕ(t, t0)≤C1A(t− t0)−1+α +C2

∫ t

t0
(t− s)−1+Nβ

ϕ(s, t0)ds,
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where C1 = C1(B,T,α,β,N), C2 = C2(B,β,N). We now choose the

smallest N so that −1+Nβ ≥ 0, and estimate (t− s)−1+Nβ by T−1+Nβ.

If −1+α ≥ 0 we obtain the desired conclusion by the standard version

of Gronwall’s lemma. Otherwise we set ψ(t, t0) = (t − t0)1−αϕ(t, t0) to

obtain

ψ(t, t0)≤C1A+C3

∫ t

t0
(s− t0)−1+α

ψ(s, t0)ds, 0 ≤ t0 < t ≤ T,

and the standard Gronwall lemma yields ψ(t, t0)≤CA for 0≤ t0 < t ≤ T ,

which is the desired result.

Note that the constant in Gronwall’s lemma grows exponentially

with the length T of the time interval. Hence, results derived by means

of this lemma are often useful only for short time intervals. There is also

a discrete version of Lemma 1.4; see [4, Lemma 7.1].

We finish this lecture by discussing global existence of solutions,

i.e., existence of solutions over some predetermined long time interval

[0,T ], not just some sufficiently short time interval [0,τ].

Assume that we can provide a global a priori bound: there is R such

that if u ∈C([0,T ],V ) is a solution, then

‖u(t)‖1 ≤ R, t ∈ [0,T ]. (1.35)

Note that what we assume is that if a solution exists then we can estimate

its size globally in terms of the data of the evolution problem (such as

u0, f , T , or Ω). That is why we say “a priori bound”; the solution is

estimated before we know if it really exists.

Then by repeated application of the local existence theorem with

τ = τ(R) we can prove the solution actually exists for t ∈ [0,T ]. More
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precisely, since by (1.35) we have ‖u0‖1 ≤ R, we conclude that u(t) =

S(t,u0) exists on [0,τ] with τ = τ(R). Again by (1.35) we have ‖u(τ)‖1 ≤
R, and so by application of the local existence theorem with initial value

u(τ) at time t = τ, we conclude that u(t) = S(t−τ,u(τ)) = S(t,u0) exists

on [τ,2τ]. After a finite numbers of steps we reach the final time T . The

a priori bound guarantees that we can use the same τ all the time.

Example 1.2. We recall the Allen-Cahn equation,

ut −∆u =−(u3−u) =−V ′(u)

where the potential V (ξ) = 1
4ξ4− 1

2ξ2 is bounded from below:

V (ξ)≥−K,

actually K = 1/4. Assume now that a solution exists and multiply the

equation by ut and integrate over Ω,

(ut ,ut)− (∆u,ut) =−(V ′(u),ut).

Here

−(∆u,ut) = (∇u,∇ut) =
1
2

Dt‖∇u‖2

and

−(V ′(u),ut) =−Dt

∫
Ω

V (u)dx,

so that

‖ut‖2 +
1
2

Dt‖∇u‖2 =−Dt

∫
Ω

V (u)dx.

After integration with respect to t,∫ t

0
‖ut‖2 ds+

1
2
‖∇u(t)‖2 =

1
2
‖∇u0‖2−

∫
Ω

V (u(t))dx+
∫

Ω

V (u0)dx

≤ 1
2
‖∇u0‖2 +K

∫
Ω

dx+
∫

Ω

V (u0)dx.
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We conclude

‖u(t)‖1 ≤ R, t ∈ [0,∞),

with

R =
1
2
‖∇u0‖2 +K

∫
Ω

dx+
∫

Ω

V (u0)dx.

Hence we have an a priori bound for any time interval [0,T ] and we

get global existence for all time. Thus, the solution operator S(t, ·) is

defined for t ∈ [0,∞). Note the form of the a priori bound: R depends

only on the size of ‖u0‖1 (with f and Ω being fixed). This is because,

by the Sobolev inequality (1.20),∫
Ω

V (u0)dx =
1
4
‖u0‖4

L4
− 1

2
‖u0‖2 ≤C‖u0‖4

1 +
1
2
‖u0‖2 ≤C(R0),

if ‖u0‖1 ≤ R0.

2 The finite element method

In this lecture we introduce spatial discretization by the finite element

method in the context of a linear elliptic boundary value problem. The

presentation follows [11], see also [5], [9], for other elementary presen-

tations. For more detailed treatments of the finite element method we

refer to [2] and [1].

We consider the linear elliptic problem to find u = u(x) such that

−∆u = f , x ∈ Ω,

u = 0, x ∈ ∂Ω,
(2.1)

where f ∈ H = L2(Ω), which can be seen as the linear stationary case

of the evolution problem (1.1). In our abstract framework this equation

is Au = f .
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The weak formulation of (2.1) is: find u ∈V such that

a(u,v) = ( f ,v), ∀v ∈V, (2.2)

where a(u,v) = (∇u,∇v) = (−∆u,v) = (Au,v) is the bilinear form asso-

ciated with A. From (1.15) it follows that a(u,v) is a scalar product on V

which is equivalent to the the standard scalar product (u,v)+(∇u,∇v).

The existence of a unique solution u ∈V of (2.2) now follows from the

Riesz representation theorem. By the elliptic regularity (1.14) we con-

clude that u ∈ H2(Ω)∩V .

Let {Vh}0<h<1 be a family of finite dimensional subspaces of V ,

where each Vh consists of continuous piecewise polynomials of degree

≤ 1 with respect to a triangulation Th of Ω with maximal mesh size h. In

other words, we divide the polygonal domain Ω into simplices (intervals

if d = 1, triangles if d = 2, and tetrahedra if d = 3). More precisely, let

Th = {K} be a set of closed simplices K, a triangulation of Ω, such that

Ω̄ =
⋃

K∈Th

K, hK = diam(K), h = max
K∈Th

hK.

The vertices P of the simplices K ∈ Th are called the nodes of the tri-

angulation Th. We require that the intersection of any two simplices of

Th is either empty, a node, or a common edge or face, and that no node

is located in the interior of an edge or face of Th. Since Ω is assumed

to be a polygonal domain, the mesh (triangulation) can be made to fit

exactly as described above. For domains with curved boundary there is

an additional difficulty concerning the approximation of the boundary,

which we do not address here.

With each Th we associate the function space

Vh =
{

v ∈C(Ω̄) : v linear in K for each K ∈ Th, v = 0 on ∂Ω
}
.
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Using our above assumptions on Th it is not difficult to verify that Vh ⊂
V = H1

0 (Ω). Let {Pi}Mh
i=1 be the set of interior nodes, i.e., those that do

not lie on Γ. A function in Vh is then uniquely determined by its values

at the Pj, and the set of pyramid functions {Φi}Mh
i=1 ⊂Vh, defined by

Φi(Pj) =

1, if i = j,

0, if i 6= j,

forms a basis for Vh. If v ∈Vh we thus have v(x) = ∑
Mh
i=1 viΦi(x), where

the vi = v(Pi) are the nodal values of v. It follows that Vh is a finite-

dimensional subspace of the Hilbert space V .

The approximate solution uh ∈Vh of (2.1) is defined by

a(uh,χ) = ( f ,χ), ∀χ ∈Vh. (2.3)

Our task is now to estimate the error uh − u. In order to do so we

define the interpolation operator Ih : C(Ω̄)∩H1
0 (Ω)→Vh by

(Ihv)(x) =
Mh

∑
i=1

viΦ(x), where vi = v(Pi). (2.4)

The interpolant Ihv thus agrees with v at the nodes Pj, i.e.,

(Ihv)(Pi) = v(Pi), for i = 1, . . . ,Mh.

One can prove the local error estimates, with ‖v‖K = ‖v‖L2(K), ‖v‖2,K =

‖v‖H2(K),

‖Ihv− v‖K ≤CKh2
K‖v‖2,K, ∀K ∈ Th, (2.5)

and

‖∇(Ihv− v)‖K ≤CKhK‖v‖2,K, ∀K ∈ Th. (2.6)
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In what follows we impose the restriction on the family {Th}0<h<1 of

triangulations that the angles of all triangles K belonging to all members

of the family {Th} are bounded below, independently of h. It is then

possible to prove that the constants CK are uniformly bounded, so that

we have the global estimates

‖Ihv− v‖ =
(
∑
K
‖Ihv− v‖2

K

)1/2
≤
(
∑
K

C2
Kh4

K‖v‖2
2,K

)1/2

≤Ch2‖v‖2, ∀v ∈ H2(Ω)∩H1
0 (Ω),

(2.7)

and similarly

‖Ihv− v‖1 ≤Ch‖v‖2, ∀v ∈ H2(Ω)∩H1
0 (Ω). (2.8)

We can now prove error estimates. We begin with the H1-norm.

Theorem 2.1. Let uh and u be the solutions of (2.3) and (2.2). Then

‖uh−u‖1 ≤Ch‖u‖2. (2.9)

Proof. Since Vh ⊂ H1
0 we may take v = χ ∈ Vh in (2.2) and subtract it

from (2.3) to obtain

a(uh−u,χ) = 0, ∀χ ∈Vh, (2.10)

which means that uh is the orthogonal projection of u onto Vh with re-

spect to the inner product a(·, ·) = (∇·,∇·). The projection theorem then

yields

‖∇(uh−u)‖ = min
χ∈Vh

‖∇(χ−u)‖ ≤ ‖∇(Ihu−u)‖

and by norm equivalence and the interpolation error estimate (2.8),

‖uh−u‖1 ≤C‖Ihu−u‖1 ≤Ch‖u‖2. (2.11)

This proves (2.9).
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Our next result concerns the L2-norm of the error.

Theorem 2.2. Let uh and u be the solutions of (2.3) and (2.2). Then

‖uh−u‖ ≤Ch2‖u‖2. (2.12)

Proof. We use a duality argument based on the auxiliary problem

−∆φ = e in Ω; φ = 0 on ∂Ω, where e = uh−u. (2.13)

Its weak formulation is to find φ ∈V such that

a(w,φ) = (w,e), ∀w ∈V. (2.14)

By the regularity estimate (1.14) we have

‖φ‖2 ≤C‖Aφ‖ = C‖e‖. (2.15)

Taking w = e in (2.14) and using (2.10) and (2.8), we therefore obtain

‖e‖2 = a(e,φ) = a(e,φ− Ihφ)≤C‖e‖1 ‖φ− Ihφ‖1

≤Ch‖e‖1 ‖φ‖2 ≤Ch‖e‖1 ‖e‖.

Canceling one factor ‖e‖ we see that we have gained one factor h over

the error estimate for ‖e‖1,

‖e‖ ≤Ch‖e‖1, (2.16)

and (2.12) follows if we use (2.8) again.

Let Rh : V → Vh be the orthogonal projection with respect to the

energy inner product, so that

a(Rhv− v,χ) = 0, ∀χ ∈Vh, v ∈V. (2.17)
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The operator Rh is called the Ritz projection (or elliptic projection). It

follows from (2.10) that the finite element solution uh is the Ritz pro-

jection of the solution u of (2.2), i.e., uh = Rhu. Our previous error

estimates for the finite element solution may be expressed as follows

in terms of the operator Rh, which will be convenient when we discuss

parabolic finite element problems later.

Theorem 2.3. For s = 1,2, we have

‖Rhv− v‖ ≤Chs‖v‖s, ‖Rhv− v‖1 ≤Chs−1‖v‖s, ∀v ∈ Hs(Ω)∩V.

Proof. The case s = 2 is contained in Theorems 2.1 and 2.2. For the

case s = 1 we first note that since Rh is the orthogonal projection with

respect to a(·, ·), we have ‖∇Rhv‖ ≤ ‖∇v‖. Hence ‖Rhv‖1 ≤C‖v‖1 and

‖Rhv− v‖1 ≤C‖v‖1. Finally, using (2.16) we obtain

‖Rhv− v‖ ≤Ch‖Rhv− v‖1 ≤Ch‖v‖1,

which completes the proof.

3 Local error estimates for semilinear para-

bolic problems

In this section we first discretize (1.1) with respect to the spatial vari-

ables by means of a standard piecewise linear finite element method.

We then briefly discuss completely discrete approximation by means of

the backward Euler time-stepping. This material is taken from [10]. A

general reference is [12].
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3.1 The spatially semidiscrete problem

The weak formulation of (1.1) is: find u(t) ∈V such that

(u′,v)+a(u,v) = ( f (u),v), ∀v ∈V, t > 0,

u(0) = u0,
(3.1)

where a(u,v) = (∇u,∇v) = (−∆u,v) = (Au,v) is the bilinear form asso-

ciated with A.

Let {Vh}0<h<1 be a family of finite dimensional subspaces of V ,

where each Vh consists of continuous piecewise polynomials of degree

≤ 1 with respect to a triangulation T of Ω with maximal mesh size h.

The approximate solution uh(t) ∈Vh of (1.1) is defined by

(u′h,χ)+a(uh,χ) = ( f (uh),χ), ∀χ ∈Vh, t > 0,

uh(0) = uh,0,
(3.2)

where uh,0 ∈Vh is an approximation of u0.

Introducing the linear operator Ah : Vh →Vh and the orthogonal pro-

jection Ph : H →Vh, defined by

(Ahψ,χ) = a(ψ,χ), (Phg,χ) = (g,χ) ∀ψ,χ ∈Vh, g ∈ H, (3.3)

we may write (3.2) as

u′h +Ahuh = Ph f (uh), t > 0; uh(0) = uh,0. (3.4)

The operator Ah is self-adjoint positive definite (uniformly in h), i.e.,

(Ahvh,vh) = a(vh,vh)≥ λ1‖vh‖2, vh ∈Vh,
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where λ1 > 0 is the principal eigenvalue of A, see (1.10). The corre-

sponding semigroup Eh(t) = exp(−tAh) : Vh →Vh therefore satisfies in-

equalities analogous to (1.18) (uniformly in h):

‖Dl
tEh(t)v‖ = ‖Al

hEh(t)v‖ ≤Clt−l‖v‖, t > 0, v ∈Vh, l ≥ 0.

Moreover, in Vh we have the equivalence of norms, cf. (1.16),

c‖v‖1 ≤ ‖A1/2
h v‖ =

√
a(v,v) = ‖A1/2v‖ ≤C‖v‖1, v ∈Vh. (3.5)

We also have

‖Ph f‖ ≤ ‖ f‖, f ∈ H,

and, cf. (1.17),

‖A−1/2
h Ph f‖ ≤C‖ f‖−1, f ∈ H, (3.6)

which is obtained by using (3.5) in the calculation

‖A−1/2
h Ph f‖ = sup

vh∈Vh

|(A−1/2
h Ph f ,vh)|
‖vh‖

= sup
vh∈Vh

|( f ,A−1/2
h vh)|
‖vh‖

= sup
wh∈Vh

|( f ,wh)|
‖A1/2

h wh‖
≤C sup

wh∈Vh

|( f ,wh)|
‖wh‖1

≤C sup
w∈V

|( f ,w)|
‖w‖1

= C‖ f‖−1.

(3.7)

Using the above inequalities we easily prove the smoothing property of

Eh(t)Ph, cf. (1.19):

‖Dl
tEh(t)Ph f‖β ≤Ct−l−(β−α)/2‖ f‖α, t > 0, f ∈ D(Aα/2),

−1 ≤ α ≤ β ≤ 1, l = 0,1.
(3.8)
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Note that the upper limit to β is 1, while it is 2 in the continuous case

(1.19). This is because finite element functions do not admit second

order derivatives.

The initial-value problem (3.4) is equivalent to the integral equation

uh(t) = Eh(t)uh,0 +
∫ t

0
Eh(t− s)Ph f (uh(s))ds, t ≥ 0. (3.9)

Because of (3.8) the proof of Theorem 1.2 carries over verbatim to the

semidiscrete case. We thus have:

Theorem 3.1. For any R0 > 0 there is τ = τ(R0) such that (3.9) has

a unique solution uh ∈ C([0,τ],V ) for any initial value uh,0 ∈ Vh with

‖uh,0‖1 ≤ R0. Moreover, there is c such that ‖uh‖L∞([0,τ],V ) ≤ cR0.

We denote by Sh(t, ·) the corresponding (local) solution operator, so

that uh(t) = Sh(t,uh,0) is the solution of (3.9).

We may now estimate the difference between the local solutions

u(t) = S(t,u0) and uh(t) = Sh(t,uh,0) that we have obtained. We refer to

the following result as a local a priori error estimate. It is local because

the constant C(R,τ) grows exponentially with the length τ of the time

interval and also because it grows with the size R of the solutions as

measured in the H1-norm via the assumption that u(t),uh(t) ∈ BR. It is

a priori because the error is evaluated in terms of derivatives of u, which

are estimated a priori in Theorem 1.3. Note also the weak singularity

t−1/2 which is due to the fact that we only assume that the initial value

u0 is in V = H1
0 (Ω).

Theorem 3.2. Let R ≥ 0 and τ > 0 be given. Let u(t) and uh(t) be

solutions of (3.1) and (3.2) respectively, such that u(t),uh(t) ∈ BR for
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t ∈ [0,τ]. Then, for t ∈ (0,τ],

‖uh(t)−u(t)‖1 ≤C(R,τ)t−1/2(‖uh,0−Phu0‖+h
)
, (3.10)

‖uh(t)−u(t)‖ ≤C(R,τ)
(
‖uh,0−Phu0‖+h2t−1/2). (3.11)

Proof. We recall the Ritz projection operator Rh : V →Vh defined by

a(Rhv,χ) = a(v,χ), ∀χ ∈Vh, (3.12)

and the error bounds from Theorem 2.3,

‖Rhv− v‖+h‖Rhv− v‖1 ≤Chs‖v‖s, v∈Hs(Ω)∩V, s = 1,2. (3.13)

Following a standard practice we divide the error into two parts:

e(t)≡ uh(t)−u(t) =
(
uh(t)−Rhu(t)

)
+
(
Rhu(t)−u(t)

)
≡ θ(t)+ρ(t).

In view of (3.13) and (1.33), (1.34) we have, for j = 0,1 and s = 1,2,

‖ρ(t)‖ j ≤Chs− j‖u(t)‖s ≤C(R,τ)hs− jt−(s−1)/2, t ∈ (0,τ], (3.14)

‖ρ
′(t)‖ ≤Chs‖u′(t)‖s ≤C(R,τ)ht−1−(s−1)/2, t ∈ (0,τ]. (3.15)

It remains to estimate θ(t), which belongs to Vh. In view of (3.2), the

identity AhRh = PhA (which follows easily from (3.3) and (3.12)), and

(1.8), we find that

θ
′+Ahθ = u′h−Rhu′+Ahuh−AhRhu

= u′h +Ahuh−Rhu′−PhAu

= Ph f (uh)−
(
Ph f (u)−u′

)
−Rhu′

= Ph
(

f (uh)− f (u)
)
+Ph

(
u′−Rhu′

)
,
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that is,

θ
′+Ahθ = Ph

(
f (uh)− f (u)

)
−Phρ

′. (3.16)

Hence, with Dσ = ∂/∂σ,

θ(t) = Eh(t)θ(0)+
∫ t

0
Eh(t−σ)Ph

(
f (uh(σ))− f (u(σ))−Dσρ(σ)

)
dσ.

Integration by parts yields

−
∫ t/2

0
Eh(t−σ)PhDσρ(σ)dσ = Eh(t)Phρ(0)−Eh(t/2)Phρ(t/2)

+
∫ t/2

0

(
DσEh(t−σ)

)
Phρ(σ)dσ.

Hence

θ(t) = Eh(t)Phe(0)−Eh(t/2)Phρ(t/2)

+
∫ t/2

0

(
DσEh(t−σ)

)
Phρ(σ)dσ

−
∫ t

t/2
Eh(t−σ)PhDσρ(σ)dσ

+
∫ t

0
Eh(t−σ)Ph

(
f (uh(σ))− f (u(σ))

)
dσ.

(3.17)

Using the smoothing property (3.8) of Eh(t)Ph we obtain

‖θ(t)‖1 ≤Ct−1/2(‖Phe(0)‖+‖ρ(t/2)‖
)

+C
∫ t/2

0
(t−σ)−3/2‖ρ(σ)‖ dσ

+C
∫ t

t/2
(t−σ)−1/2‖Dσρ(σ)‖ dσ

+C
∫ t

0
(t−σ)−1/2‖ f (uh(σ))− f (u(σ))‖ dσ.
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Using also the error estimates for the elliptic projection in (3.14), (3.15)

with j = 0, s = 1, and the Lipschitz condition (1.24), we then get

‖θ(t)‖1 ≤C(R,τ)t−1/2(‖Phe(0)‖+h
)

+C(R,τ)h
(∫ t/2

0
(t−σ)−3/2 dσ+

∫ t

t/2
(t−σ)−1/2

σ
−1 dσ

)
+C(R)

∫ t

0
(t−σ)−1/2‖e(σ)‖1 dσ

≤C(R,τ)t−1/2(‖Phe(0)‖+h
)

+C(R)
∫ t

0
(t−σ)−1/2‖e(σ)‖1 dσ,

for t ∈ (0,τ]. Together with (3.14), (3.15) and e = θ+ρ this yields

‖e(t)‖1 ≤C(R,τ)t−1/2(‖Phe(0)‖+h
)
+C(R)

∫ t

0
(t−σ)−1/2‖e(σ)‖1 dσ,

for t ∈ (0,τ], and the desired bound follows by the generalized Gronwall

lemma, cf. Lemma 1.4. This proves (3.10), because Phe(0) = uh,0 −
Phu0.

To prove (3.11) we use the error estimates for the elliptic projection

in (3.14), (3.15) with j = 0, s = 2, and the Lipschitz condition (1.25)

instead of (1.24). We omit the details.

We now formulate an immediate consequence of the previous the-

orem, which is the form in which we will apply it later on. (It is con-

venient to change the notation so that the length of the local interval of

existence is now 2τ.)

Theorem 3.3. Let R ≥ 0 and τ > 0 be given. Assume S(t,v),Sh(t,vh) ∈
BR for t ∈ [0,2τ]. Then, for l = 0,1,

‖Sh(t,vh)−S(t,v)‖l ≤C(R,τ)
(
‖vh−Phv‖+h2−l), t ∈ [τ,2τ].
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3.2 A completely discrete scheme

In this subsection we show that the above program can be carried out

also for a completely discrete scheme based on the backward Euler

method. We replace the time derivative in (3.2) by a backward differ-

ence quotient ∂tU j = (U j−U j−1)/k, where k is a time step and U j is the

approximation of u j = u(t j) and t j = jk. The discrete solution U j ∈ Vh

thus satisfies

∂tU j +AhU j = Ph f (U j), t j > 0; U0 = uh,0. (3.18)

Duhamel’s principle yields

U j = E j
khuh,0 + k

j

∑
l=1

E j−l−1
kh Ph f (Ul), t j ≥ 0, (3.19)

where Ekh = (I + kAh)−1. Since Ah is self-adjoint positive definite (uni-

formly in h), we have the inequality

‖∂
l
tE

j
khv‖ = ‖Al

hE j
khv‖ ≤Clt−l

j ‖v‖, t j ≥ tl, v ∈Vh, l ≥ 0,

which is the discrete analogue of (1.18). In view of the inequalities (3.5)

and (3.6) this leads to a smoothing property analogous to (3.8):

‖∂
l
tE

j
khPh f‖β ≤Ct−l−(β−α)/2

j ‖ f‖α, t j > 0, f ∈ D(Aα/2),

−1 ≤ α ≤ β ≤ 1, l = 0,1.
(3.20)

Again the proof of Theorem 1.2 carries over verbatim to the discrete

case. We thus have:

Theorem 3.4. For any R0 > 0 there is τ = τ(R0) such that (3.19) has

a unique solution U j, t j ∈ [0,τ], for any initial value uh,0 ∈ Vh with

‖uh,0‖1 ≤ R0. Moreover, there is c such that maxt j∈[0,τ] ‖U j‖1 ≤ cR0.
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We denote by Shk(t j, ·) the corresponding (local) solution operator,

so that U j = Shk(t j,uh,0) is the solution of (3.19).

We may now estimate the difference between the local solutions

u(t) = S(t,u0) and U j = Shk(t j,uh,0) that we have obtained. We refer

to the following result as a local a priori error estimate. The proof can

be found in [10]. It follows the lines of the proof of Theorem 3.2 but is

more technical.

Theorem 3.5. Let R≥ 0 and τ > 0 be given. Let u(t) and U j be solutions

of (3.1) and (3.19) respectively, such that u(t),U j ∈ BR for t, t j ∈ [0,τ].

Then, for k ≤ k0(R) and t j ∈ (0,τ], we have

‖U j −u(t j)‖1 ≤C(R,τ)
(
‖uh,0−Phu0‖t−1/2

j +ht−1/2
j + kt−1

j
)
,

‖U j −u(t j)‖ ≤C(R,τ)
(
‖uh,0−Phu0‖+h2t−1/2

j + kt−1/2
j

)
.

There is also an analogue of Theorem 3.3.

Theorem 3.6. Let R≥ 0 and τ > 0 be given. Assume S(t,v),Shk(t j,vh)∈
BR for t, t j ∈ [0,2τ]. Then, for k ≤ k0(R) and l = 0,1, we have

‖Shk(t j,vh)−S(t j,v)‖l ≤C(R,τ)
(
‖vh−Phv‖+h2−l + k

)
, t j ∈ [τ,2τ].

4 Application to dynamical systems theory

Recall that we have defined (local) nonlinear semigroups: S(t, ·) : V →V

and Sh(t, ·) : Vh →Vh, where u(t) = S(t,v) is the (local) solution of

u′+Au = f (u), t > 0; u(0) = v, (4.1)

and uh(t) = Sh(t,vh) is the (local) solution of

u′h +Ahuh = Ph f (uh), t > 0; uh(0) = vh. (4.2)
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We now assume that we have global a priori bounds of the form: for any

bounded set B ⊂V there is R such that, for all v ∈ B and vh ∈ B∩Vh,

‖S(t,v)‖1 ≤ R, ‖Sh(t,vh)‖1 ≤ R, t ∈ [0,∞). (4.3)

Then S(t, ·) and Sh(t, ·) are defined for all t ∈ [0,∞). This is true, for

example, for the Allen-Cahn equation as explained above.

We assume that S(t, ·) has a global attractor A , i.e., A is a compact

invariant subset of V , which attracts the bounded sets of V . Thus, for

any bounded set B ⊂V and any ε > 0 there is T > 0 such that

S(t,B)⊂ N (A ,ε), t ∈ [T,∞),

where N (A ,ε) denotes the ε-neighborhood of A in V . Or equivalently,

δ(S(t,B),A)→ 0 as t → ∞, (4.4)

where

δ(A,B) = sup
a∈A

inf
b∈B

‖a−b‖1

denotes the unsymmetric semidistance between two subsets A,B of V .

We assume similarly that Sh(t, ·) has a global attractor Ah in Vh.

Theorem 4.1. Assume that S(t, ·) has a global attractor A in V , and

that Sh(t, ·) has a global attractor Ah in Vh. Then

δ(Ah,A)→ 0 as h → 0. (4.5)

In other words: for any ε > 0 there is h0 > 0 such that Ah ⊂N (A ,ε)

if h < h0. We also say that Ah is upper semicontinuous at h = 0. This

type of result was first proved in [6]. The opposite conclusion

δ(A ,Ah)→ 0 as h → 0, (4.6)
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lower semicontinuity, has also been proved under additional assump-

tions on the structure of the attractor. The proof is much more compli-

cated, [7].

Proof. We will use the local error estimate in Theorem 3.3. Take ε > 0

and a bounded set B ⊂ V . Consider uh(t) = Sh(t,vh) with vh ∈ B∩Vh.

We must find h0 and T so that

δ(Sh(t,vh),A)≤ ε, for t ≥ T, h ≤ h0.

Let BR = {v ∈ V : ‖v‖1 ≤ R} with R = R(B) as in (4.3). According

to (4.4) we have T = T (ε,BR) such that

δ(S(t,vh),A)≤ ε/2, for t ≥ T.

From Theorem 3.3 and (4.3), where R = R(B), we have

‖Sh(t,vh)−S(t,vh)‖1 ≤C(R,T )h, t ∈ [T,2T ].

Hence there is h0 = h0(ε,B,T ) such that

δ(Sh(t,vh),A)≤ ε/2+C(R,T )h ≤ ε, t ∈ [T,2T ], h ≤ h0.

In order to obtain a bound on [2T,3T ], we note that uh(T ) = Sh(T,vh) ∈
BR by (4.3). Hence, according to (4.4) we have, with the same T =

T (ε,BR),

δ(S(t,uh(T )),A)≤ ε/2, for t ≥ 2T.

From Theorem 3.3 and (4.3), we have with the same C(R,T ),

‖Sh(t,uh(T ))−S(t,uh(T ))‖1 ≤C(R,T )h, t ∈ [2T,3T ].
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Hence there is h0 = h0(ε,B,T ) such that

δ(Sh(t,vh),A)≤ ε/2+C(R,T )h ≤ ε, t ∈ [2T,3T ], h ≤ h0.

Repeating this we obtain the same bound on each interval of the form

[nT,(n+1)T ].

Clearly, one can prove a similar theorem in the completely discrete

case of Subsection 3.2.

5 A stochastic parabolic problem

In this lecture we briefly present an application of the above ideas to the

error analysis for a stochastic parabolic problem. This is based on [13].

The theory of stochastic partial differential equations is developed in the

monograph [3].

In order to comply with the standard notation in stochastic mathe-

matics we let Ω denote the sample space and we change the notation for

the spatial domain to be D . Thus, we set

H = L2(D), V = H1
0 (D),

and we let A = −∆ be as before with D(A) = H2(D)∩H1
0 (D). We

consider the equation

du+Audt = f (u)dt +g(u)dW, t > 0,

u(0) = u0,
(5.1)

which is equation (1.8) written in differential form and with a stochastic

noise term g(u)dW added. Here u(t) is an H-valued random process
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on a filtered probability space (Ω,F ,Ft ,P) and W (t) is an H-valued

Wiener process.

To give a meaning to this equation we apply Duhamel’s principle to

get

u(t) = E(t)u0 +
∫ t

0
E(t− s) f (u(s))ds

+
∫ t

0
E(t− s)g(u(s))dW (s),

(5.2)

which corresponds to (1.12). A solution of (5.2) is called a mild solution

of (5.1).

In order to proceed we must give a rigorous meaning to the stochastic

integral
∫ t

0 E(t − s)g(u(s))dW (s). To simplify the presentation we will

do this for the reduced equation (5.1) where f (u) = 0 and g(u) = I, i.e.,

du+Audt = dW, t > 0,

u(0) = u0,
(5.3)

and the mild solution is given by

u(t) = E(t)u0 +
∫ t

0
E(t− s)dW (s), t ≥ 0. (5.4)

A noise term g(u)dW , where g(u) depends on u, is called multiplicative

noise while the noise term dW in (5.3) is called added noise.

Following [3] we assume that W is given by an orthogonal series

W (t) =
∞

∑
l=1

γ
1/2
l βl(t)el, (5.5)

where γl > 0 and {el}l=1∞ are the eigenvalues and an orthonormal ba-

sis of corresponding eigenfunctions of a self-adjoint, positive definite,
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bounded, linear operator Q : H → H, which is called the covariance op-

erator of W . Furthermore, βl(t) are independent, identically distributed,

real-valued, Brownian motions. More precisely, W depends on three

variables

W (t,x,ω) =
∞

∑
l=1

γ
1/2
l βl(t,ω)el(x), t > 0, x ∈ D, ω ∈ Ω. (5.6)

We may identify two interesting cases. In the first case we assume

that Tr(Q) < ∞. Then W (t) is an H-valued Wiener process in the sense

that the following sum is convergent:

E
∥∥∥ ∞

∑
l=1

γ
1/2
l βl(t)el

∥∥∥2
=

∞

∑
l=1

γlEβl(t)2 =
∞

∑
l=1

γlt = t Tr(Q) < ∞.

This is called “colored noise”. In the second case we assume that Q =

I. Then W (t) is not H-valued, since Tr(I) = ∞, but W (t) exists in a

weaker sense. This is called “white noise”. Thus, the regularity of W is

governed by the decay rate γl → 0; the faster the decay the smoother the

noise.

We now consider the stochastic integral in (5.4). It turns out that a

stochastic integral ∫ t

0
B(s)dW (s)

can be defined provided that the operator B(s)Q1/2 is a Hilbert-Schmidt

operator on H. Recall that an operator is T is Hilbert-Schmidt if

‖T‖2
HS =

∞

∑
l=1

‖T ϕl‖2 < ∞,

where {ϕl} is an arbitrary orthonormal basis in H. From the construc-

tion follows that the integral has the isometry property

E
∥∥∥∫ t

0
B(s)dW (s)

∥∥∥2
= E

∫ t

0
‖B(s)Q1/2‖2

HS ds. (5.7)
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We can now prove an regularity estimate for the mild solution in

(5.4). It is convenient to define the following norms and spaces:

|v|β = ‖Aβ/2v‖, Ḣβ = D(Aβ/2), β ∈ R, (5.8)

and

‖v‖2
L2(Ω,Ḣβ) = E(|v|2

β
) =

∫
Ω

∫
D
|Aβ/2v|2 dxdP(ω), β ∈ R. (5.9)

Theorem 5.1. If ‖A(β−1)/2Q1/2‖HS < ∞ for some β ≥ 0, then the mild

solution in (5.4) satisfies

‖u(t)‖L2(Ω,Ḣβ) ≤C
(
‖u0‖L2(Ω,Ḣβ) +‖A(β−1)/2Q1/2‖HS

)
. (5.10)

Proof. We take norms in (5.4) and use the isometry in (5.7) to get

E|u(t)|2
β
≤C

(
E|E(t)u0|2β +E

∣∣∣∫ t

0
E(t− s)dW (s)

∣∣∣2
β

)
= C

(
E‖Aβ/2E(t)u0‖2 +E

∥∥∥∫ t

0
Aβ/2E(t− s)dW (s)

∥∥∥2)
= C

(
E‖Aβ/2E(t)u0‖2 +

∫ t

0
‖Aβ/2E(t− s)Q1/2‖2

HS ds
)

= C
(

E‖E(t)Aβ/2u0‖2

+∑
l

∫ t

0
‖A1/2E(t− s)A(β−1)/2Q1/2

ϕl‖2 ds
)

≤C
(

E‖Aβ/2u0‖2 +
∞

∑
l=1

‖A(β−1)/2Q1/2
ϕl‖2

)
= C

(
E|u0|2β +‖A(β−1)/2Q1/2‖2

HS

)
,

which is (5.10). Here we also used the bounds

‖E(t)v‖ ≤ ‖v‖,
∫ t

0
‖A1/2E(t− s)v‖2 ds ≤ ‖v‖2, (5.11)

which are easily proved as in (1.18).
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We examine the assumption ‖A(β−1)/2Q1/2‖HS < ∞ of the theorem

in the two cases mentioned above. First, if ‖Q1/2‖2
HS = Tr(Q) < ∞, then

we may take β = 1. In the other case, if Q = I, then since λ j ≈ j2/d , see

[11, Chapt. 6], we have

‖A(β−1)/2‖2
HS = ∑

j
λ
−(1−β)
j ≈∑

j
j−(1−β)2/d < ∞ (5.12)

if and only if d = 1, β < 1/2. Thus, the assumption can only be satisfied

for d = 1, in which case A =− ∂2

∂x2 .

We now discretize by the finite element method. The approximation

of (5.4) is to find uh(t) ∈Vh such that

duh +Ahuh dt = PhdW,

uh(0) = Phu0,
(5.13)

cf. (3.4). More rigorously, with Eh(t) = e−tAh , we consider the mild

solution

uh(t) = Eh(t)Phu0 +
∫ t

0
Eh(t− s)Ph dW (s), (5.14)

cf. (3.9). We want to estimate the error uh(t)− u(t). We prepare by

proving estimates for the error in the deterministic finite element prob-

lem.

Theorem 5.2. Denote Fh(t)v = Eh(t)Phv−E(t)v. Then we have, for

0 ≤ β ≤ 2 and t ≥ 0,

‖Fh(t)v‖ ≤Chβ|v|β, (5.15)(∫ t

0
‖Fh(s)v‖2 ds

)1/2
≤Chβ|v|β−1. (5.16)
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Proof. We write temporarily uh(t) = Eh(t)Phv, u(t) = E(t)v and set

e(t) = uh(t)−u(t) = Eh(t)Phv−E(t)v. In order to prove (5.15) we recall

the proof of Theorem 3.2, in particular, (3.17) which becomes

θ(t) =−Eh(t/2)Phρ(t/2)

+
∫ t/2

0

(
DσEh(t−σ)

)
Phρ(σ)dσ

−
∫ t

t/2
Eh(t−σ)PhDσρ(σ)dσ,

because now Phe(0) = Ph(uh(0)− u(0)) = Ph(Phv− v) = 0 and f = 0.

Using the smoothing property (3.8) of Eh(t)Ph, the error bound (3.13),

and the smoothing property (1.19) of E(t), we obtain

‖θ(t)‖ ≤ ‖ρ(t/2)‖+C
∫ t/2

0
(t−σ)−1‖ρ(σ)‖ dσ

+C
∫ t

t/2
‖Dσρ(σ)‖ dσ

≤Ch2‖E(t/2)v‖2 +Ch2
∫ t/2

0
(t−σ)−1‖E(σ)v‖2 dσ

+Ch2
∫ t

t/2
‖DσE(σ)v‖2 dσ

≤Ch2‖v‖2

(
1+

∫ t/2

0
(t−σ)−1 dσ+

∫ t

t/2
σ
−1 dσ

)
≤Ch2‖v‖2.

Together with a similar bound for ‖ρ(t)‖ this implies the special case

β = 2 of (5.15), because the norms |·|2 and ‖·‖2 are equivalent on D(A).

The special case β = 0 is trivial because

‖Fh(t)v‖ ≤ ‖Eh(t)v‖+‖E(t)v‖ ≤ 2‖v‖,

and the intermediate cases follow by interpolation.
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In order to prove (5.16) we derive another equation for the error:

A−1
h Phe′+ e = A−1

h Phu′h−A−1
h Phu′+uh−u

=−A−1
h PhAhuh +A−1

h PhAu+uh−u

= A−1
h PhAu−u

= RhAu−u = ρ,

since u′h =−Ahuh, u′ =−Au, and A−1
h PhA = Rh. Taking the scalar prod-

uct of this equation with e yields

(A−1
h Phe′,e)+‖e‖2 = (ρ,e)≤ ‖ρ‖ ‖e‖ ≤ 1

2
‖ρ‖2 +

1
2
‖e‖2,

so that

Dt(A−1
h Phe,e)+‖e‖2 ≤ ‖ρ‖2,

and after integration, recall that Phe(0) = 0,

(A−1
h Phe(t),e(t))+

∫ t

0
‖e‖2 ds ≤

∫ t

0
‖ρ‖2 ds,

and hence∫ t

0
‖e‖2 ds ≤

∫ t

0
‖ρ‖2 ds ≤Ch4

∫ t

0
‖E(s)v‖2

2 ds

≤Ch4
∫ t

0
‖A1/2E(s)A1/2v‖2 ds ≤Ch4‖A1/2v‖2 = Ch4|v|21,

where we used (3.13) and (5.11). This is the special case β = 2 of (5.16).

The special case β = 0 is proved by using (5.11) again:∫ t

0
‖E(s)v‖2 ds =

∫ t

0
‖A1/2E(s)A−1/2v‖2 ds ≤ ‖A−1/2v‖2 = |v|2−1,
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and similarly for the finite element semigroup∫ t

0
‖Eh(s)Phv‖2 ds =

∫ t

0
‖A1/2

h Eh(s)A
−1/2
h Phv‖2 ds

≤ ‖A−1/2
h Phv‖2 ≤ |v|2−1,

where we also used (3.6). The intermediate cases follow by interpola-

tion.

We can now prove strong convergence in L2 norm. We remind the

reader that

‖uh(t)−u(t)‖2
L2(Ω,H) = E(‖uh(t)−u(t)‖2)

is the expected value of the square of the L2(D)-norm of the error.

Theorem 5.3. If ‖A(β−1)/2Q1/2‖HS < ∞ for some β ∈ [0,2], then

‖uh(t)−u(t)‖L2(Ω,H) ≤Chβ

(
‖u0‖L2(Ω,Ḣβ) +‖A(β−1)/2Q1/2‖HS

)
.

Proof. We recall

u(t) = E(t)u0 +
∫ t

0
E(t− s)dW (s)

and

uh(t) = Eh(t)Phu0 +
∫ t

0
Eh(t− s)PhdW (s),

so that with Fh(t) = Eh(t)Ph−E(t),

uh(t)−u(t) = Fh(t)u0 +
∫ t

0
Fh(t− s)dW (s) = e1(t)+ e2(t).

Using (5.15) we get

‖e1(t)‖L2(Ω,H) ≤Chβ‖u0‖L2(Ω,Ḣβ)
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as desired. For the other term we use the isometry in (5.7) and (5.16) to

get

‖e2(t)‖2
L2(Ω,H) = E

∥∥∥∫ t

0
Fh(t− s)dW (s)

∥∥∥2
=

∫ t

0
‖Fh(t− s)Q1/2‖2

HS ds

=
∞

∑
l=1

∫ t

0
‖Fh(t− s)Q1/2

ϕl‖2 ds ≤C
∞

∑
l=1

h2β|Q1/2
ϕl|2β−1

= Ch2β
∞

∑
l=1

‖A(β−1)/2Q1/2
ϕl‖2 = Ch2β‖A(β−1)/2Q1/2‖2

HS.

This completes the proof.

We recall the two cases discussed before. If ‖Q1/2‖2
HS = Tr(Q) < ∞,

then the convergence rate is O(h). If Q = I, then the assumption can

be satisfied only if d = 1, A = − ∂2

∂x2 , in which case the rate is almost

O(h1/2). We have no result for Q = I, d ≥ 2. This result thus indicates

that convergence rates in the multidimensional situation, d ≥ 2, can only

be proved for colored noise.

The paper [13] also contains an analogous analysis of a temporal

discretization by the backward Euler method.

The numerical approximation of stochastic partial differential equa-

tions is a relatively new field of research and contains many open prob-

lems. For example:

• The noise term in (5.13) is the orthogonal projection of the in-

finite series (5.6). This is not directly computable, except if the

eigenfunctions el are explicitly known. We need another repre-

sentation of colored noise which is computable. This can perhaps

be obtained by expanding W in a wavelet basis instead of eigen-

functions.
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• The convergence in Theorem 5.3 is strong convergence, i.e., con-

vergence in norm. A more useful convergence concept is weak

convergence, or convergence in law. It is a challenge to prove

weak convergence of finite element approximations.

• Extension of the analysis to various nonlinear stochastic partial

differential equations.
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