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Abstract

This thesis consists of three papers on numerical approximation of the
Cahn-Hilliard equation. The main part of the work is concerned with the
Cahn-Hilliard equation perturbed by noise, also known as the Cahn-Hilliard-
Cook equation.

In the first paper we consider the linearized Cahn-Hilliard-Cook equa-
tion and we discretize it in the spatial variables by a standard finite element
method. Strong convergence estimates are proved under suitable assump-
tions on the covariance operator of the Wiener process, which is driving the
equation. The analysis is set in a framework based on analytic semigroups.
The main part of the work consists of detailed error bounds for the corre-
sponding deterministic equation. Time discretization by the implicit Euler
method is also considered.

In the second paper we study the nonlinear Cahn-Hilliard-Cook equation.
We show almost sure existence and regularity of solutions. We introduce
spatial approximation by a standard finite element method and prove error
estimates of optimal order on sets of probability arbitrarily close to 1. We
also prove strong convergence without known rate.

In the third paper the deterministic Cahn-Hilliard equation is considered.
A posteriori error estimates are proved for a space-time Galerkin finite el-
ement method by using the methodology of dual weighted residuals. We
also derive a weight-free a posteriori error estimate in which the weights are
condensed into one global stability constant.

Keywords: finite element, a priori error estimate, stochastic integral,
mild solution, dual weighted residuals, a posteriori error estimate, additive
noise, Wiener process, Cahn-Hilliard equation, existence, regularity, Lya-
punov functional, stochastic convolution.
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1 Introduction

The Cahn-Hilliard equation is an equation of mathematical physics which
describes the process of phase separation, by which the two components
of a binary fluid spontaneously separate and form domains pure in each
component.

In this thesis we study numerical approximation of the Cahn-Hilliard
equation. We consider both the original equation and the equation per-
turbed by noise. The stochastic Cahn-Hilliard equation also called the Cahn-
Hilliard-Cook equation. This work involves several mathematical topics:

• Semigroup theory

• Cahn-Hilliard equation

• Stochastic analysis in Hilbert space

• Finite element method

• A posteriori error analysis based on the calculus of variations

In the following we give a brief survey of these topics and finally a summary
of the appended papers.

2 Semigroup approach

Semigroup theory is the abstract study of first order ordinary differential
equations with values in Banach space, driven by linear, but possibly un-
bounded operators. This approach has a wide applications in different
branches of analysis, such as harmonic analysis, approximation theory and
many other subjects. In this section we outline the basics of the theory,
without proof. For more complete and advanced details of the theory and
its applications the partial differential equations, one may refer to Evans [8]
and Pazy [17].

Definition 2.1 (Semigroup). A family {E(t)}t≥0 of bounded linear oper-
ators from Banach space X to X is called a semigroup of bounded linear
operators if

1. E(0) = I, (identity operator)

2. E(t + s) = E(t)E(s), ∀s, t ≥ 0. (semigroup property)

The semigroup is called strongly continuous if

lim
t→0+

E(t)x = x ∀x ∈ X.

1



The infinitesimal generator of the semigroup is the linear operator G defined
by

Gx = lim
t→0+

E(t)x− x

t
,

its domain of definition D(G) being the space of all x ∈ X for which the
limit exists. The semigroup can be denoted by E(t) = etG.

A strongly continuous semigroups of bounded linear operators on X is
often called a C0 semigroup. If, moreover, ‖E(t)‖ ≤ 1 for t ≥ 0, it is called
a semigroup of contractions.

In this work we consider −∆ with the homogeneous Neumann boundary
condition as an unbounded linear operator on L2 = L2(D) with standard
scalar product 〈·, ·〉 and norm ‖·‖. It has eigenvalues {λj}∞j=0 with

0 = λ0 < λ1 ≤ · · · ≤ λj ≤ · · · ≤ λj →∞,

and corresponding orthonormal eigenfunctions {ϕj}∞j=0. The first eigenfunc-
tion ϕ0 is constant. Also we let Ḣ be the subspace of H, which is orthogonal
to the constants,

Ḣ =
{

v ∈ L2 : 〈v, 1〉 = 0
}

,

and let P be the orthogonal projection of H onto Ḣ. Define the linear
operator A = −∆ with domain of definition

D(A) =
{

v ∈ H2 ∩H :
∂v

∂n
= 0 on ∂D

}
.

By spectral theory we define Ḣs = D(As/2) with norms |v|s = ‖As/2v‖ for
real s ≥ 0. Then the semigroup e−tA2

generated by G = −A2 can be written
as

e−tA2
v =

∞∑

j=0

e−tλ2
j 〈v, ϕj〉ϕj .

This is a strongly continuous semigroup. Moreover, it is analytic, meaning
that e−tA2

can be extended to be a holomorphic function of t. This leads to
the important properties in the following lemma. For the proof and more
details about properties of semigroups we refer to [17].

Lemma 2.2. If {e−tA2}t≥0 is the semigroup generated by −A2, then the
following hold:

‖Aβe−tA2
v‖ ≤ Ct−β/2‖v‖, t > 0, β ≥ 0,

∫ t

0
‖Ae−sA2

v‖2 ds ≤ C‖v‖2.
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3 Cahn-Hilliard equation

When a homogeneous molten binary alloy is rapidly cooled, the resulting
solid is usually found to be not homogeneous, but instead has a fine grained
structure consisting of just two materials, which differs only in the mass
fraction of the components of the alloy. The development of a fine grained
structure from a homogeneous state is referred to as spinodal decomposition.

In 1958, J. Cahn and J. Hilliard [4] derived an expression for the free
energy of a sample V of binary alloy with concentration field c(x) of one of
two species. They assumed that the free energy density depends not only on
c(x) but also on the derivative of c. The expression for the total free energy
has the form,

E = NV

∫

V

(
F (c) + κ|∇c|2

)
dV, (3.1)

where NV is the number of molecules per unit volume, F is the free energy
per molecule of an alloy of uniform composition, and κ is a material constant
which is typically very small. The function F has two wells with minima
located at the two coexistent concentration states, labeled cα and cβ > cα.

With the given average concentration τ , the equilibrium configurations
satisfy the Cahn-Hilliard equation

2κ∆c− F ′(c) = λ in V, (3.2)
∂c

∂n
= 0 on ∂V, (3.3)

where ∆ is the Laplacian, λ is a Lagrange multiplier associated with the
constraint τ , and n is the normal to ∂V . In [4], equations (3.2), (3.3)
together with the constraint are used to predict the profile and thickness of
one-dimensional transitions between concentration phases cα and cβ.

The general equation governing the evolution of a non-equilibrium state
c(x, t) is put forth in [3] and this is what is now referred to as the Cahn-
Hilliard equation

∂c

∂t
= ∇ · {M∇(F ′(c)− 2κ∆c)} inV, (3.4)

with the boundary conditions

∂c

∂n
=

∂∆c

∂n
= 0 on ∂V. (3.5)

The positive quantity M is related to the mobility of the two atomic species
which comprise the alloy.
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In the this thesis we consider the Cahn-Hilliard equation in the form

ut − ε∆w dt = 0 in D × [0, T ],
w + ∆u− f(u) = 0 in D × [0, T ],

∂u

∂n
=

∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0 in D,

(3.6)

where ut = ∂u/∂t. The equation perturbed by noise is

du− ε∆w dt = dW in D × [0, T ],
w + ∆u− f(u) = 0 in D × [0, T ],

∂u

∂n
=

∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0 in D,

(3.7)

where D is a bounded domain in Rd, d = 1, 2, 3 and f(s) = s3 − s.
In the sequel we will write the equation (3.6) in operator form. By

definition of D(A) and H, equation (3.6) can be written as

ut + A2u = −Af(u), t > 0,

u(0) = u0,
(3.8)

which is equivalent to the fixed point equation

u(t) = e−tA2
u0 −

∫ t

0
e−(t−s)A2

Af(u(s)) ds.

The generator −A2 is the infinitesimal generator of an analytic semigroup
e−tA2

on H so that

e−tA2
v =

∞∑

j=0

e−tλ2
j 〈v, ϕj〉ϕj =

∞∑

j=1

e−tλ2
j 〈v, ϕj〉ϕj + 〈v, ϕ0〉ϕ0

= e−tA2
Pv + (I − P )v.

4 Stochastic analysis in Hilbert space

In this thesis we use the stochastic integrals and its properties frequently, so
in this section we recall some definitions and theorems about stochastic inte-
grals without proof. For more details one may refer to Prévôt and Röckner
[20], Da Prato and Zabczyk [7], Klebaner [13] and Grigoriu [12].
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4.1 Wiener process

Let Q be a selfadjoint, positive semidefinite, bounded linear operator on
the Hilbert space U with Tr(Q) < ∞. Let U and H be separable Hilbert
spaces and assume that {W (t)}t∈[0,T ] is a U -valued Q-Wiener process on a
probability space (Ω,F , P ) with respect to the normal filtration {Ft}t∈[0,T ],
where T > 0 is fixed.

Definition 4.1. A U -valued stochastic process {W (t)}t≥0 is called a Q-
Wiener process if

• W (0) = 0,

• {W (t)}t≥0 has continuous paths almost surely,

• {W (t)}t≥0 has independent increments,

• The increments have a Gaussian law, that is,

P ◦ (W (t)−W (s))−1 = N(0, (t− s)Q), 0 ≤ s < t.

Let {ek}∞k=1 be an orthonormal eigenbasis for Q with corresponding
eigenvalues {γk}∞k=1. Then we define

W (t) =
∞∑

k=1

γ
1
2
k βk(t)ek,

where the βk are real valued independent Brownian motions. The series
converges in L2(Ω,H).

4.2 Stochastic integral

Definition 4.2. Let L(U,H) denote the space of bounded linear operators
U → H. An L(U,H)-valued process {Φ(t)}t∈[0,T ] is called elementary if
there exist 0 = t0 < t1 < · · · < tN = T, N ∈ N, such that

Φ(t) =
N−1∑

m=0

Φm1(tm,tm+1](t), t ∈ [0, T ],

where

• Φm: (Ω,F) → L(U,H) is strongly Ftm measurable,

• Φm takes only a finite number of values in L(U,H).

We denote the (linear) space of elementary process by E .
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Definition 4.3 (Itô integral). For Φ ∈ E , we define the stochastic integral
by

∫ t

0
ΦdW :=

N−1∑

n=0

Φn(∆Wn(t)), t ∈ [0, T ],

where
∆Wn(t) = W (tn+1 ∧ t)−W (tn ∧ t) t ∧ s = min(t, s).

Definition 4.4 (Hilbert-Schmidt operators). An operator T ∈ L(U,H) is
Hilbert-Schmidt if

∑∞
k=1 ‖Tek‖2 < ∞ for an orthonormal basis {ek}k∈N in

U . The Hilbert-Schmidt operators form a linear space denoted by L2(U,H)
which becomes a Hilbert space with scalar product and norm

〈T, S〉HS =
∞∑

k=1

〈Tek, Sek〉H , ‖T‖HS =
( ∞∑

k=1

‖Tek‖2
H

) 1
2
.

We recall that the trace of a linear operator T is

Tr(T ) =
∞∑

k=1

〈Tek, ek〉.

Consider the covariance operator Q:U → U , selfadjoint, positive semidef-
inite, bounded and linear. Also assume that W (t) is Q-Wiener process.
If

E
∫ t

0
‖T (s)Q1/2‖2

HS ds < ∞,

we can define the stochastic integral
∫ t
0 T (s) dW (s) as a limit in L2(Ω, H)

of integrals of elementary processes.
One important property the stochastic integral is the isometry property:

Proposition 4.5 (Isometry property).

E
∥∥∥
∫ t

0
T (s) dW (s)

∥∥∥
2

= E
∫ t

0
‖T (s)Q1/2‖2

HS ds. (4.1)

4.3 Stochastic ordinary differential equation

Stochastic differential equations arise naturally in various engineering prob-
lems, where the effects of random noise perturbations to a system are being
considered. For example in the problem of tracking a satellite, we know
that it’s motion will obey Newton’s law to a very high degree of accuracy,
so in theory we can integrate the trajectories from the initial points. How-
ever in practice there are rather random effects which perturb the motions.
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For more details one can refer to Kuo [14], Klebaner [13] and Chung and
Williams [6] The variety of SDE to be considered here describes a diffusion
process and has the form

dXt = b(t,Xt) + σ(t,Xt) dBt, (4.2)

where bi(x, t) and σij(t, x) for 1 ≤ i ≤ d and 1 ≤ j ≤ r are Borel measurable
functions.

Definition 4.6 (Strong solution). A strong solution of the SDE (4.2) on
the given probability space (Ω,F , P ) with initial condition ξ is a process
{Xt}t≥0 which has continuous sample paths such that

• Xt is adapted to the augmented filtration generated by the Brownian
motion B and initial condition ξ, which is denoted Ft.

• P (X0 = ξ) = 1.

• For every 0 ≤ t < ∞ and for each 1 ≤ i ≤ d and 1 ≤ j ≤ r, then the
following hold almost surely

∫ t

0
|bi(s, Xs)|+ σ2

ij(s,Xs)ds < ∞.

• Almost surely the following holds

Xt = ξ +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dBs.

4.4 Stochastic partial differential equation

A stochastic partial differential equation (SPDE) is a partial differential
equation containing a random (noise) term. The study of SPDEs is an ex-
citing topic which brings together techniques from probability theory, func-
tional analysis, and the theory of partial differential equations.

Stochastic partial differential equations appear in several different ap-
plications: study of random evolution of systems with a spatial extension
(random interface growth, random evolution of surfaces, fluids subject to
random forcing), study of stochastic models where the state variable is infi-
nite dimensional (for example, a curve or surface), see Carmona [5], Musiela
[16], Goldys et al. [11], Goldys and Maslowski [10], Peszat and Zabczyk
[19], [18]. The solution to a stochastic partial differential equations may be
viewed in several manners. One can view a solution as a random field (set
of random variables indexed by a multidimensional parameter). In the case
where the SPDE is an evolution equation, the infinite dimensional point of
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view consists in viewing the solution at a given time as a random element
in a function space and thus view the SPDE as a stochastic evolution equa-
tion in an infinite dimensional space. In the pathwise point of view, one
tries to give a meaning to the solution for (almost) every realization of the
noise and then view the solution as a random variable on the set of (infinite
dimensional) paths thus defined.

In this section we have a short introduction to the stochastic partial
differential equations. For more details and proofs we refer to Frieler and
Knoche [9], Da Prato and Zabczyk [7] and Prévôt and Röckner [20].

Definition 4.7. Let {W (t)}t∈[0,T ] be a U -valued Q-Wiener process on the
probability space (Ω,F , P ), adapted to a normal filtration {Ft}t∈[0,T ]. The
stochastic partial differential equation (SPDE) is of the form

dX(t) = (AX(t) + f(t)) dt + dW (t), 0 < t < T,

X(0) = ξ,
(4.3)

where the following assumptions hold:

1. A is a linear operator, generating a strongly continuous semigroup
(C0-semigroup) of bounded linear operators {E(t)}t≥0,

2. B ∈ L(U,H),

3. {f(t)}t∈[0,T ] is a predictable H-valued process with Bochner integrable
trajectories,

4. ξ is an F0-measurable H-valued random variable.

Definition 4.8 (Weak solution). An H-valued process {X(t)}t∈[0,T ] is a
weak solution of (4.3) if {X(t)}t∈[0,T ] is H-predictable, {X(t)}t∈[0,T ] has
Bochner integrable trajectories P -almost surely and

〈X(t), η〉 = 〈ξ, η〉 +
∫ t

0
(〈X(s), A∗η〉 + 〈f(s), η〉) ds

+
∫ t

0
B dW (s), P -a.s., ∀η ∈ D(A), t ∈ [0, T ].

Definition 4.9 (Mild solution). An U -valued predictable process X(t), t ∈
[0, T ], is called a mild solution of problem (4.3) if

X(t) = E(t)ξ +
∫ t

0
E(t− s)f(s) ds +

∫ t

0
E(t− s)B(X(s)) dW (s)

P -a.s. for each t ∈ [0, T ]. In particular, the appearing integrals have to be
well defined.
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Definition 4.10 (Strong solution). An H-valued process {X(t)}t∈[0,T ] is a
strong solution of (4.3) if {X(t)}t∈[0,T ] is H-predictable, X(t, ω) ∈ D(A) PT -
almost surely,

∫ T
0 ‖AX(t)‖ dt < ∞ P -almost surely, and, for all t ∈ [0, T ],

X(t) = ξ +
∫ t

0
(AX(s) + f(s)) ds +

∫ t

0
B dW (s), P -a.s.

Recall that the integral
∫ t
0 B dW (s) is defined if and only if ‖B‖2

HS =
Tr(BQB∗) < ∞.

In a special case we have the stochastic Cahn-Hilliard equation as

dX(t) + A2X(t) dt + Af(X(t)) dt = dW (t), t > 0,

X(0) = X0,
(4.4)

where A = −∆, P is the orthogonal projection of L2 onto Ḣ. By using the
semigroup approach we can write the mild solution to the equation (4.4) as

X(t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds +

∫ t

0
E(t− s) dW (s), (4.5)

where {E(t)}t≥0 = {e−tA2}t≥0 is the semigroup generated by −A2. In this
thesis we study the equation (4.4) in linear, f ≡ 0, and nonlinear cases.

4.5 Stochastic convolution

The last term in (4.5) is a stochastic convolution

(4.6)

WA(t) =
∫ t

0
e−(t−s)A2

dW (s)

=
∫ t

0
e−(t−s)A2

PdW (s) +
∫ t

0
〈dW (s), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

PdW (s) + 〈W (t), ϕ0〉ϕ0.

=
∫ t

0
e−(t−s)A2

PdW (s) + (I − P )W (t).

5 Finite element method

The finite element method (FEM) is a numerical technique for finding ap-
proximate solutions of partial differential equations (PDE). In solving PDEs,
the primary challenge is to create an equation that approximates the equa-
tion to be studied, but is numerically stable, meaning that errors in the
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input data and intermediate calculations do not accumulate and cause the
resulting output to be meaningless. There are many ways of doing this, all
with advantages and disadvantages. The finite element method is a good
choice for solving partial differential equations over complicated domains.
For more details one can refer to Larsson and Thomée [15] and Thomée
[21].

In this section we study the FEM for the Cahn-Hilliard equation in
deterministic and stochastic cases.

Let {Th}h>0 denote a family of regular triangulations of D with maximal
mesh size h. Let Sh the space of continuous functions on D, which are
piecewise polynomials of degree ≤ 1 with respect to Th. Hence Sh ⊂ H1.
We also define Ṡh = PSh, that is,

Ṡh =
{

vh ∈ Sh :
∫

D
vh dx = 0

}
.

The space Ṡh is only used for the purpose of theory but not for computation.
Now we define the ”discrete Laplacian” Ah: Sh → Ṡh by

〈Ahvh, wh〉 = 〈∇vh,∇wh〉, ∀vh ∈ Sh, wh ∈ Ṡh. (5.1)

The operator Ah is selfadjoint, positive definite on Ṡh and Ah has an or-
thonormal eigenbasis {ϕh,j}Nh

j=0 with corresponding eigenvalues {λh,j}Nh
j=0.

We have
0 = λh,0 < λh,1 < · · · ≤ λh,j ≤ λh,Nh

,

and ϕh,0 = ϕ0 = |D|− 1
2 . Moreover we define e−tA2

h :Sh → Sh by

e−tA2
hvh =

Nh∑

j=0

e−tλ2
h,j 〈vh, ϕh,j〉ϕh,j =

Nh∑

j=1

e−tλ2
h,j 〈vh, ϕh,j〉ϕh,j + 〈vh, ϕ0〉ϕ0,

and the orthogonal projector Ph: H → Sh by

〈Phv, wh〉 = 〈v, wh〉 ∀v ∈ H, wh ∈ Sh. (5.2)

Clearly Ph: Ḣ → Ṡh and

e−tA2
hPhv = e−tA2

hPhPv + (I − P )v.

5.1 FEM for the deterministic Cahn-Hilliard equation

Consider the Cahn-Hilliard equation (3.6) with ε = 1

ut −∆w = 0, x ∈ D, t > 0,

w + ∆u− f(u) = 0, x ∈ D, t > 0,

∂u

∂n
= 0,

∂v

∂n
= 0, x ∈ ∂D, t > 0,

u(x, 0) = u0(x), x ∈ D.

(5.3)
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Multiply the first and the second equation of (5.3) by φ = φ(x) ∈ H1(D) =
H1 and integrate over D. Using Green’s formula gives

〈ut, φ〉+ 〈∇w,∇φ〉 = 0 ∀φ ∈ H1,

〈w, φ〉 = 〈∇u,∇φ〉+ 〈f(u), φ〉 ∀φ ∈ H1.
(5.4)

So the variational formulation is: Find u(t), w(t) ∈ H1 such that (5.4) holds
and such that u(x, 0) = u0(x) for x ∈ D.

Let Th = {K} denote a triangulation of D and let Sh denote the contin-
uous piecewise polynomial functions on Th. So the finite element problem
is: Find uh(t), wh(t) ∈ Sh such that

〈uh,t, χ〉+ 〈∇wh,∇χ〉 = 0 ∀χ ∈ Sh, t > 0,

〈wh, χ〉 = 〈∇uh,∇χ〉+ 〈f(uh), χ〉 ∀χ ∈ Sh, t > 0,

uh(0) = uh,0.

(5.5)

Then we can write the equation (5.5) as

uh,t + A2
huh + AhPhf(uh) = 0, t > 0,

uh(0) = u0,h,
(5.6)

which is equivalent to the fixed point equation

uh(t) = e−tA2
hu0,h −

∫ t

0
e−(t−s)A2

hAhPhf(uh(s)) ds,

where

e−tA2
hv =

∞∑

j=0

e−tλ2
h,j 〈v, ϕh,j〉ϕh,j ,

where (λh,j , ϕh,j) are the eigenpairs of Ah.

5.2 FEM for the stochastic Cahn-Hilliard equation

Consider the equation (4.4) and assume that {Th}0<h<1 is a triangulation
with mesh size h and {Sh}0<h<1 is the set of continuous piecewise linear
functions where Sh ⊂ H1(D). Also let Ah and Ph be the same as in (5.1)
and (5.2). The finite element problem for (4.4) is:

Find Xh(t) ∈ Ṡh such that

dXh(t) + A2
hXh(t) dt + AhPhf(Xh(s)) dt = Ph dW (t),

Xh(0) = PhX0,
(5.7)
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where PhW (t) is Qh-Wiener process on Sh with Qh = PhQPh. The mild
solution is given by the equation

Xh(t) = Eh(t)PhX0−
∫ t

0
Eh(t−s)AhPhf(Xh(s)) ds+

∫ t

0
E(t−s)Ph dW (s),

where Eh(t) = e−tA2
h . In the linear case, the finite element problem is

dXh(t) + A2
hXh(t) dt = Ph dW (t),

Xh(0) = PhX0,
(5.8)

with mild solution

Xh(t) = E(t)PhX0 +
∫ t

0
E(t− s)Ph dW (s).

Now define the stochastic convolution

WAh
(t) =

∫ t

0
e−(t−s)A2

h PhdW (s)

=
∫ t

0
e−(t−s)A2

h PhPdW (s) + 〈W (t), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

h PhPdW (s) + (I − P )W (t).

Hence, in view of (4.6),

WAh
(t)−WA(t) =

∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2
)

P dW (s),

so that the error can be analyzed in the spaces Ḣ and Ṡh.
Let k = ∆tn, tn = nk and ∆Wn = W (tn) − W (tn−1). Also consider

∆Xh,n = Xh,n −Xh,n−1 and apply the backward Euler method to (5.8) to
get

Xh,n ∈ Sh,

∆Xh,n + A2
hXh,n∆tn = Ph∆Wn, (5.9)

Xh,0 = PhX0.

This implies
Xh,n −Xh,n−1 + kA2

hXh,n = Ph∆Wn.

If we set Ek,h = (I + kA2
h)−1 we get

(I + kA2
h)Xh,n = Ph∆Wn + Xh,n−1.
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So
Xh,n = Ek,hPh∆Wn + Ek,hXh,n−1.

We repeat it to get

Xh,n = En
k,hPhX0 +

n∑

j=1

En−j+1
k,h Ph∆Wj . (5.10)

6 A posteriori error estimate

In this section we recall some theorems and techniques for a posteriori error
estimates for the Galerkin approximation of nonlinear variational problems.
For more details and proofs, we refer to Bangerth and Rannacher [1] and
Becker and Rannacher [2].

Let A(u, ·) be a semi-linear form and J(·) an output functional, not nec-
essarily linear, defined on some function space V . Consider the variational
problem: Find u ∈ V such that

A(u;ψ) = 0 ∀ψ ∈ V, (6.1)

and the corresponding finite element problem: Find uh ∈ Vh ⊂ V such that

A(uh; ψh) = 0 ∀ψh ∈ Vh. (6.2)

Suppose that the directional derivatives of A and J up to order three exist
and denoted by

A′(u; ϕ, ·), A′′(u; ψ, ϕ, ·), A′′′(u; ξ, ψ, ϕ, ·),

and
J ′(u;ϕ), J ′′(u; ψ, ϕ), A′′(u; ξ, ψ, ϕ),

respectively for increments ϕ, ψ, ξ ∈ V . We want to estimate J(u)−J(uh).
Introduce dual variable z ∈ V and define the Lagrangian functional

L(u; z) := J(u)− J(uh),

and seek for the stationary points {u, z} ∈ V × V of L(·, ·). i.e. for all
ψ, ϕ ∈ V

L′(u; z, ϕ, ψ) = J ′(u; ϕ)−A′(u; z, ϕ)−A(u;ψ) = 0.

We quote three lemmas from [1].
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Lemma 6.1. Let L(·) be a three times differentiable functional defined on
a (real or complex) vector space X which has a stationary point x ∈ X, i.e.

L′(x; y) = 0, ∀y ∈ X,

Suppose that on a finite dimensional subspace Xh ⊂ X the corresponding
Galerkin approximation

L′(xh; yh) = 0 ∀yh ∈ Xh.

has a solution, xh ∈ Xh. Then there holds the error representation

L(x)− L(xh) =
1
2
L′(xh; x− yh) +Rh ∀yh ∈ Xh,

with a remainder term Rh, which is cubic in the error e := x− xh,

Rh :=
1
2

∫ 1

0
L′′′(xh + se; e, e, e)s(s− 1) ds.

From Lemma 6.1 we obtain the following result for the Galerkin approx-
imation of the variational equation.

Lemma 6.2. For any solutions of equations (6.1) and (6.2) we have the
error representation

J(u)− J(uh) =
1
2
ρ(uh; ez) +

1
2
ρ∗(uh; zh, eu) +R(3)

h ,

where
ρ(uh; ez) = −A′(uh; zh, ez),

ρ∗(uh; zh, eu) = J ′(uh; eu)−A′(uh; zh, eu),

with eu = u− uh, ez = z − zh and

R(3)
h =

1
2

∫ 1

0

(
J ′′′(uh + seu; eu, eu, eu)−A′′′(uh + seu; zh + sez, eu, eu, eu)

− 3A′′(uh + seu; eu, eu, ez)
)
s(s− 1) ds

The forms ρ(·, ·), ρ∗(·; ·, ·) are the residuals of (6.1) and the linearized
adjoint equation, respectively. The remainder R(3)

h is cubic in the error.
The following lemma shows that the residuals are equal up to a quadratic
remainder.
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Lemma 6.3. With the notation from above, for any ϕh, ψh ∈ Vh there holds

ρ∗(uh; zh, u− ϕh) = ρ(uh; z − ψh) + ∆ρ ∀ϕh, ψh ∈ Vh,

with

∆ρ =
∫ 1

0

(
A′′(uh + seu; eu, eu, zh + sez)− J ′′(uh + seu; eu, eu)

)
ds.

Moreover, we we have the simplified error representation

J(u)− J(uh) = ρ(uh, z − ϕh) +R(2)
h ∀ϕh ∈ Vh,

with quadratic remainder

R(2)
h =

∫ 1

0

(
A′′(uh + seu, eu, eu, z)− J ′′(uh + seu; eu, eu)

)
ds.

In Paper III we apply this methodology to a space and time discretization
of the deterministic Cahn-Hilliard equation.

7 Summary of appended papers

7.1 Paper I

In this paper we prove error bounds for the linear Cahn-Hilliard-Cook equa-
tion; that is, (3.7) with f(u) = 0. The main result is a mean square error
estimate for the finite element approximation defined in (5.8):

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ(‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2
2 Q

1
2 ‖HS).

The proof is essentially based on applying the isometry (4.5) to

WAh
(t)−WA(t) =

∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2
)

P dW (s).

The proof is then reduced to proving bounds for the error operator Fh(t) =
Eh(t)PhP − E(t)P for the corresponding linear deterministic problem. For
this problem we show the following error bounds with optimal dependence
on the regularity of the initial value v:

‖Fh(t)v‖ ≤ Chβ|v|β, v ∈ Ḣβ,
(∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2, v ∈ Ḣβ−2,
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for 1 ≤ β ≤ r, where r ≥ 2 is the order of the finite element method.
The same program is carried out for the the backward Euler method in

(5.9). The result is the error bound

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4

)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
,

where where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

7.2 Paper II

We study the nonlinear stochastic Cahn-Hilliard equation driven by additive
colored noise (3.7). Using the framework of [7] we write this as an abstract
evolution equation of the form

dX + (A2X + Af(X)) dt = dW, t > 0; X(0) = X0, (7.1)

Our goal is to study the convergence properties of the spatially semidiscrete
finite element approximation Xh of X, which is defined by an equation of
the form

dXh + (A2
hX + AhPhf(X)) dt = PhdW, t > 0; X(0) = PhX0.

In order to do so, we need to prove existence and regularity for solutions of
(7.1).

Following the semigroup framework of [7] we write the equation (7.1) as
the integral equation (mild solution)

X(t) = e−tA2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds +
∫ t

0
e−(t−s)A2

dW (s).

This naturally splits the solution as X = Y + WA, where WA(t) is the
stochastic convolution that was studied in Paper I. The remaining part, Y ,
satisfies an evolution equation without noise, but with a random coefficient,

Ẏ + A2Y + Af(X) = 0, t > 0; Y (0) = X0.

The regularity and error analysis can now be performed on this equation.
An important step is to bound the functional

J(u) =
1
2
‖∇u‖2 +

∫

D
F (u) dx,

16



where F (s) is a primitive function to f(s). For the deterministic equation
this is a Lyapunov functional, which means that it does not increase along
solution paths. For the equation which is perturbed by noise we show that

E[J(X(t))] ≤ C(t),

where C(t) grows quadratically in t. The same result holds for Xh(t). By
means of Chebyshev’s inequality we may then show that for each T > 0 and
ε ∈ (0, 1) there are KT and Ωε ⊂ Ω with P(Ωε) ≥ 1− ε and such that

‖X(t)‖2
H1 + ‖Xh(t)‖2

H1 ≤ ε−1KT on Ωε, t ∈ [0, T ].

These bounds are then used to control the random term f(X) and we show
the necessary regularity and the error estimate

‖Xh(t)−X(t)‖ ≤ C(ε−1KT , T )h2| log(h)| on Ωε, t ∈ [0, T ].

We thus have optimal rate of convergence on sets of probability arbitrarily
close 1, but the constant increases rapidly when ε → 0. Nevertheless, we
show that this implies strong convergence but without known rate:

max
t∈[0,T ]

(
E[‖Xh(t)−X(t)‖2]

) 1
2 → 0 as h → 0.

7.3 Paper III

In this paper we consider the deterministic Cahn-Hilliard equation (3.6)
and we discretize it by a Galerkin finite element method, which is based on
continuous piecewise linear functions with respect to x and discontinuous
piecewise constant functions with respect to t. The numerical method is the
same as the implicit Euler time stepping combined with spatial discretization
by a standard finite element method.

We perform an a posteriori error analysis within the framework of dual
weighted residuals as in section 6. If J(u) is a given goal functional, this
results in an error estimate essentially of the form

|J(u)− J(U)| ≤
N∑

n=1

∑

K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K

}
+R,

where U denotes the numerical solution and Tn is the spatial mesh at time
level tn. The terms ρu,K , ρw,K are local residuals from the first and second
equations in (3.6), respectively. The weights ωu,K , ωw,K are derived from the
solution of the linearized adjoint problem. The remainder R is quadratic in
the error.

We also derive a variant of this, where the weights are replaced by sta-
bility constants, which are obtained by proving a priori estimates for the
solution of the linearized adjoint problem.
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FINITE ELEMENT APPROXIMATION OF THE
LINEARIZED CAHN-HILLIARD-COOK EQUATION

STIG LARSSON1 AND ALI MESFORUSH

Abstract. The linearized Cahn-Hilliard-Cook equation is discretized
in the spatial variables by a standard finite element method. Strong
convergence estimates are proved under suitable assumptions on the
covariance operator of the Wiener process, which is driving the equation.
The backward Euler time stepping is also studied. The analysis is set in
a framework based on analytic semigroups. The main part of the work
consists of detailed error bounds for the corresponding deterministic
equation.

1. Introduction

When the Cahn-Hilliard equation (cf. [2, 3]) is perturbed by noise, we
obtain the so-called Cahn-Hilliard-Cook equation (cf. [1, 5])

(1.1)

du−∆v dt = dW, for x ∈ D, t > 0,

v = −∆u + f(u), for x ∈ D, t > 0,

∂u

∂n
= 0,

∂∆u

∂n
= 0, for x ∈ ∂D, t > 0,

u(·, 0) = u0,

where u = u(x, t), ∆ =
∑d

i=1
∂2

∂x2
i
, and ∂

∂n denotes the outward normal deriv-

ative on ∂D. We assume that D is a bounded domain in Rd for d ≤ 3 with
sufficiently smooth boundary. A typical f is f(s) = s3 − s. The purpose of
this work is to study numerical approximation by the finite element method
of the linearized Cahn-Hilliard-Cook equation, where f = 0.

We use the semigroup framework of [12] in order to give (1.1) a rigorous
meaning. Let ‖·‖ and (·, ·) denote the usual norm and inner product in the
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Key words and phrases. Cahn-Hilliard-Cook equation, stochastic convolution, Wiener

process, finite element method, backward Euler method, mean square, error estimate,
strong convergence.
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2 S. LARSSON AND A. MESFORUSH

Hilbert space H = L2(D) and let Hs = Hs(D) be the usual Sobolev space
with norm ‖·‖s. We also let Ḣ be the subspace of H, which is orthogonal
to the constants, that is, Ḣ = {v ∈ H : (v, 1) = 0}, and we let P : H → Ḣ
be the orthogonal projector.

We define the linear operator A = −∆ with domain of definition

D(A) =
{

v ∈ H2 :
∂v

∂n
= 0 on ∂D

}
.

Then A is selfadjoint, positive definite, unbounded linear operator on Ḣ
with compact inverse. When it is considered as an unbounded operator on
H, it is positive semidefinite with an orthonormal eigenbasis {ϕj}∞j=0 and
corresponding eigenvalues {λj}∞j=0 such that

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞.

The first eigenfunction is constant, ϕ0 = |D|− 1
2 . By spectral theory we also

define Ḣs = D(A
s
2 ) with norms

|v|s = ‖A s
2 v‖ =

(∑

j=1

λs
j(v, ϕj)2

)1/2
, s ∈ R.(1.2)

It is well known that, for integer s ≥ 0, Ḣs is a subspace of Hs ∩ Ḣ char-
acterized by certain boundary conditions and that the norms | · |s and ‖·‖s

are equivalent on Ḣs. In particular, we have Ḣ1 = H1 ∩ Ḣ and the norm
|v|1 = ‖A 1

2 v‖ = ‖∇v‖ is equivalent to ‖v‖1 on Ḣ1.
For v ∈ H we define

e−tA2
v =

∞∑

j=0

e−tλ2
j (v, ϕj)ϕj .

Then {E(t)}t≥0 = {e−tA2}t≥0 is the analytic semigroup on H generated by
−A2. We note that

E(t)v =
∞∑

j=1

e−tλ2
j (v, ϕj)ϕj + (v, ϕ0)ϕ0 = E(t)Pv + (I − P )v,

where (I − P )v = |D|−1
∫
D v dx is the average of v.

Let (Ω,F ,P, {Ft}t≥0) be a filtered probability space, let Q be a selfad-
joint, positive semidefinite, bounded linear operator on H, and let {W (t)}t≥0

be an H-valued Q-Wiener process adapted to the filtration {Ft}t≥0.
Now the Cahn-Hilliard-Cook equation (1.1) may be written formally

(1.3) dX(t) + A2X(t) dt + Af(X(t)) dt = dW (t), t > 0; X(0) = X0.
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The semigroup framework of [12] gives a rigorous meaning to this in terms
of the mild solution, which satisfies the integral equation

X(t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds +

∫ t

0
E(t− s) dW (s),

where
∫ t
0 . . . dW (s) denotes the H-valued Itô integral. Existence and unique-

ness of solutions is proved in [6]. This is based on the natural splitting of
the solution as X(t) = Y (t) + WA(t), where

WA(t) =
∫ t

0
E(t− s) dW (s)

is a stochastic convolution, and where

Y (t) = E(t)X0 −
∫ t

0
E(t− s)Af(X(s)) ds

satisfies the random evolution problem

Ẏ (t) + A2Y (t) + Af
(
Y (t) + WA(t)

)
= 0, t > 0; Y (0) = X0.

The study of the stochastic convolution WA(t) is thus a first step towards
the study of the nonlinear problem.

In this work we therefore study numerical approximation of the linearized
Cahn-Hilliard-Cook equation

(1.4) dX + A2X dt = dW, t > 0; X(0) = X0,

with the mild solution

(1.5) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

The nonlinear equation is studied in a forthcoming paper [11]. We remark
that a linearized equation of the form (1.4), but with A2 replaced by A2 +A
is studied by numerical simulation in the physics literature [7, 9].

For the approximation of the Cahn-Hilliard equation we follow the frame-
work of [8]. We assume that we have a family {Sh}h>0 of finite-dimensional
approximating subspaces of H1. Let Ph : H → Sh denote the orthogonal
projector. We then define Ṡh = {χ ∈ Sh : (χ, 1) = 0}. The operator
Ah : Sh → Ṡh (the “discrete Laplacian”) is defined by

(Ahχ, η) = (∇χ,∇η), ∀χ ∈ Sh, η ∈ Ṡh,

The operator Ah is selfadjoint, positive definite on Ṡh, positive semidefinite
on Sh, and Ah has an orthonormal eigenbasis {ϕh,j}Nh

j=0 with corresponding
eigenvalues {λh,j}Nh

j=0. We have

0 = λh,0 < λh,1 ≤ · · · ≤ λh,j ≤ · · · ≤ λh,Nh
,
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and ϕh,0 = ϕ0 = |D|− 1
2 . Moreover, we define Eh(t) : Sh → Sh by

Eh(t)vh = e−tA2
hvh =

Nh∑

j=0

e−tλh,j (vh, ϕh,j)ϕh,j

=
Nh∑

j=1

e−tλh,j (vh, ϕh,j)ϕh,j + (vh, ϕ0)ϕ0,

Then {Eh(t)}t≥0 is the semigroup generated by −A2
h. Clearly, Ph : Ḣ → Ṡh

and
Eh(t)Phv = Eh(t)PhPv + (I − P )v.

The finite element approximation of the linearized Cahn-Hilliard-Cook
equation (1.4) is: Find Xh(t) ∈ Sh such that,

(1.6) dXh + A2
hXh dt = Ph dW, t > 0; Xh(0) = PhX0.

The mild solution of (1.6) is

(1.7) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

We note that
∫ t

0
E(t− s)(I − P ) dW (s) = (I − P )

∫ t

0
dW (s) = (I − P )W (t),

so that

X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s) = E(t)PX0 + (I − P )X0

+
∫ t

0
E(t− s)P dW (s) + (I − P )W (t),

(1.8)

and similarly

Xh(t) = Eh(t)PhPX0 + (I − P )X0

+
∫ t

0
Eh(t− s)PhP dW (s) + (I − P )W (t).

Therefore, the error analysis can be based on the formula

Xh(t)−X(t) =
(
Eh(t)Ph − E(t)

)
PX0

+
∫ t

0

(
Eh(t− s)Ph −E(t− s)

)
P dW (s),

(1.9)

and it is sufficient to work in the spaces Ḣ and Ṡh. Note that the numerical
computations are carried out in Sh and that Ṡh is only used in the analysis.
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Let k = δt be a timestep, tn = nk, δXh,n = Xh,n − Xh,n−1, δWn =
W (tn)−W (tn−1), and apply Euler’s method to (1.6) to get

(1.10) δXh,n + A2
hXh,n δt = Ph δWn, n ≥ 1; Xh,0 = PhX0.

With Ekh = (I + kA2
h)−1 we obtain a discrete variant of the mild solution

Xh,n = En
khPhX0 +

n∑

j=1

En−j+1
kh Ph δWj .

In Section 2 we assume that {Sh}h>0 admits an error estimate of order
O(hr) as the mesh parameter h → 0 for some integer r ≥ 2. Then we show
error estimates for the semigroup Eh(t) with minimal regularity requirement.
More precisely, in Theorem 2.1 we show, for β ∈ [1, r] and all t ≥ 0,

‖Fh(t)v‖ ≤ Chβ |v|β, v ∈ Ḣβ,
(∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2,

where Fh(t) = Eh(t)Ph −E(t) is the error operator in (1.9).
Analogous estimates are obtained for the implicit Euler approximation in

Theorem 2.2.
In Section 3 we follow the technique developed in [14, 13] and use these

estimates to prove strong convergence estimates for approximation of the
linear Cahn-Hilliard-Cook equation. Let L2(Ω, H) be the space of square
integrable H-valued random variables with norm

‖X‖L2(Ω,H) =
(
E

(
‖X‖2

)) 1
2 =

(∫

Ω
‖X(ω)‖2 dP(ω)

) 1
2
,

and let ‖T‖HS denote the Hilbert-Schmidt norm of bounded linear operators
on H, ‖T‖2

HS =
∑∞

j=1 ‖Tφj‖2, where {φj}∞j=1 is an arbitrary orthonormal
basis for H. In Theorem 3.1 we study the spatial regularity of the mild
solution (1.5) and show

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
, for β > 0.

Moreover, in Theorem 3.2 we show strong convergence for the mild solution
Xh in (1.7):

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2

2 Q
1
2 ‖HS

)
, β ∈ [1, r].
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In Theorem 3.3 for the fully discrete case we obtain similarly, for β ∈
[1, min(r, 4)],

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Ck,βk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Note that these bounds are uniform with respect to t ≥ 0.
Our results require that ‖Aβ−2

2 Q
1
2 ‖HS < ∞. In order to see what this

means we compute two special cases. For Q = I (spatially uncorrelated
noise, or space-time white noise), by using the asymptotics λj ∼ j

2
d , we

have

‖Aβ−2
2 Q

1
2 ‖2

HS = ‖Aβ−2
2 ‖2

HS =
∞∑

j=1

λβ−2
j ∼

∞∑

j=1

j(β−2) 2
d < ∞,

if β < 2 − d
2 . Hence, for example, β < 1

2 if d = 3. On the other hand, if Q

is of trace class, Tr(Q) = ‖Q 1
2 ‖2

HS < ∞, then we may take β = 2.
There are few studies of numerical methods for the Cahn-Hilliard-Cook

equation. We are only aware of [4] in which convergence in probability
was proved for a difference scheme for the nonlinear equation in multiple
dimensions, and [10] where strong convergence was proved for the finite
element method for the linear equation in 1-D.

2. Error estimates for the deterministic Cahn-Hilliard
equation

We start this section with some necessary inequalities. Let {E(t)}t≥0 =
{e−tA2}t≥0 and {Eh(t)}t≥0 = {e−tA2

h}t≥0 be the semigroups generated by
−A2 and −A2

h, respectively. By the smoothing property there exist positive
constants c, C such that

‖A2β
h Eh(t)PhPv‖ + ‖A2βE(t)Pv‖ ≤ Ct−βe−ct‖v‖, β ≥ 0,(2.1)

∫ t

0
‖AhEh(s)PhPv‖2 ds +

∫ t

0
‖AE(s)Pv‖2 ds ≤ C‖v‖2.(2.2)

Let Rh : Ḣ1 → Ṡh be the Ritz projector defined by

(∇Rhv,∇χ) = (∇v,∇χ), ∀χ ∈ Ṡh.

It is clear that Rh = A−1
h PhA. We assume that for some integer r ≥ 2, we

have the error bound, with the norm defined in (1.2),

(2.3) ‖Rhv − v‖ ≤ Chβ|v|β, v ∈ Ḣβ, 1 ≤ β ≤ r.
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This holds with r = 2 for the standard piecewise linear Lagrange finite
element method in a bounded convex polygonal domain D. For higher order
elements the situation is more complicated and we refer to standard texts
on the finite element method. In the next theorem we prove error estimates
for the deterministic Cahn-Hilliard equation in the semidiscrete case.

Theorem 2.1. Set Fh(t) = Eh(t)Ph−E(t). Then there are h0 and C, such
that for h ≤ h0, 1 ≤ β ≤ r and t ≥ 0, we have

‖Fh(t)v‖ ≤ Chβ |v|β, v ∈ Ḣβ,(2.4)
( ∫ t

0
‖Fh(τ)v‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2.(2.5)

Note that Fh(t)v = Fh(t)Pv for v ∈ H, so that it is sufficient to take
v ∈ Ḣ. The reason why we assume β ≥ 1 is that in (2.5) we need at least
v ∈ Ḣ−1 for Eh(t)Phv to be defined.

Proof. Let u(t) = E(t)v, uh(t) = Eh(t)Phv, that is, u and uh are solutions
of

ut + A2u = 0, t > 0; u(0) = v,(2.6)

uh,t + A2
huh = 0, t > 0; uh(0) = Phv.(2.7)

Set e(t) = uh(t)− u(t). We want to prove that

‖e(t)‖ ≤ Chβ |v|β, v ∈ Ḣβ,
(∫ t

0
‖e(τ)‖2 dτ

) 1
2 ≤ C| log h|hβ |v|β−2, v ∈ Ḣβ−2.

Let G = A−1P and Gh = A−1
h PhP . Apply G to (2.6) to get Gut + Au = 0,

and apply G2
h to (2.7) to get G2

huh,t + uh = 0. Hence

G2
het + e = −G2

hut − u + Gh(Gut + Au) = (GhA− I)u−Gh(GhA− I)Gut,

that is,

(2.8) G2
het + e = ρ + Ghη,

where ρ = (Rh − I)u, η = −(Rh − I)Gut. Take the inner product of (2.8)
by et to get

‖Ghet‖2 +
1
2

d
dt
‖e‖2 = (ρ, et) + (η, Ghet),

Since (η, Ghet) ≤ ‖η‖‖Ghet‖ ≤ 1
2‖η‖2 + 1

2‖Ghet‖2, we obtain

‖Ghet‖2 +
d
dt
‖e‖2 ≤ 2(ρ, et) + ‖η‖2.
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Multiply this inequality by t to get t‖Ghet‖2 + t d
dt‖e‖2 ≤ 2t(ρ, et) + t‖η‖2.

Note that

t
d
dt
‖e‖2 =

d
dt

(
t‖e‖2

)
− ‖e‖2, t(ρ, et) =

d
dt

(
t(ρ, e)

)
− (ρ, e)− t(ρt, e),

so that

t‖Ghet‖2 +
d
dt

(
t‖e‖2

)
≤ 2

d
dt

(
t(ρ, e)

)
+ 2|(ρ, e)|+ 2|t(ρt, e)|+ t‖η‖2 + ‖e‖2.

But

|(ρ, e)| ≤ ‖ρ‖‖e‖ ≤ 1
2
‖ρ‖2 +

1
2
‖e‖2,

|t(ρt, e)| ≤ t‖ρt‖‖e‖ ≤
1
2
t2‖ρt‖2 +

1
2
‖e‖2.

Hence

t‖Ghet‖2 +
d
dt

(
t‖e‖2

)
≤ 2

d
dt

(
t(ρ, e)

)
+ ‖ρ‖2 + t2‖ρt‖2 + t‖η‖2 + 3‖e‖2.

Integrate over [0, t] and use Young’s inequality to get
∫ t

0
τ‖Ghet‖2 dτ + t‖e‖2 ≤ 2t‖ρ‖2 +

1
2
t‖e‖2 +

∫ t

0
‖ρ‖2 dτ +

∫ t

0
τ2‖ρt‖2 dτ

+
∫ t

0
τ‖η‖2 dτ + 3

∫ t

0
‖e‖2 dτ.

Hence

(2.9) t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2 + ‖e‖2

)
dτ.

We must bound
∫ t
0 ‖e‖2 dτ . Multiply (2.8) by e to get

1
2

d
dt
‖Ghe‖2+‖e‖2 ≤ ‖ρ‖‖e‖+‖η‖‖Ghe‖ ≤ 1

2
‖ρ‖2+

1
2
‖e‖2+‖η‖ max

0≤τ≤t
‖Ghe‖,

so that

(2.10)
d
dt
‖Ghe‖2 + ‖e‖2 ≤ ‖ρ‖2 + 2‖η‖ max

0≤τ≤t
‖Ghe‖.

Integrate (2.10), note that Ghe(0) = A−1
h Ph(Ph − I)v = 0, to get

‖Ghe‖2 +
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ + max

0≤τ≤t
‖Ghe‖2 +

(∫ t

0
‖η‖ dτ

)2
.

Hence, since t is arbitrary,

(2.11)
∫ t

0
‖e‖2 dτ ≤

∫ t

0
‖ρ‖2 dτ +

(∫ t

0
‖η‖ dτ

)2
.



APPROXIMATION OF THE LINEARIZED CAHN-HILLIARD-COOK EQUATION 9

We insert (2.11) in (2.9) and conclude

t‖e‖2 ≤ Ct‖ρ‖2 + C

∫ t

0

(
‖ρ‖2 + τ2‖ρt‖2 + τ‖η‖2

)
dτ

+ C
(∫ t

0
‖η‖ dτ

)2
.

(2.12)

We compute the terms in the right hand side. With v ∈ Ḣβ, recalling
ρ = (Rh − I)u and using (2.3), we have

(2.13) ‖ρ(t)‖ ≤ Chβ|u(t)|β ≤ Chβ‖E(t)A
β
2 v‖ ≤ Chβ‖Aβ

2 v‖ ≤ Chβ|v|β,

so that,

t‖ρ‖2 ≤ Ch2βt|v|2β,

∫ t

0
‖ρ‖2 dτ ≤ Ch2βt|v|2β.

Similarly, by (2.1),

‖ρt(t)‖ ≤ Chβ|ut(t)|β ≤ Chβ‖A2E(t)A
β
2 v‖ ≤ Chβt−1|v|β,

so that

(2.14)
∫ t

0
τ2‖ρt‖2 dτ ≤ Ch2βt|v|2β.

Moreover, since η = −(Rh − I)Gut,

‖η(t)‖ ≤ Chβ|Gut(t)|β ≤ Chβ‖AE(t)A
β
2 v‖ ≤ Chβt−

1
2 |v|β,

so that
(∫ t

0
‖η‖ dτ

)2
≤ Ch2βt|v|2β,

∫ t

0
τ‖η‖2 dτ ≤ Ch2βt|v|2β.

By inserting these in (2.12) we conclude

t‖e‖2 ≤ Ch2βt|v|2β,

which proves (2.4).
To prove (2.5) we recall (2.11) and let v ∈ Ḣβ−2. By using (2.3) and (2.2)

we obtain
∫ t

0
‖ρ‖2 dτ ≤ Ch2β

∫ t

0
|u|2β dτ = Ch2β

∫ t

0
‖AE(τ)A

β−2
2 v‖2 dτ

≤ Ch2β|v|2β−2.

(2.15)
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Now we compute
∫ t
0 ‖η‖ dτ . To this end we assume first 1 < β ≤ r and let

1 ≤ γ < β. By using (2.1) and (2.3) we get
∫ t

0
‖η‖ dτ ≤ Chγ

∫ t

0
|Gut|γ dτ = Chγ

∫ t

0
‖A2−β−γ

2 E(τ)A
β−2

2 v‖ dτ

≤ Chγ

∫ t

0
τ−1+β−γ

4 e−cτ dτ |v|β−2,

where, since 0 < β − γ ≤ r − 1,
∫ t

0
τ−1+β−γ

4 e−cτ dτ =
4

β − γ

∫ t
β−γ

4

0
e−cs

4
β−γ ds ≤ C

β − γ

∫ ∞

0
e−cs

4
r−1 ds.

Hence, with C independent of β,

(2.16)
∫ t

0
‖η‖ dτ ≤ Chγ

β − γ
|v|β−2.

Now let 1
β−γ = | log h| = − log h, so γ → β as h → 0, and

γ log h = (γ − β + β) log h = 1 + β log h.

Therefore we have
hγ

β − γ
= | log h|eγ log h = | log h|e1+β log h ≤ C| log h|hβ.

Put this in (2.16) to get, for 1 < β ≤ r,

(2.17)
∫ t

0
‖η‖ dτ ≤ Chβ| log h||v|β−2,

and hence also for 1 ≤ β ≤ r, because C is independent of β. Finally, we
put (2.15) and (2.17) in (2.11) to get

(∫ t

0
‖e‖2 dτ

) 1
2 ≤ C| log h|hβ|v|β−2,

which is (2.5). ¤
Now we turn to the fully discrete case. The backward Euler method

applied to

uh,t + A2
huh = 0, t > 0,

uh(0) = Phv,

defines Un ∈ Sh by

(2.18)
∂Un + A2

hUn = 0, n ≥ 1,

U0 = Phv,
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where ∂Un = 1
k (Un − Un−1). Denoting En

kh = (I + kA2
h)−n, we have Un =

En
khv. The next theorem provides error estimates in the L2 norm for the

deterministic Cahn-Hilliard equation in the fully discrete case.

Theorem 2.2. Set Fn = En
khPh−E(tn). Then there are h0, k0 and C, such

that for h ≤ h0, k ≤ k0, 1 ≤ β ≤ min(r, 4), and n ≥ 1, we have

‖Fnv‖ ≤ C(hβ + k
β
4 )|v|β, v ∈ Ḣβ,(2.19)

(
k

n∑

j=1

‖Fjv‖2
) 1

2 ≤
(
C| log h|hβ + Cβ,kk

β
4
)
|v|β−2, v ∈ Ḣβ−2,(2.20)

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.

Proof. Let G and Gh be as in the proof of Theorem 2.1. With en = Un−un =
En

khPhv −E(tn)v, we get

(2.21) G2
h∂en + en = ρn + Ghηn + Ghδn,

where un = u(tn), ut,n = ut(tn) and

ρn = (Rh − I)un, ηn = −(Rh − I)G∂un, δn = −G(∂un − ut,n).

Multiply (2.21) by ∂en and note that

(ηn, Gh∂en) ≤ ‖ηn‖2 +
1
4
‖Gh∂en‖2, (δn, Gh∂en) ≤ ‖δn‖2 +

1
4
‖Gh∂en‖2,

to get

(2.22) ‖Gh∂en‖2 + 2(en, ∂en) ≤ 2(ρn, ∂en) + 2‖ηn‖2 + 2‖δn‖2.

We have the following identities

∂(anbn) = (∂an)bn + an−1(∂bn)(2.23)

= (∂an)bn + an(∂bn)− k(∂an)(∂bn).(2.24)

By using (2.24) we have

2(en, ∂en) = ∂‖en‖2 + k‖∂en‖2,

(ρn, ∂en) = ∂(ρn, en)− (∂ρn, en) + k(∂ρn, ∂en).

Put these in (2.22) and cancel k‖∂en‖2 to get

‖Gh∂en‖2 + ∂‖en‖2 ≤ 2∂(ρn, en)− 2(∂ρn, en) + k‖∂ρn‖2 + 2‖ηn‖2 + 2‖δn‖2.

Multiply this by tn−1 and note that k ≤ tn−1 for n ≥ 2, so that we have for
n ≥ 1

tn−1‖Gh∂en‖2+tn−1∂‖en‖2

≤ 2tn−1∂(ρn, en)− 2tn−1(∂ρn, en) + t2n−1‖∂ρn‖2

+ 2tn−1‖ηn‖2 + 2tn−1‖δn‖2.

(2.25)
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By (2.23) we have

tn−1∂‖en‖2 = ∂(tn‖en‖2)− ‖en‖2,

2tn−1∂(ρn, en) = 2∂(tn(ρn, en))− 2(ρn, en).

Put these in (2.25) to get

tn−1‖Gh∂en‖2+∂(tn‖en‖2)

≤ C
(
∂(tn(ρn, en)) + ‖ρn‖2 + t2n−1‖∂ρn‖2 + ‖en‖2

)

+ C
(
tn−1‖ηn‖2 + tn−1‖δn‖2

)
.

(2.26)

Note that

k
n∑

j=1

∂
(
tj‖ej‖2

)
= tn‖en‖2, k

n∑

j=1

∂
(
tj(ρj , ej)

)
= tn(ρn, en).(2.27)

By summation in (2.26) and using (2.27) we get

k
n∑

j=1

tj−1‖Gh∂ej‖2+tn‖en‖2 ≤ Ctn‖ρn‖2

+ Ck
n∑

j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + ‖ej‖2

)

+ Ck
n∑

j=1

(
tj−1‖ηj‖2 + tj−1‖δj‖2

)
.

(2.28)

Now we estimate k
∑n

j=1 ‖ej‖2. Take the inner product of (2.21) by en to
get

(2.29) 2(G2
h∂en, en) + ‖en‖2 ≤ ‖ρn‖2 + 2

(
‖ηn‖ + ‖δn‖

)
‖Ghen‖.

By (2.24) we have

(2.30) 2(G2
h∂en, en) = 2(∂Ghen, Ghen) = ∂‖Ghen‖2 + k‖∂Ghen‖2.

By summation in (2.29) and using Ghe0 = 0, we get

‖Ghen‖2 + k
n∑

j=1

‖ej‖2 ≤ k
n∑

j=1

‖ρj‖2 +
1
2

max
j≤n

‖Ghej‖2

+ 2
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.

Hence

(2.31) k

n∑

j=1

‖ej‖2 ≤ k

n∑

j=1

‖ρj‖2 + 2
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.
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By putting (2.31) in (2.28) we get

tn‖en‖2 ≤Ctn‖ρn‖2

+ Ck

n∑

j=1

(
‖ρj‖2 + t2j−1‖∂ρj‖2 + tj−1‖ηj‖2 + tj−1‖δj‖2

)

+ C
(
k

n∑

j=1

(
‖ηj‖ + ‖δj‖

))2
.

(2.32)

Now we compute the terms in the right hand side. With v ∈ Ḣβ we have
by (2.13),

(2.33) ‖ρn‖2 ≤ Ch2β|v|2β, k
n∑

j=1

‖ρj‖2 ≤ Ch2βtn|v|2β.

By using the Cauchy-Schwartz inequality we have

k
n∑

j=1

t2j−1‖∂ρj‖2 = k
n∑

j=2

t2j−1

∥∥∥1
k

∫ tj

tj−1

ρt dτ
∥∥∥

2

≤
n∑

j=2

(
t2j−1

1
k

∫ tj

tj−1

τ−2dτ

∫ tj

tj−1

τ2‖ρt(τ)‖2 dτ
)
,

≤
∫ tn

0
τ2‖ρt‖2dτ.

Hence, by (2.14),

(2.34) k
n∑

j=1

t2j−1‖∂ρj‖2 ≤ Ch2βtn|v|2β.

By using (2.3) and (2.1) we have

‖ηj‖ ≤ Chβ|G∂uj |β ≤
Chβ

k

∥∥∥
∫ tj

tj−1

AE(τ)A
β
2 v dτ

∥∥∥

≤ Chβ

k

∫ tj

tj−1

τ−
1
2 dτ‖Aβ

2 v‖ ≤ Chβ

k
(
√

tj −
√

tj−1)|v|β ≤
Chβ

√
tj
|v|β.

So

(2.35) k

n∑

j=1

tj−1‖ηj‖2 ≤ Ch2βtn|v|2β, k

n∑

j=1

‖ηj‖ ≤ Chβt
1
2
n |v|β.
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By using (2.1) we have, for j ≥ 2,

‖δj‖ ≤
∥∥∥1
k

∫ tj

tj−1

(τ − tj−1)Gutt(τ)dτ
∥∥∥ ≤

∫ tj

tj−1

‖A3−β
2 E(τ)A

β
2 v‖ dτ

≤ C

∫ tj

tj−1

τ
−6+β

4 dτ |v|β,

so that, by Hölder’s inequality with p = 4
β and q = 4

4−β , 1 ≤ β < 4,

∫ tj

tj−1

τ
−6+β

4 dτ ≤ Ck
β
4

(∫ tj

tj−1

(
τ
−6+β

4
) 4

4−β dτ
) 4−β

4

≤ Ck
β
4

(β − 4
2

(
t
− 2

4−β

j−1 − t
− 2

4−β

j

)) 4−β
4

≤ Ck
β
4 t
− 1

2
j−1.

The same result is obtained with β = 4. For j = 1 we have

‖δ1‖ ≤
∥∥∥1
k

∫ k

0
τGutt(τ) dτ

∥∥∥ ≤ C
1
k

∫ k

0
τ
−2+β

4 dτ |v|β

≤ C
4

2 + β
k
−2+β

4 |v|β ≤ Ck
β
4 t
− 1

2
1 |v|β.

So we have, for j ≥ 1,

‖δj‖ ≤ Ck
β
4 t
− 1

2
j |v|β.

Hence

(2.36) k
n∑

j=1

‖δj‖ ≤ ck
β
4 t

1
2
n |v|β, k

n∑

j=1

tj−1‖δj‖2 ≤ Ck
β
2 tn|v|2β.

Put (2.33), (2.34), (2.35), and (2.36) in (2.32), to get

‖en‖ ≤ C(hβ + k
β
4 )|v|β.

This completes the proof (2.19).
To prove (2.20) we recall (2.31) and let v ∈ Ḣβ−2. For the first term we

write k
∑n

j=1 ‖ρj‖2 = k‖ρ1‖2 + k
∑n

j=2 ‖ρj‖2, where by (2.1)

k‖ρ1‖2 ≤ kCh2β‖AE(k)A
β−2

2 v‖2 ≤ Ch2β|v|β−2,
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and

k
n∑

j=2

‖ρj‖2 =
n∑

j=2

∫ tj

tj−1

∥∥∥ρ(s) +
∫ tj

s
ρt(τ) dτ

∥∥∥
2
ds

≤ 2
n∑

j=2

∫ tj

tj−1

‖ρ(s)‖2 ds + 2
n∑

j=2

∫ tj

tj−1

∥∥∥
∫ tj

s
ρt(τ) dτ

∥∥∥
2
ds

≤ 2
∫ tn

t1

‖ρ(s)‖2 ds + 2
n∑

j=2

∫ tj

tj−1

(tj − s)
∫ tj

tj−1

‖ρt(τ)‖2 dτ ds

≤ 2
∫ tn

0
‖ρ‖2 dτ + 2k

∫ tn

t1

τ‖ρt‖2 dτ,

since tj − s ≤ k ≤ τ and where, by (2.15),
∫ tn

0
‖ρ‖2 dτ ≤ Ch2β|v|2β−2,

and

k

∫ tn

t1

τ‖ρt‖2 dτ ≤ Ch2βk

∫ tn

t1

τ‖A3E(τ)A
β−2

2 v‖2 dτ

≤ Ch2βk

∫ tn

k
τ−2 dτ |v|2β−2

≤ Ch2βk(k−1 − t−1
n )|v|2β−2 ≤ Ch2β|v|2β−2.

So

(2.37) k

n∑

j=1

‖ρj‖2 ≤ Ch2β|v|2β−2.

Now we compute k
∑n

j=1 ‖ηj‖. Recall that ηj = −(Rh − I)G∂uj and η =
−(Rh − I)Gut, so

‖ηj‖ =
∥∥∥(Rh − I)G

1
k

∫ tj

tj−1

ut dτ
∥∥∥ ≤ 1

k

∫ tj

tj−1

‖(Rh − I)Gut‖ dτ

≤ 1
k

∫ tj

tj−1

‖η‖ dτ,

and hence by (2.17) we have

(2.38) k

n∑

j=1

‖ηj‖ ≤
∫ tn

0
‖η‖ dτ ≤ Chβ| log h||v|β−2.
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For computing k
∑n

j=1 ‖δj‖ we use (2.1) and obtain for 1 ≤ β < 4,

‖δj‖ ≤
1
k

∫ tj

tj−1

(τ − tj−1)‖Gutt(τ)‖ dτ ≤
∫ tj

tj−1

‖A4−β
2 E(τ)A

β−2
2 v‖ dτ

≤ C

∫ tj

tj−1

τ−2+β
4 dτ |v|β−2.

Hence

k

n∑

j=2

‖δj‖ ≤ Ck

∫ tn

k
τ−2+β

4 dτ |v|β−2

≤ Ck
4

4− β

(
k−1+β

4 − t
−1+β

4
n

)
|v|β−2

≤ C

4− β
k

β
4 |v|β−2

and

k‖δ1‖ ≤
∫ k

0
τ‖Gutt(τ)‖ dτ ≤

∫ k

0
τ‖A4−β

2 E(τ)A
β−2

2 v‖ dτ

≤ C

∫ k

0
τ

β
4
−1 dτ |v|β−2 ≤

C

4− β
k

β
4 |v|β−2.

Therefore, for 1 ≤ β < 4,

k
n∑

j=1

‖δj‖ ≤
C

4− β
k

β
4 |v|β−2.

If we put 1
4−β = | log k|, we also have

k
n∑

j=1

‖δj‖ ≤
C

4− β
k1− 4−β

4 |v|β−2 = C| log k|ke−
4−β

4
log k|v|β−2

≤ Ck| log k||v|β−2 = C| log k||v|β−2.

Therefore, for 1 ≤ β ≤ 4, we have

(2.39) k

n∑

j=1

‖δj‖ ≤ Cβ,kk
β
4 |v|β−2.
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where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4. Finally we put

(2.37), (2.38) and (2.39) in (2.31), to get

(
k

n∑

j=1

‖ej‖2
) 1

2 ≤
(
Chβ| log h|+ Cβ,kk

β
4

)
|v|β−2.

¤

3. Finite element method for the Cahn-Hilliard-Cook equation

Consider the linear Cahn-Hilliard-Cook equation (1.4) with mild solution

(3.1) X(t) = E(t)X0 +
∫ t

0
E(t− s) dW (s).

We recall the isometry of the Itô integral

(3.2) E
∥∥∥
∫ t

0
B(s) dW (s)

∥∥∥
2

= E
∫ t

0
‖B(s)Q

1
2 ‖2

HS ds,

where the Hilbert-Schmidt norm is defined by

‖T‖2
HS =

∞∑

l=1

‖Tφl‖2,

where {φl}∞l=1 is an arbitrary orthonormal basis for H. In the next theorem
we consider the regularity of the mild solution (3.1).

Theorem 3.1. Let X(t) be the mild solution (3.1). If X0 ∈ L2(Ω, Ḣβ) and
‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ≥ 0. If β > 0, then

‖X(t)‖L2(Ω,Ḣβ) ≤ C
(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
, t ≥ 0.

If β = 0, then

‖X(t)‖L2(Ω,H) ≤ C
(
‖X0‖L2(Ω,H) + ‖A−1Q

1
2 ‖HS + t

1
2

)
, t ≥ 0.



18 S. LARSSON AND A. MESFORUSH

Proof. By using the isometry (3.2), the definition of the Hilbert-Schmidt
norm, and (2.1), (2.2) we get, for β > 0, see (1.8),

‖X(t)‖2
L2(Ω,Ḣβ)

= E
∣∣∣E(t)X0 +

∫ t

0
E(t− s)P dW (s)

∣∣∣
2

β

≤ C
(
E

∣∣E(t)X0

∣∣2
β

+ E
∥∥∥
∫ t

0
A

β
2 E(t− s)P dW (s)

∥∥∥
2)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+

∫ t

0
‖Aβ

2 E(s)PQ
1
2 ‖2

HS ds
)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+

∞∑

l=1

‖Aβ−2
2 Q

1
2 φl‖2

)

≤ C
(
‖X0‖2

L2(Ω,Ḣβ)
+ ‖Aβ−2

2 Q
1
2 ‖2

HS

)
.

For β = 0, there is the additional term E‖(I − P )W (t)‖2 = E[(W (t), ϕ0)2] ≤
Ct. ¤

The finite element problem for Cahn-Hilliard-Cook equation is: Find
Xh(t) ∈ Sh such that

(3.3)
dXh + A2

hXh dt = Ph dW,

Xh(0) = PhX0.

So the mild solution can be written as

(3.4) Xh(t) = Eh(t)PhX0 +
∫ t

0
Eh(t− s)Ph dW (s).

Theorem 3.2. Let Xh and X be the mild solutions (3.4) and (3.1) with
X0 ∈ L2(Ω, Ḣβ) and ‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ∈ [1, r]. Then there are

h0 and C, such that, for h ≤ h0 and t ≥ 0,

‖Xh(t)−X(t)‖L2(Ω,H)

≤ Chβ
(
‖X0‖L2(Ω,Ḣβ) + | log h|‖Aβ−2

2 Q
1
2 ‖HS

)
.

Proof. Use (3.1) and (3.4) and set Fh(t) = Eh(t)Ph −E(t) to get

‖Xh(t)−X(t)‖L2(Ω,H) ≤ ‖e1(t)‖L2(Ω,H) + ‖e2(t)‖L2(Ω,H),

where

e1(t) = Fh(t)X0 = Fh(t)PX0,

e2(t) =
∫ t

0
Fh(t− s) dW (s) =

∫ t

0
Fh(t− s)P dW (s).
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By using Theorem 2.1 we get

‖e1(t)‖L2(Ω,H) =
(
E‖Fh(t)X0‖2

) 1
2 ≤ Chβ

(
E|X0|2β

) 1
2 = Chβ‖X0‖L2(Ω,Ḣβ).

For the second term we use the isometry (3.2), the definition of Hilbert-
Schmidt norm and Theorem 2.1,

‖e2(t)‖2
L2(Ω,H) = E

(∥∥∥
∫ t

0
Fh(t− s) dW (s)

∥∥∥
2)

=
∫ t

0
‖Fh(t− s)Q

1
2 ‖2

HS ds

=
∞∑

l=1

∫ t

0
‖Fh(s)Q

1
2 φl‖2 ds

≤ C| log h|2h2β
∞∑

l=1

|Q 1
2 φl|2β−2

= C| log h|2h2β‖A(β−2)/2Q
1
2 ‖2

HS.

¤

Now we consider the fully discrete Cahn-Hilliard-Cook equation (1.10)
with mild solution

(3.5) Xh,n = En
khPhX0 +

n∑

j=1

En−j+1
kh Ph δWj ,

where Ekh = (I + kA2
h)−1.

Theorem 3.3. Let Xh,n and X be given by (3.5) and (3.1) with X0 ∈
L2(Ω, Ḣβ) and ‖Aβ−2

2 Q
1
2 ‖HS < ∞ for some β ∈ [1, min(r, 4)]. Then there

are h0, k0 and C, such that, for h ≤ h0, k ≤ k0, and n ≥ 1,

‖Xh,n(t)−X(tn)‖L2(Ω,H)

≤
(
C| log h|hβ + Cβ,kk

β
4
)(
‖X0‖L2(Ω,Ḣβ) + ‖Aβ−2

2 Q
1
2 ‖HS

)
,

where Cβ,k = C
4−β for β < 4 and Cβ,k = C| log k| for β = 4.
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Proof. By using (3.1) and (3.5) we get, with Fn = En
khPh − E(tn),

en = FnX0 +
n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)

+
n∑

j=1

∫ tj

tj−1

(
E(tn − tj−1)− E(tn − s)

)
dW (s)

= en,1 + en,2 + en,3.

By using Theorem 2.2 we have

(3.6) ‖en,1‖L2(Ω,H) =
(
E‖FnX0‖2

) 1
2 ≤ C(hβ + k

β
4 )‖X0‖L2(Ω,Ḣβ).

By using the isometry (3.2) and Theorem 2.2 we get

‖en,2‖2
L2(Ω,H) = E

(∥∥∥
n∑

j=1

∫ tj

tj−1

Fn−j+1 dW (s)
∥∥∥

2)

=
n∑

j=1

∫ tj

tj−1

‖Fn−j+1Q
1
2 ‖2

HS ds

= k
∞∑

l=1

n∑

j=1

‖Fn−j+1Q
1
2 φl‖2

≤
∞∑

l=1

(
C| log h|hβ + Cβ,kk

β
4
)2|Q 1

2 φl|2β−2

=
(
C| log h|hβ + Cβ,kk

β
4
)2‖Aβ−2

2 Q
1
2 ‖2

HS.

By using the isometry property (3.2) again we have

‖en,3‖2
L2(Ω,H)

≤ E
(∥∥∥

n∑

j=1

∫ tj

tj−1

(E(tn − tj−1)−E(tn − s)) dW (s)
∥∥∥

2)

=
n∑

j=1

∫ tj

tj−1

‖(E(tn − tj−1)− E(tn − s))Q
1
2 ‖2

HS ds

=
∞∑

l=1

n∑

j=1

∫ tj

tj−1

‖A−β
2 (E(s− tj−1)− I)AE(tn − s)A

β−2
2 Q

1
2 φl‖2 ds.

Using the well-known inequality

‖A−β
2

(
E(t)− I

)
w‖ ≤ Ct

β
4 ‖w‖,
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with t = s− tj , w = AE(tn − s)A
β−2

2 Q
1
2 φl, together with (2.2), we get

‖en,3‖2
L2(Ω,H) ≤ Ck

β
2

∞∑

l=1

∫ tn

0
‖AE(tn − s)A

β−2
2 Q

1
2 φl‖2 ds

≤ Ck
β
2

∞∑

l=1

‖Aβ−2
2 Q

1
2 φl‖2 = Ck

β
2 ‖Aβ−2

2 Q
1
2 ‖2

HS.

Putting these together proves the desired result. ¤
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FINITE ELEMENT APPROXIMATION OF THE
CAHN-HILLIARD-COOK EQUATION

MIHÁLY KOVÁCS, STIG LARSSON1, AND ALI MESFORUSH

Abstract. We study the nonlinear stochastic Cahn-Hilliard equation
driven by additive colored noise. We show almost sure existence and reg-
ularity of solutions. We introduce spatial approximation by a standard
finite element method and prove error estimates of optimal order on sets
of probability arbitrarily close to 1. We also prove strong convergence
without known rate.

1. Introduction

We study the Cahn-Hilliard equation perturbed by noise, also known as
the Cahn-Hilliard-Cook equation (cf. [1, 3]),

du−∆w dt = dW in D × [0, T ],

w + ∆u + f(u) = 0 in D × [0, T ],
∂u

∂n
=

∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0. in D.

Here D is a bounded domain in Rd, d = 1, 2, 3, and f(s) = s3 − s. Using
the framework of [9] we write this as an abstract evolution equation of the
form

(1.1) dX + (A2X + Af(X)) dt = dW, t > 0; X(0) = X0,

where A denotes the Neumann Laplacian considered as an unbounded op-
erator in the Hilbert space H = L2(D) and W is a Q-Wiener process in H
with respect to a filtered probability space (Ω,F ,P, {Ft}t≥0). See Section
2 for details.

2000 Mathematics Subject Classification. 65M60, 60H15, 60H35, 65C30.
Key words and phrases. Cahn-Hilliard-Cook equation, additive noise, Wiener process,

existence, regularity, finite element, error estimate.
1Supported by the Swedish Research Council (VR) and by the Swedish Foundation

for Strategic Research (SSF) through GMMC, the Gothenburg Mathematical Modelling
Centre.
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Our goal is to study the convergence properties of the spatially semidis-
crete finite element approximation Xh of X, which is defined by an equation
of the form

dXh + (A2
hXh + AhPhf(Xh)) dt = PhdW, t > 0; Xh(0) = PhX0.

In order to do so, we need to prove existence and regularity for solutions
of (1.1). Such results were first proved in [4]. Under the assumption that
the covariance operator Q = I (space-time white noise, cylindrical noise) it
was shown that there is a process which belongs to C([0, T ],H−1) almost
surely (a.s.) and which is the unique solution of (1.1). Under the stronger
assumption that A and Q commute and that Tr(Aδ−1Q) < ∞ for some δ > 0
(colored noise) it was shown that the solution belongs to C([0, T ],H) a.s.
Such regularity is insufficient for proving convergence of a numerical solution.
Our first aim is therefore to prove existence of a solution in C([0, T ],Hβ)
a.s. for some β > 0.

Following the semigroup approach of [9] we write the equation (1.1) as
the integral equation (mild solution)

X(t) = e−tA2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds +
∫ t

0
e−(t−s)A2

dW (s)

= Y (t) + WA(t),

where e−tA2
is the analytic semigroup generated by −A2. This naturally

splits the solution as X = Y + WA, where WA(t) =
∫ t
0 e−(t−s)A2

A dW (s)
is a stochastic convolution. This convolution, and its finite element ap-
proximation, was studied in [8]. In particular, it was shown there that if
‖Aβ−2

2 Q
1
2 ‖2

HS = Tr(Aβ−2Q) < ∞ for some β ≥ 0, then we have regularity of
order β in a mean square sense; that is,

E[‖WA(t)‖2
Hβ ] ≤ ‖Aβ−2

2 Q
1
2 ‖2

HS, t ≥ 0.(1.2)

The other part, Y , solves a differential equation with random coefficient,

(1.3) Ẏ + A2Y + Af(Y + WA) = 0, t > 0; Y (0) = X0.

This can be solved once WA is known. This approach was also used in [4],
but while they used Galerkin’s method and energy estimates to solve (1.3),
we use a semigroup approach similar to that of [5]. However, published
results for the deterministic Cahn-Hilliard equation do not apply directly
due to the limited regularity in (1.3).

The nonlinear term is only locally Lipschitz and we need to control the
Lipschitz constant. In the deterministic case studied in [5] this is achieved
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by the Lyapunov functional

J(u) =
1
2
‖∇u‖2 +

∫

D
F (u) dx, u ∈ H1, F (s) = 1

4s4 − 1
2s2,

which is nonincreasing along paths, so that ‖X(t)‖H1 ≤ C for t ≥ 0. Due
to the stochastic perturbation, this is not true for the stochastic equation
(1.1). However, it is possible find a bound for the growth of the expected
value of J(X(t)), and hence a bound

E[‖X(t)‖2
H1 ] ≤ C(t), t ≥ 0.(1.4)

This was shown in [4] under the assumption

(1.5) ‖A1/2Q1/2‖2
HS = Tr(AQ) < ∞,

which is consistent with β = 3 in (1.2). We repeat this in Theorem 3.1 with
several improvements. First of all we reduce the growth of the bound from
exponential to quadratic with respect to t. We also relax the assumptions:
we do not assume that A and Q commute; that is, have a common eigenbasis,
and we do not assume that the eigenbasis of Q consists of bounded functions.
Moreover, we prove the same bound for the finite element solution Xh.

By means of Chebyshev’s inequality we may then show that for each
T > 0 and ε ∈ (0, 1) there are KT and Ωε ⊂ Ω with P(Ωε) ≥ 1− ε and such
that

‖X(t)‖2
H1 + ‖Xh(t)‖2

H1 ≤ ε−1KT on Ωε, t ∈ [0, T ].

This bound controls the nonlinear term and we show that X ∈ C([0, T ],H3)
for ω ∈ Ωε under the assumption (1.5) (see Theorem 4.2). We also obtain
an error estimate (see Theorem 5.3)

‖Xh(t)−X(t)‖ ≤ C(ε−1KT , T )h2| log(h)| on Ωε, t ∈ [0, T ].

The constant grows rapidly with ε−1KT , but nevertheless we may use this
to show strong convergence (see Theorem 5.4),

max
t∈[0,T ]

E[‖Xh(t)−X(t)‖2] → 0 as h → 0.(1.6)

To prove strong convergence with an estimate of the rate remains a chal-
lenge for future work. In this connection we note that even for numerical
methods for stochastic ordinary differential equations with local Lipschitz
nonlinearity there are few results on convergence rates (cf. [6]).

Numerical methods for the deterministic Cahn-Hilliard equation are well
covered in literature. There are few studies of numerical methods for the
Cahn-Hilliard-Cook equation. We are only aware of [2] in which convergence
in probability was proved for a difference scheme for the nonlinear equation
in multiple dimensions. For the linear equation there is [7], where strong
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convergence estimates were proved for the finite element method for the
linear equation in 1-D, and the already mentioned work [8] on the finite
element method for the stochastic convolution in multiple dimensions.

2. Preliminaries

2.1. Norms. Let D ⊂ Rd, d = 1, 2, 3, be a bounded convex domain with
polygonal boundary ∂D. Let H = L2(D) with standard inner product 〈·, ·〉
and norm ‖·‖, and

Ḣ =
{

v ∈ H :
∫

D
v dx = 0

}
.

We also denote by Hk = Hk(D) the standard Sobolev space. We define
A = −∆ with domain of definition

D(A) =
{

v ∈ H2 :
∂v

∂n
= 0 on ∂D

}
.

Then A is a positive definite, selfadjoint, unbounded, linear operator on Ḣ
with compact inverse. When extended to H it has an orthonormal eigenbasis
{ϕj}∞j=0 with corresponding eigenvalues {λj}∞j=0 such that

0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj →∞.

The first eigenfunction is constant, ϕ0 = |D|− 1
2 .

Let P :H → Ḣ define the orthogonal projector. Then

(I − P )v = 〈v, ϕ0〉ϕ0 = |D|−1

∫

D
v dx,

is the average of v. We define seminorms and norms

|v|α =
( ∞∑

j=1

λα
j |〈v, ϕj〉|2

) 1
2
, α ≥ 0,

‖v‖α =
( ∞∑

j=0

λα
j |〈v, ϕj〉|2

) 1
2 =

(
|v|2α + |〈v, ϕ0〉|2

) 1
2 , α ≥ 0,

and corresponding spaces

Ḣα = D(A
α
2 ) =

{
v ∈ H : |v|α < ∞

}
, Hα =

{
v ∈ H : ‖v‖α < ∞

}
.

For integer order α = k, Hk coincides with the standard Sobolev spaces
with ‖·‖k equivalent to the standard norm ‖·‖Hk . For example,

(2.1) ‖v‖2
1 = |v|21 + |〈v, ϕ0〉|2 = ‖∇v‖2 + |〈v, ϕ0〉|2

is equivalent to ‖v‖2
H1 by the Poincaré inequality.
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2.2. The semigroup. The operator −A2 is the infinitesimal generator of
an analytic semigroup e−tA2

on H,

e−tA2
v =

∞∑

j=0

e−tλ2
j 〈v, ϕj〉ϕj =

∞∑

j=1

e−tλ2
j 〈v, ϕj〉ϕj + 〈v, ϕ0〉ϕ0

= e−tA2
Pv + (I − P )v.

The analyticity implies that

(2.2) ‖Aαe−tA2
v‖ ≤ Ct−

α
2 e−ct‖v‖, α > 0.

2.3. The finite element method. Let {Th}h>0 denote a family of regular
triangulations of D with maximal mesh size h. Let Sh be the space of
continuous functions on D, which are piecewise polynomials of degree ≤ 1
with respect to Th. Hence, Sh ⊂ H1. We also define Ṡh = PSh; that is,

Ṡh =
{

vh ∈ Sh :
∫

D
vh dx = 0

}
.

The space Ṡh is introduced only for the purpose of theory but not for com-
putation. Now we define the ”discrete Laplacian” Ah: Sh → Ṡh by

〈Ahvh, wh〉 = 〈∇vh,∇wh〉, ∀vh ∈ Sh, wh ∈ Ṡh.

We note that

(2.3) |vh|1 = ‖A 1
2 vh‖ = ‖∇vh‖ = ‖A

1
2
h vh‖, vh ∈ Sh.

The operator Ah is selfadjoint, positive definite on Ṡh, positive semidefinite
on Sh, and Ah has an orthonormal eigenbasis {ϕh,j}Nh

j=0 with corresponding
eigenvalues {λh,j}Nh

j=0. We have

0 = λh,0 < λh,1 ≤ · · · ≤ λh,j ≤ · · · ≤ λh,Nh
,

and ϕh,0 = ϕ0 = |D|− 1
2 . Moreover, we define e−tA2

h :Sh → Sh by

e−tA2
hvh =

Nh∑

j=0

e−tλh,j 〈vh, ϕh,j〉ϕh,j =
Nh∑

j=1

e−tλh,j 〈vh, ϕh,j〉ϕh,j + 〈vh, ϕ0〉ϕ0,

and the orthogonal projector Ph: H → Sh by

(2.4) 〈Phv, wh〉 = 〈v, wh〉 ∀v ∈ H, wh ∈ Sh.

Clearly, Ph: Ḣ → Ṡh and

e−tA2
hPhv = e−tA2

hPhPv + (I − P )v.

We have a discrete analog of (2.2),

(2.5) ‖Aα
he−tA2

hvh‖ ≤ Ct−
α
2 e−ct‖vh‖, vh ∈ Sh, α > 0.
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Finally, we define the Ritz projector Rh: Ḣ1 → Ṡh by

〈∇Rhv,∇wh〉 = 〈∇v,∇wh〉, ∀v ∈ Ḣ1, wh ∈ Ṡh.

We extend it to Rh: H1 → Sh by

Rhv = RhPv + (I − P )v, v ∈ H1.(2.6)

We then have the error bound (cf. [10, Ch. 1])

(2.7) ‖Rhv − v‖ ≤ Chβ|v|β, v ∈ Hβ, β ∈ [1, 2].

In order to simplify the presentation, we assume that Ph is bounded with
respect to the H1 and L4 norms, and that we have an inverse bound for Ah,

(2.8)

‖Phv‖1 ≤ C‖v‖1, v ∈ H1,

‖Phv‖L4 ≤ C‖v‖L4 , v ∈ H1,

‖Ahvh‖ ≤ Ch−2‖vh‖, vh ∈ Sh.

This holds, for example, if the mesh family {Th}h>0 is quasi-uniform.

2.4. The Wiener process. We recall the definitions of the trace and the
Hilbert-Schmidt norm of a linear operator T on H:

Tr(T ) =
∞∑

k=1

〈Tfk, fk〉, ‖T‖HS =
( ∞∑

k=1

‖Tfk‖2
) 1

2
,

where {fk}∞k=1 is an arbitrary orthonormal basis of H.
Let Q be a selfadjoint, positive semidefinite, bounded, linear operator on

H with Tr(Q) < ∞. Let {ek}∞k=1 be an orthonormal eigenbasis for Q with
eigenvalues {γk}∞k=1. Then we define the Q-Wiener process

W (t) =
∞∑

k=1

γ
1
2
k βk(t)ek,

where the βk are real-valued, independent Brownian motions. The series
converges in L2(Ω,H); that is, with respect to the norm ‖v‖L2(Ω,H) =
(E[‖v‖2])

1
2 . The Q-Wiener process can be defined also when the covariance

operator has infinite trace but this is not needed in the present work.
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2.5. The stochastic convolution. We now define (cf. [9])

WA(t) =
∫ t

0
e−(t−s)A2

dW (s)

=
∫ t

0
e−(t−s)A2

P dW (s) +
∫ t

0
〈dW (s), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

P dW (s) + 〈W (t), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

P dW (s) + (I − P )W (t).

Similarly,

WAh
(t) =

∫ t

0
e−(t−s)A2

hPh dW (s)

=
∫ t

0
e−(t−s)A2

hPhP dW (s) + 〈W (t), ϕ0〉ϕ0

=
∫ t

0
e−(t−s)A2

hPhP dW (s) + (I − P )W (t).

Hence, the constant eigenmodes cancel:

(2.9) WAh
(t)−WA(t) =

∫ t

0

(
e−(t−s)A2

hPh − e−(t−s)A2
)

P dW (s).

These convolutions were studied in [8]. We quote the following results from
there. We use the norms

‖v‖L2(Ω,Ḣβ) = (E[ |v|2β ])
1
2 .

Theorem 2.1. If ‖Aβ−2
2 Q

1
2 ‖HS < ∞ for some β ≥ 2, then

‖WA(t)‖L2(Ω,Ḣβ) ≤ C‖Aβ−2
2 Q

1
2 ‖HS, t ≥ 0.

Theorem 2.2. If ‖Q 1
2 ‖HS < ∞, then

‖WAh
(t)−WA(t)‖L2(Ω,H) ≤ Ch2| log h|‖Q 1

2 ‖HS, t ≥ 0.

Note that β = 2 in the latter theorem. In [8] these are stated with a
slightly wider range of the order β, but this is not needed in the present
work.
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2.6. Gronwall’s lemma. We need the following generalization of Gron-
wall’s lemma. A proof can found in [5].

Lemma 2.3 (Generalized Gronwall lemma). Let the function ϕ(t) ≥ 0 be
continuous for 0 ≤ t ≤ T . If

ϕ(t) ≤ At−1+α + B

∫ t

0
(t− s)−1+βϕ(s) ds, t ∈ (0, T ],

for some constants A,B ≥ 0 and α, β > 0, then there is a constant C =
C(B, T, α, β) such that

ϕ(t) ≤ CAt−1+α, t ∈ (0, T ].

We also use the standard Gronwall lemma:

Lemma 2.4 (Gronwall’s lemma). Let the function ϕ(t) be continuous on
[0, T ]. If, for some A,C ≥ 0 and B > 0,

ϕ(t) ≤ A + Ct + B

∫ t

0
ϕ(s) ds, t ∈ [0, T ],

then

ϕ(t) ≤
(
A +

C

B

)
eBt, t ∈ [0, T ].

Proof. Set Φ(t) = A + Ct + B
∫ t
0 ϕ(s) ds. Then

Φ′(t) = C + Bϕ(t) ≤ C + BΦ(t),

so that Φ′(t)−BΦ(t) ≤ C, which gives d
dt(Φ(t)e−Bt) ≤ Ce−Bt. Hence

Φ(t)e−Bt ≤ Φ(0) + C

∫ t

0
e−Bs ds =

(
A +

C

B

)
− C

B
e−Bt.

Multiplying both sides by eBt gives

Φ(t) ≤
(
A +

C

B

)
eBt − C

B
≤

(
A +

C

B

)
eBt.

But ϕ(t) ≤ Φ(t), so the desired result follows. ¤

2.7. Bounds for the nonlinear term.

Lemma 2.5. For u, v ∈ H3 and f(s) = s3 − s we have

‖∆f(u)‖ ≤ C(1 + ‖u‖2
1)‖u‖3,(2.10)

‖A−
1
2

h P (f(u)− f(v))‖ ≤ C
(
1 + ‖u‖2

1 + ‖v‖2
1

)
‖u− v‖.(2.11)
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Proof. We have f ′(s) = 3s2 − 2s, f ′′(s) = 6s2. Using Hölder’s inequality,
Sobolev’s inequality ‖u‖L6 ≤ C‖u‖H1 (for d ≤ 3), and ‖u‖Hk ≤ ‖u‖k, we
get

‖∆f(u)‖ = ‖f ′(u)∆u + f ′′(u)|∇u|2‖
≤ ‖f ′(u)‖L3‖∆u‖L6 + ‖f ′′(u)‖L6‖∇u‖L6

≤ C
(
1 + ‖u‖2

L6

)
‖∆u‖L6 + C‖u‖L6‖∇u‖2

L6

≤ C
(
1 + ‖u‖2

H1

)
‖u‖H3 + C‖u‖H1‖∇u‖2

H2

≤ C
(
1 + ‖u‖2

1

)
‖u‖3 + C‖u‖1‖u‖2

2

≤ C
(
1 + ‖u‖2

1

)
‖u‖3,

where we used ‖u‖2 ≤ C‖u‖
1
2
1 ‖u‖

1
2
3 in the last step. This proves (2.10).

For (2.11) we apply (2.3) and Hölder and Sobolev’s inequalities (d ≤ 3)
to get

‖A−
1
2

h Pϕ‖ = sup
vh∈Sh

〈A−
1
2

h Pϕ, vh〉
‖vh‖

= sup
vh∈Sh

〈ϕ,A
− 1

2
h Pvh〉
‖vh‖

= sup
wh∈Ṡh

〈ϕ,wh〉
|wh|1

≤ sup
wh∈Ṡh

‖ϕ‖L6/5
‖wh‖L6

|wh|1
≤ C‖ϕ‖L6/5

.

We use this with ϕ = f(u) − f(v) =
∫ 1
0 f ′(su + (1 − s)v) ds (u − v) =∫ 1

0 f ′(us) ds (u− v), where us = su + (1− s)v,

‖A−
1
2

h P (f(u)− f(v))‖ = ‖A−
1
2

h Pϕ‖ ≤ C‖ϕ‖L6/5

≤ C

∫ 1

0
‖f ′(us)‖L3 ds ‖u− v‖ ≤ C

∫ 1

0
(1 + ‖us‖2

L6
) ds ‖u− v‖

≤ C

∫ 1

0
(1 + ‖us‖2

1) ds ‖u− v‖ ≤ C(1 + ‖u‖2
1 + ‖v‖2

1)‖u− v‖.

This is (2.11). ¤

3. The Cahn-Hilliard-Cook equation

3.1. The continuous problem. The Cahn-Hilliard-Cook equation is

(3.1)

du−∆w dt = dW in D × [0, T ],

w + ∆u + f(u) = 0 in D × [0, T ],
∂u

∂n
=

∂w

∂n
= 0 on ∂D × [0, T ],

u(0) = u0. in D.
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The finite element approximation is based on its weak form, which is

(3.2)
〈u(t), v〉 = 〈u0, v〉 +

∫ t

0
〈w(s), ∆v〉 ds +

∫ t

0
〈dW (s), v〉, t > 0,

〈w, v〉 = 〈∇u,∇v〉 + 〈f(u), v〉, t > 0,

u(0) = u0,

for all v ∈ H2 with ∂v
∂n = 0 on ∂D. With the operator A, defined in Section

2, we write (3.1) in the formal abstract form on H = L2(D):

(3.3) dX + (A2X + Af(X)) dt = dW, t > 0; X(0) = X0.

A weak solution of (3.3) satisfies

〈X(t), v〉 − 〈X0, v〉 +
∫ t

0
〈X,A2v〉 ds +

∫ t

0
〈f(X(s)), Av〉 ds =

∫ t

0
〈dW (s), v〉,

for all v ∈ Ḣ4 = D(A2). A mild solution of (3.3) is a solution of

(3.4) X(t) = e−tA2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds +
∫ t

0
e−(t−s)A2

dW (s).

3.2. The finite element problem. Recalling (3.2), we define the finite
element solution uh(t) ∈ Sh of (3.1) by

〈uh(t), vh〉 = 〈u0, vh〉 +
∫ t

0
〈∇wh(s),∇vh〉 ds +

∫ t

0
〈dW (s), vh〉,

〈wh, vh〉 = 〈∇uh,∇vh〉 + 〈f(uh), vh〉,
uh(0) = uh,0,

for all vh ∈ Sh, t > 0. This may also be written in the abstract form in Sh:

(3.5) dXh + (A2
hXh + AhPhf(Xh)) dt = PhdW, t > 0; Xh(0) = PhX0,

with mild solution

Xh(t) = e−tA2
hX0 −

∫ t

0
e−(t−s)A2

hAhPhf(X(s)) ds

+
∫ t

0
e−(t−s)A2

hPh dW (s).
(3.6)

3.3. A Lyapunov functional. Define the functional

(3.7) J(u) =
1
2
‖∇u‖2 +

∫

D
F (u) dx, u ∈ H1,

where F (s) = 1
4s4 − 1

2s2 is a primitive of f(s) = s3 − s. This is a Lyapunov
functional for the deterministic Cahn-Hilliard equation, which means that
in the deterministic case J(X(t)) does not increase along solution paths.
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For the stochastic equation this is not true, but we have a bound for the
expected value of J(X(t)).

Theorem 3.1. Assume that ‖A 1
2 Q

1
2 ‖HS < ∞ and X, Xh are weak solutions

of (3.3) and (3.5) with E[J(X0)] < ∞ and that X0 is F0-measurable with
values in H1. Then, for all t > 0, we have

(3.8) E[J(X(t))] ≤ C
(
E[J(X0)] + 1 + tKQ + t2K2

Q

)
,

and

(3.9) E[J(Xh(t))] ≤ C
(
E[J(PhX0)] + 1 + tKQ + t2K2

Q

)
,

where KQ = ‖A 1
2 Q

1
2 ‖2

HS + 〈Qϕ0, ϕ0〉.
Proof. We prove (3.9), the proof of (3.8) is essentially obtained by removing
the subscript ”h” everywhere (see also [4]).

We consider (3.5) as an Itô differential equation in Sh driven by PhW ,
which is a Qh = PhQPh-Wiener process in Sh. By assumption (2.8) it follows
that E[J(PhX0)] < ∞, if E[J(X0)] < ∞.

By applying Itô’s formula ([9, Theorem 4.17]) to J(Xh(t)), we obtain

J(Xh(t)) = J(Xh(0)) +
∫ t

0
〈J ′(Xh(s)), dXh(s)〉 +

1
2

∫ t

0
Tr(J ′′(Xh(s)Qh) ds

= J(PhX0) +
∫ t

0
〈J ′(Xh(s)),−A2

hXh(s)− PhAhf(Xh(s))〉 ds

+
1
2

∫ t

0
Tr(J ′′(Xh(s)Qh) ds +

∫ t

0
〈J ′(Xh(s)), dW (s)〉.

But we have

〈J ′(uh), vh〉 = 〈∇uh,∇vh〉 + 〈f(uh), vh〉 = 〈Ahuh + Phf(uh), vh〉,
and

〈J ′′(uh)vh, wh〉 = 〈∇vh,∇wh〉 + 〈f ′(uh)vh, wh〉
= 〈Ahvh + Ph[f ′(uh)vh], wh〉,

so that

J ′(uh) = Ahuh + Phf(uh), J ′′(uh) = Ah + Ph[f ′(uh)·].
Hence, by (2.3),

E[J(Xh(t))] = E[J(PhX0)]−E
[∫ t

0
|AhXh(s) + Phf(Xh(s))|21 ds

]

+
1
2
E

[∫ t

0

(
Tr(AhQh) + Tr(Ph[f ′(Xh(s))·]Qh)

)
ds

]
.
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We ignore the negative term on the right hand side to get

E[J(Xh(t))] ≤ E[J(PhX0)]

+
1
2
E

[∫ t

0

(
Tr(AhQh) + Tr(Ph[f ′(Xh(s))·]Qh)

)
ds

]
.

(3.10)

Now we compute Tr(AhQh) and Tr(Ph[f ′(Xh(s))·]Qh). To this end let
{ϕh,j}Nh

j=0 be an orthonormal basis of eigenvectors of Ah and {λh,j}Nh
j=0 the

corresponding eigenvalues. Then

Tr(AhQh) = Tr(QhAh) =
Nh∑

j=1

〈PhQPhAhϕh,j , ϕh,j〉 =
Nh∑

j=1

λh,j〈Qϕh,j , ϕh,j〉

=
Nh∑

j=1

〈Q 1
2 A

1
2
h ϕh,j , Q

1
2 A

1
2
h ϕh,j〉 =

Nh∑

j=1

‖Q 1
2 A

1
2
h Phϕh,j‖2 = ‖Q 1

2 A
1
2
h Ph‖2

HS

≤ ‖A
1
2
h PhQ

1
2 ‖2

HS = ‖A
1
2
h PhA−

1
2 A

1
2 Q

1
2 ‖2

HS ≤ ‖A
1
2
h PhA−

1
2 ‖2

B(Ḣ)
‖A 1

2 Q
1
2 ‖2

HS

≤ C‖A 1
2 Q

1
2 ‖2

HS.

Here we used (2.3) and (2.8) to get

‖A
1
2
h PhA−

1
2 v‖ = |PhA−

1
2 v|1 ≤ C|A− 1

2 v|1 = C‖v‖, v ∈ Ḣ,

so that ‖A
1
2
h PhA

− 1
2

h ‖B(Ḣ) ≤ C. Hence, with KQ = ‖A 1
2 Q

1
2 ‖2

HS + 〈Qϕ0, ϕ0〉,

(3.11) ‖A
1
2
h Q

1
2
h ‖2

HS = Tr(AhQh) ≤ C‖A 1
2 Q

1
2 ‖2

HS ≤ CKQ.

Let {eh,j}Nh
j=0 be an orthonormal eigenbasis of Qh and {γh,j}Nh

j=0 the cor-
responding eigenvalues. We get

Tr (Ph[f ′(Xh)·]Qh) =
Nh∑

j=0

〈Ph[f ′(Xh)Qheh,j ], eh,j〉

=
Nh∑

j=0

γh,j〈f ′(Xh)eh,j , eh,j〉

=
Nh∑

j=0

〈f ′(Xh)Q
1
2
h eh,j , Q

1
2
h eh,j〉.

(3.12)

By using the bound |f ′(s)| ≤ C(1 + s2), we get by Hölder’s and Sobolev’s
inequalities,

|〈f ′(u)v, v〉| ≤ C(1+‖u‖2
L4

)‖v‖2
L4
≤ C(1+‖u‖2

L4
)‖v‖2

H1 ≤ C(1+‖u‖2
L4

)‖v‖2
1.
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By (2.1) and (2.3) we have, for vh ∈ Sh,

‖vh‖2
1 = |vh|21 + 〈vh, ϕ0〉2 = ‖A

1
2
h vh‖2 + 〈vh, ϕ0〉2,

so that, by (3.11),

Nh∑

j=0

‖Q
1
2
h eh,j‖2

1 =
Nh∑

j=0

‖A
1
2
h Q

1
2
h eh,j‖2 +

Nh∑

j=0

〈Q
1
2
h eh,j , ϕ0〉2

≤ ‖A
1
2
h Q

1
2
h ‖2

HS + ‖Q
1
2
h ‖2

HS ≤ ‖A
1
2
h Q

1
2
h ‖2

HS + ‖Q 1
2 ‖2

HS

≤ C‖A 1
2 Q

1
2 ‖2

HS + 〈Qϕ0, ϕ0〉 ≤ CKQ.

Here we used the boundedness of A−
1
2 to get

‖Q 1
2 ‖2

HS =
∞∑

j=0

‖Q 1
2 ϕj‖2 =

∞∑

j=1

‖A− 1
2 A

1
2 Q

1
2 ϕj‖2 + ‖Q 1

2 ϕ0‖2

≤ C
∞∑

j=1

‖A 1
2 Q

1
2 ϕj‖2 + 〈Qϕ0, ϕ0〉

= C‖A 1
2 Q

1
2 ‖HS + 〈Qϕ0, ϕ0〉 ≤ CKQ.

(3.13)

Returning to (3.12), we now have
(3.14)

Tr(Ph[f ′(Xh)·]Qh) ≤ C(1 + ‖Xh‖2
L4

)
Nh∑

j=0

‖Q
1
2
h eh,j‖2

1 ≤ C(1 + ‖Xh‖2
L4

)KQ,

Putting (3.11) and (3.14) in (3.10) gives

(3.15) E[J(Xh(t))] ≤ E[J(PhX0)] + CKQ

(
t +

∫ t

0
E[‖Xh(s)‖2

L4
] ds

)
.

It remains to bound
∫ t
0 E[‖Xh‖2

L4
] ds. By definition of the Lyapunov func-

tional (3.7) and noting that F (s) = 1
4s4 − 1

2s2 ≥ c1s
4 − c2, we get

J(u) ≥ 1
2
‖∇u‖2 + C1‖u‖4

L4
− C2,

which implies

‖u‖4
L4
≤ C3(1 + J(u)).
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Hence, by Hölder’s inequality, we get, for ε > 0,

CKQ

∫ t

0
E[‖Xh(s)‖2

L4
] ds ≤ CKQ

(∫ t

0
E[‖Xh(s)‖2

L4
] ds

) 1
2
t

1
2

≤ ε

C3

∫ t

0
E[‖Xh(s)‖2

L4
] ds +

C3

4ε
tCK2

Q

≤ ε

∫ t

0
E[1 + J(Xh(s)] ds + Cε−1tK2

Q

≤ ε

∫ t

0
E[J(Xh(s))] ds + εt + Cε−1tK2

Q.

Putting this in (3.15) gives

E[J(Xh(t))] ≤ E[J(PhX0)] + C
(
ε + KQ + ε−1K2

Q

)
t + ε

∫ t

0
E[J(Xh(s))] ds.

Now apply the Gronwall Lemma 2.4 to get, for ε > 0,

E[J(Xh(t))] ≤ eεt
(
E[J(PhX0)] + C(1 + ε−1KQ + ε−2K2

Q)
)

≤ e
(
E[J(PhX0)] + C(1 + tKQ + t2K2

Q)
)
,

where for each fixed t we have chosen ε = t−1 to get an optimal bound. ¤

This theorem is adapted from [4]. We have improved it in several ways.
Most importantly, the growth of the bound is reduced from exponential to
quadratic with respect to t. Moreover, we have removed the assumption that
A and Q have a common eigenbasis and that the eigenbasis of Q satisfies
‖ej‖L∞ ≤ C. It is also important that we obtain the same bound for Xh.

Note that the assumption ‖A 1
2 Q

1
2 ‖HS < ∞ is the same as the condition

for regularity of order β = 3 for WA(t) in Theorem 2.1.
We now use the previous theorem to obtain norm bounds uniformly on

subsets of Ω with probability arbitrarily close to 1.

Corollary 3.2. Assume that ‖A 1
2 Q

1
2 ‖HS < ∞ and X, Xh are weak so-

lutions of (3.3) and (3.5) with X0 F0-measurable with values in H1 and
‖X0‖2

L2(Ω,H1) +‖X0‖4
L4(Ω,L4) ≤ ρ. Then, for every ε ∈ (0, 1), there is Ωε ⊂ Ω

with P(Ωε) ≥ 1− ε and

‖∇X(t)‖2 + ‖X(t)‖4
L4
≤ ε−1KT on Ωε, t ∈ [0, T ],(3.16)

‖∇Xh(t)‖2 + ‖Xh(t)‖4
L4
≤ ε−1KT on Ωε, t ∈ [0, T ],(3.17)

‖X(t)‖2
1 + ‖Xh(t)‖2

1 ≤ ε−1KT on Ωε, t ∈ [0, T ],(3.18)

‖WA(t)‖2
3 ≤ ε−1KT on Ωε, t ∈ [0, T ],(3.19)
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where KT = C(1 + ρ + KQT + K2
QT 2).

Proof. Since E[J(X0)] ≤ C(1 + ρ), we obtain from Theorem 3.1,

E[J(X(t))] ≤ C(1 + ρ + KQT + K2
QT 2) ≤ KT t ∈ [0, T ].

We apply Chebyshev’s inequality to get, for every α > 0 and t ∈ [0, T ],

P
(
{ω ∈ Ω : ‖∇X(t)‖2 + ‖X(t)‖4

L4
> α

)
≤ 1

α
E

[
‖∇X(t)‖2 + ‖X(t)‖4

L4

]

≤ 1
α

C(1 + E [J(X(t))] ≤ 1
α

C(1 + KT ) =
KT

α
,

where the C in KT was adjusted. We choose α = ε−1KT and set

Ωε = {ω ∈ Ω : ‖∇X(t)‖2 + ‖X(t)‖4
L4
≤ ε−1KT }.

So (3.16) holds and

P(Ωε) = 1−P
(
{ω ∈ Ω : ‖∇X(t)‖2 + ‖X(t)‖4

L4
> α

)
≥ 1− ε.

For (3.17) we replace Xh by X and note that we have E[J(PhX0)] ≤
C(1 + ρ), by (2.8). For (3.18) we note that ε−1KT ≥ 1, and so

‖X(t)‖2
1 ≤ ‖∇X(t)‖2 + ‖X(t)‖2 ≤ ‖∇X(t)‖2 + C‖X(t)‖2

L4
≤ ε−1KT

after an adjustment of the C in KT . Finally, (3.19) follows in a similar way
from Theorem 2.1 with β = 3 with a constant which can be absorbed in
KT . ¤

4. Regularity of the solution

We quote the following from [4].

Theorem 4.1. Let T > 0 and assume that Tr(Aδ−1Q) < ∞ for some δ > 0
and that X0 is F0-measurable with values in H. Then there is a process X,
which is in C([0, T ],H) a.s. and which is a mild solution of (1.1).

We now show that, under the assumption ‖A 1
2 Q

1
2 ‖HS < ∞, the solution

is actually in H3. In order to do this we write X(t) = Y (t) + WA(t), where
we already know that WA is in H3 from Theorem 2.1. The regularity of Y
is studied in the next theorem. Since

Y (t) = X(t)−WA(t) = e−tA2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds,

it is a mild solution of

(4.1) Ẏ + A2Y + Af(X) = 0, t > 0; Y (0) = X0.
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Theorem 4.2. Assume that ‖A 1
2 Q

1
2 ‖HS < ∞ and that X0 is F0-measurable

with values in H3 and ‖X0‖2
L2(Ω,H1) + ‖X0‖4

L4(Ω,L4) < ∞. Let T > 0 and
ε ∈ (0, 1) and let Ωε and KT be as in Corollary 3.2. Let X be the solution
from Theorem 4.1. Then, for each ω ∈ Ωε the mild solution Y of (4.1)
belongs to C([0, T ],H3). Moreover,

‖Y (t)‖3 ≤ C(‖X0‖3, ε
−1KT , T ) on Ωε, t ∈ [0, T ],

‖X(t)‖3 ≤ C(‖X0‖3, ε
−1KT , T ) on Ωε, t ∈ [0, T ].

Proof. Let T > 0 and ω ∈ Ωε. From Corollary 3.2 we have

(4.2) ‖X(t)‖2
1 ≤ ε−1KT , ‖WA(t)‖3 ≤ ε−1KT .

We take norms in

(4.3) Y (t) = e−tA2
X0 −

∫ t

0
e−(t−s)A2

Af(X(s)) ds,

to get

|Y (t)|3 ≤ |e−tA2
X0|3 +

∫ t

0
|e−(t−s)A2

Af(X(s))|3 ds

= ‖e−tA2
A

3
2 X0‖ +

∫ t

0
‖A 3

2 e−(t−s)A2
Af(X(s))‖ ds

≤ |X0|3 + C

∫ t

0
(t− s)−

3
4 ‖Af(X(s))‖ ds.

We apply (2.10) to ‖Af(X(s))‖ = ‖∆f(X(s))‖ to get

|Y (t)|3 ≤ |X0|3 + C

∫ t

0
(t− s)−

3
4 (1 + ‖X(s)‖2

1)‖X(s)‖3 ds

≤ |X0|3 + C

∫ t

0
(t− s)−

3
4 (1 + ‖X(s)‖2

1)(‖Y (s)‖3 + ‖WA(s)‖3) ds.

Since (I − P )Y (t) = (I − P )X0 is constant, we get the same bound for the
norm ‖Y (t)‖3. Using also (4.2) gives

‖Y (t)‖3 ≤ ‖X0‖3 + C

∫ t

0
(t− s)−

3
4 (1 + ε−1KT )(‖Y (s)‖3 + ε−1KT ) ds

≤ ‖X0‖3 + Cε−1KT (1 + ε−1KT )T
1
4

+ C(1 + ε−1KT )
∫ t

0
(t− s)−

3
4 ‖Y (s)‖3 ds.

Applying Gronwall’s Lemma 2.3 with α = 1, β = 1
4 and

A = ‖X0‖3 + Cε−1KT

(
1 + ε−1KT

)
, B = C

(
1 + ε−1KT

)
,(4.4)
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gives

‖Y (t)‖3 ≤ AC(B, T ) = C(‖X0‖3, ε
−1KT , T ), t ∈ [0, T ].

The bound for ‖X(t)‖3 then follows in view of (4.2). ¤
The constant C(‖X0‖3, ε

−1KT , T ) grows rapidly with ε−1KT and T . Hence,
it is important that KT grows only quadratically with T .

5. Error estimates

5.1. Error estimate for deterministic Cahn-Hilliard equation. Con-
sider the linear Cahn-Hilliard equation

(5.1)

u̇ + Av = 0, t > 0,

v −Au− f = 0, t > 0

u(0) = u0,

where f is a function of x, t, and the corresponding finite element problem

(5.2)

u̇h + Ahvh = 0, t > 0,

vh −Ahuh − Phf = 0, t > 0,

uh(0) = Phu0.

We have the following error estimate. We will later use this for fixed
ω ∈ Ωε with f replaced by f(X) and u by the solution Y of (1.3).

Theorem 5.1. Assume that u, v and uh, vh are the solutions of (5.1) and
(5.2), respectively. Then, for t ≥ 0,

‖uh(t)− u(t)‖ ≤ Ch2

(
| log(h)| max

0≤s≤t
|u(s)|2 +

(∫ t

0
|v(s)|22 ds

) 1
2

)
.(5.3)

Proof. The weak forms of (5.1) and (5.2) are

(5.4)

〈u̇, ϕ1〉 + 〈∇v,∇ϕ1〉 = 0 ∀ϕ1 ∈ H1,

〈v, ϕ2〉 − 〈∇u,∇ϕ2〉 − 〈f, ϕ2〉 = 0 ∀ϕ2 ∈ H1,

u(0) = u0,

and

(5.5)

〈u̇h, ϕh,1〉 + 〈∇vh,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,

〈vh, ϕh,2〉 − 〈∇uh,∇ϕh,2〉 − 〈f, ϕh,2〉 = 0 ∀ϕh,2 ∈ Sh,

uh(0) = Phu0.

Let Ph and Rh be as in (2.4) and (2.6) and set

eu = uh − u = (uh − Phu) + (Phu− u) = θu + ρu,(5.6)

ev = vh − v = (vh −Rhv) + (Rhv − v) = θv + ρv.(5.7)
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We want to compute

(5.8) ‖eu‖ ≤ ‖θu‖ + ‖ρu‖.
In (5.4) choose ϕ1 = ϕh,1 and ϕ2 = ϕh,2 and subtract the first two equations
of (5.4) from the corresponding equations in (5.5) to get

〈ėu, ϕh,1〉 + 〈∇ev,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,

〈ev, ϕh,2〉 − 〈∇eu,∇ϕh,2〉 = 0 ∀ϕh,2 ∈ Sh.

Hence, by (5.6) and (5.7),

〈θ̇u, ϕh,1〉 + 〈∇θv,∇ϕh,1〉 = −〈ρ̇u, ϕh,1〉 − 〈∇ρv,∇ϕh,1〉 ∀ϕh,1 ∈ Sh,

〈θv, ϕh,2〉 − 〈∇θu,∇ϕh,2〉 = −〈ρv, ϕh,2〉 + 〈∇ρu,∇ϕh,2〉 ∀ϕh,2 ∈ Sh.

By the definitions of Ph and Rh we have

〈ρ̇u, ϕh,1〉 = 〈Phu̇− u̇, ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh,

〈∇ρv,∇ϕh,1〉 = 〈∇Rhv − v,∇ϕh,1〉 = 0 ∀ϕh,2 ∈ Sh,

so that

〈θ̇u, ϕh,1〉 + 〈∇θv,∇ϕh,1〉 = 0 ∀ϕh,1 ∈ Sh

〈θv, ϕh,2〉 − 〈∇θu,∇ϕh,2〉 = −〈ρv, ϕh,2〉 + 〈∇ρu,∇ϕh,2〉 ∀ϕh,2 ∈ Sh.

In the second equation we set ϕh,2 = Ahϕh,1 to get

〈∇θv,∇ϕh,1〉 = 〈A2
hθu, ϕh,1〉 − 〈AhPhρv, ϕh,1〉 + 〈A2

hRhρu, ϕh,1〉.
Inserting this into the first equation gives

〈θ̇u, ϕh,1〉 + 〈A2
hθu, ϕh,1〉 = 〈AhPhρv, ϕh,1〉 − 〈A2

hRhρu, ϕh,1〉,
so the strong form is

θ̇u + A2
hθu = AhPhρv −A2

hRhρu, t > 0; θu(0) = 0,

with the mild solution

θu(t) =
∫ t

0
e−(t−s)A2

hAhPhρv(s) ds−
∫ t

0
e−(t−s)A2

hA2
hRhρu(s) ds.

Taking norms here gives

‖θu(t)‖ ≤
∥∥∥
∫ t

0
e−(t−s)A2

hAhPhρv(s) ds
∥∥∥

+
∥∥∥
∫ t

0
e−(t−s)A2

hA2
hRhρu(s) ds

∥∥∥ = I + II.

(5.9)

For I we define

wh(t) =
∫ t

0
e−(t−s)A2

hPhρv(s) ds,
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which satisfies the equation

ẇh + A2
hwh = Phρv, t > 0; wh(0) = 0.

Multiply by ẇh to get

‖ẇh‖2 +
1
2

d
dt
‖Ahwh‖2 = 〈Phρv, ẇh〉 ≤ ‖ρv‖‖ẇh‖ ≤

1
2
‖ρv‖2 +

1
2
‖ẇh‖2.

So we get

‖ẇh‖2 +
d
dt
‖Ahwh‖2 ≤ ‖ρv‖2.

Integrate and ignore
∫ t
0 ‖ẇh(s)‖2 ds to get

∥∥∥Ah

∫ t

0
e−(t−s)A2

hPhρv(s) ds
∥∥∥ = ‖Ahwh(t)‖ ≤

(∫ t

0
‖ρv(s)‖2 ds

) 1
2
,

where, from (2.7),

‖ρv‖ = ‖(Rh − I)v‖ ≤ Ch2|v|2.
So we get

(5.10)
∥∥∥Ah

∫ t

0
e−(t−s)A2

hPhρv(s) ds
∥∥∥ ≤ Ch2

(∫ t

0
|v(s)|22 ds

) 1
2
.

For II we use

Rhρu = Rh(Phu− u) = Phu−Rhu = Ph(u−Rhu).

Then
∥∥∥
∫ t

0
A2

he−(t−s)A2
hRhρu(s) ds

∥∥∥ ≤
∫ t

0
‖A2

he−(t−s)A2
hPh(u(s)−Rhu(s))‖ ds

≤
∫ t

0
‖A2

he−(t−s)A2
hPh‖ ds max

0≤s≤t
‖u(s)−Rhu(s)‖ ds.

Here we use ‖Ah‖ ≤ Ch−2 from (2.8) and (2.5) to get
∫ t

0
‖A2

he−(t−s)A2
hPh‖ ds =

∫ h4

0
‖Ah‖2‖e−sA2

h‖ ds +
∫ t

h4

‖A2
he−sA2

h‖ ds

≤ Ch−4h4 + C

∫ t

h4

s−1e−cs ds ≤ C(1 + log(1/h)) ≤ C| log(h)|.

Hence, by (2.7), we have

(5.11)
∥∥∥
∫ t

0
A2

he−(t−s)A2
hRhρu(s) ds

∥∥∥ ≤ Ch2| log(h)| max
0≤s≤t

|u(s)|2.
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Putting (5.10) and (5.11) in (5.9) gives

(5.12) ‖θu(t)‖ ≤ Ch2
{(∫ t

0
|v(s)|22 ds

) 1
2 + | log(h)| max

0≤s≤t
|u(s)|2

}
.

Finally, by the best approximation property of Ph,

(5.13) ‖ρu(t)‖ = ‖Phu− u‖ ≤ ‖Rhu− u‖ ≤ Ch2|u(t)|2.
Putting (5.12) and (5.13) in (5.8) gives the desired result (5.3). ¤

In the next lemma we prove a stabilty estimate for the deterministic
Cahn-Hilliard equation (5.1).

Lemma 5.2. Assume that u, v are the solutions of (5.1). Then

|u(t)|22 +
∫ t

0
|v(s)|22 ds ≤ |u0|22 +

∫ t

0
|f(s)|22 ds.

Proof. Multiply the first equation in (5.1) by A2u to get

1
2
|u|22 + 〈A2v, Au〉 = 0.

The second equation of (5.1) gives Au = v − f , so we have

1
2

d
dt
|u|22 + 〈A2v, v〉 = 〈A2v, f〉 ≤ |v|2|f |2 ≤

1
2
|v|22 +

1
2
|f |22,

so that
d
dt
|u|22 + |v|22 ≤ |f |22.

The proof is finished by integration. ¤

5.2. Error estimate for the stochastic Cahn-Hilliard equation. In
the next theorem we prove an error estimate for the nonlinear Cahn-Hilliard-
Cook equation.

Theorem 5.3. Assume that ‖A 1
2 Q

1
2 ‖HS < ∞ and X, Xh are the solu-

tions of (3.3) and (3.5) with X0 F0-measurable with values in H3 and
‖X0‖2

L2(Ω,H1) + ‖X0‖4
L4(Ω,L4) < ∞. Let T > 0, ε ∈ (0, 1), and let Ωε ⊂ Ω

and KT be as in Corollary 3.2. Then we have

‖Xh(t)−X(t)‖ ≤ C(‖X0‖3, ε
−1KT , T )h2| log(h)|, on Ωε, t ∈ [0, T ].

The constant C(‖X0‖3, ε
−1KT , T ) grows rapidly with ε−1KT and T due

to the use of Gronwall’s lemma in the proof.
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Proof. Let ω ∈ Ωε be fixed. Set

(5.14) X(t) = Y (t) + WA(t),

where WA(t) is the stochastic convolution

(5.15) WA(t) =
∫ t

0
e−(t−s)A2

dW (s),

and Y (t) is the mild solution (4.3) of (1.3). Also set

(5.16) Xh(t) = Zh(t) + WAh
(t),

where WAh
(t) is the stochastic convolution

(5.17) WAh
(t) =

∫ t

0
e−(t−s)A2

hPh dW (s),

and

(5.18) Zh(t) = e−tA2
hPhX0 −

∫ t

0
e−(t−s)A2

hAhPhf(Xh(s)) ds,

is the mild solution of

(5.19) Żh + A2
hZh = −AhPhf(Xh), t > 0; Zh(0) = PhX0.

Finally, let

(5.20) Yh(t) = e−tA2
hPhX0 −

∫ t

0
e−(t−s)A2

hAhPhf(X(s)) ds,

be the mild solution of

(5.21) Ẏh + A2
hYh = −AhPhf(X), t > 0; Yh(0) = PhX0.

We subtract (5.14) from (5.16),

Xh −X = (Zh + WAh
)− (Y + WA)

= (WAh
−WA) + (Yh − Y ) + (Zh − Yh),

and take norms,

(5.22) ‖Xh −X‖ ≤ ‖WAh
−WA‖ + ‖Yh − Y ‖ + ‖Zh − Yh‖.

We compute the three norms on the right hand side.
First we compute ‖WAh

(t)−WA(t)‖. Since ‖A 1
2 Q

1
2 ‖HS < ∞, we have

that ‖Q 1
2 ‖HS < ∞ and hence, by Theorem 2.2 and Chebyshev’s inequality,

we get

‖WAh
(t)−WA(t)‖ ≤ ε−

1
2 (E[‖WAh

(t)−WA(t)‖2])
1
2

≤ ε−
1
2 Ch2| log(h)|‖Q 1

2 ‖HS ≤ C(ε−1KQ)
1
2 h2| log(h)|,
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see (3.13). Since KQ ≤ KT , we conclude

(5.23) ‖WAh
(t)−WA(t)‖ ≤ C(ε−1KT )

1
2 h2| log(h)|.

Now we consider ‖Yh(t)− Y (t)‖ and use Theorem (5.1) to get

(5.24) ‖Yh(t)− Y (t)‖ ≤ Ch2
{
| log(h)| max

0≤s≤t
|Y (s)|2 +

(∫ t

0
|V (s)|22 ds

) 1
2
}

,

where Y (t) and V (t) are the solutions of

(5.25)

Ẏ + AV = 0, t > 0,

V = AY + f(X), t > 0,

Y (0) = X0.

By using Lemma 5.2, (2.10), and (3.19), we get
∫ t

0
|V (s)|22 ds ≤ |X0|22 +

∫ t

0
|f(X(s))|22 ds

≤ ‖X0‖2
2 + C

∫ t

0
(1 + ‖X(s)‖2

1)‖X(s)‖3 ds

≤ ‖X0‖2
3 + C

∫ t

0
(1 + ‖X(s)‖3

3) ds

≤ ‖X0‖2
3 + CT

(
1 + (ε−1KT )

3
2 )

)
.

So

(5.26)
∫ t

0
|V (s)|22 ds ≤ C(‖X0‖3, ε

−1KT , T ).

Now we bound |Y (t)|2. By Theorem 4.2 we have

(5.27) |Y (t)|2 ≤ ‖Y (t)‖3 ≤ C(‖X0‖3, ε
−1KT , T ).

Using (5.26) and (5.27) in (5.24) gives

(5.28) ‖Yh(t)− Y (t)‖ ≤ C(‖X0‖3, ε
−1KT , T )h2| log(h)|.

Finally we compute ‖eh(t)‖ = ‖Zh(t)− Yh(t)‖. By subtraction of (5.18)
and (5.20), we obtain

‖eh(t)‖ ≤
∫ t

0
‖e−(t−s)A2

hAhPhP (f(Xh(s))− f(X(s))‖ ds

=
∫ t

0
‖A

3
2
h e−(t−s)A2

hA
− 1

2
h PhP (f(Xh(s))− f(X(s))‖ ds

≤
∫ t

0
‖A

3
2
h e−(t−s)A2

hPh‖‖A
− 1

2
h P (f(Xh(s))− f(X(s))‖ ds,
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since the constant eigenmodes cancel (cf. (2.9)). Using (2.11) and (2.5) gives

‖eh(t)‖ ≤ C

∫ t

0
(t− s)−

3
4 (1 + ‖Xh(s)‖2

1 + ‖X(s)‖2
1)‖Xh(s)−X(s)‖ ds.

By Corollary (3.2) we have

‖eh(t)‖ ≤ C

∫ t

0
(t− s)−

3
4

(
1 + ε−1KT

)(
‖WAh

(s)−WA(s)‖

+ ‖Yh(s)− Y (s)‖ + ‖eh(s)‖
)

ds

≤ C
(
1 + ε−1KT

)
T

1
4 max

0≤s≤T

(
‖WAh

(s)−WA(s)‖ + ‖Yh(s)− Y (s)‖
)

+ C
(
1 + ε−1KT

)∫ t

0
(t− s)−

3
4 ‖eh(s)‖ ds.

We apply Gronwall’s Lemma 2.3 with α = 1, β = 1
4 and

A = C(1 + ε−1KT )T
1
4 max

0≤s≤T

(
‖WAh

(s)−WA(s)‖ + ‖Yh(s)− Y (s)‖
)
,

B = C(1 + ε−1KT ),

to get

(5.29) ‖Zh(t)− Yh(t)‖ = ‖eh(t)‖ ≤ AC(B, T ), t ∈ [0, T ].

But we bounded ‖WAh
(t)−WA(t)‖ and ‖Yh(t)− Y (t)‖ in (5.23) (5.28). By

putting these values and (5.29) in (5.22) we get the desired result. ¤
We finally show that Xh converges strongly to X. More precisely, we

show that Xh(t) → X(t) in L2(Ω,H) uniformly on [0, T ] as h → 0.

Theorem 5.4. Assume that ‖A 1
2 Q

1
2 ‖HS < ∞ and X, Xh are the solu-

tions of (3.3) and (3.5) with X0 F0-measurable with values in H3 and
‖X0‖2

L2(Ω,H1) + ‖X0‖4
L4(Ω,L4) < ∞. Then

max
t∈[0,T ]

(
E[‖Xh(t)−X(t)‖2]

) 1
2 → 0 as h → 0.

Proof. From Theorem 3.1 it follows that

E
[
‖X(t)‖4

L4

]
≤ KT , E

[
‖Xh(t)‖4

L4

]
≤ KT , t ∈ [0, T ],

with KT as in Corollary 3.2. Let ε ∈ (0, 1) and let Ωε be as in Corollary 3.2.
Then

E
[
‖Xh(t)−X(t)‖2

]
≤

∫

Ωε

‖Xh(t)−X(t)‖2 dP

+ 2
∫

Ωc
ε

(
‖Xh(t)‖2 + ‖X(t)‖2

)
dP.
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Here, by Hölder’s inequality, we have

∫

Ωc
ε

‖X(t)‖2 dP ≤
( ∫

Ωc
ε

12 dP
) 1

2
(∫

Ωc
ε

‖X(t)‖4
L4

dP
) 1

2

≤ ε
1
2
(
E

[
‖X(t)‖4

L4

]) 1
2 ≤ ε

1
2 K

1
2
T .

Therefore, by Theorem 5.3,

max
t∈[0,T ]

(
E

[
‖Xh(t)−X(t)‖2

]) 1
2 ≤ C(ε−1KT , T )h2| log(h)|+ CK

1
4
T ε

1
4 .

Since ε
1
4

C(ε−1KT ,T )
→ 0 monotonically as ε → 0, we may choose ε, depending

on h, such that the two terms are equal. ¤

Since C(ε−1KT , T ) grows rapidly with ε−1, it is not possible to obtain a
rate of convergence from this proof.
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A POSTERIORI ERROR ANALYSIS FOR THE
CAHN-HILLIARD EQUATION

STIG LARSSON1 AND ALI MESFORUSH

Abstract. The Cahn-Hilliard equation is discretized by a Galerkin fi-
nite element method based on continuous piecewise linear functions in
space and discontinuous piecewise constant functions in time. A posteri-
ori error estimates are proved by using the methodology of dual weighted
residuals.

1. Introduction

We consider the Cahn-Hilliard equation

(1.1)

ut −∆w = 0 in Ω× [0, T ],

w + ε∆u− f(u) = 0 in Ω× [0, T ],
∂u

∂ν
= 0,

∂w

∂ν
= 0 on ∂Ω× [0, T ],

u(·, 0) = g0 in Ω,

where Ω is a polygonal domain in Rd, d = 1, 2, 3, u = u(x, t), w = w(x, t),
∆ =

∑d
i=1

∂2

∂x2
i
, ut = ∂u

∂t , ν is the exterior unit normal to ∂Ω, and ε > 0 is a
small parameter. The Cahn-Hilliard equation is a model for phase separation
and spinodal decomposition [3]. The nonlinearity f is the derivative of a
double-well potential. A typical example is f(u) = u3 − u.

We discretize (1.1) by a Galerkin finite element method, which is based
on continuous piecewise linear functions with respect to x and discontinuous
piecewise constant functions with respect to t. This numerical method is the
same as the implicit Euler time stepping combined with spatial discretization
by a standard finite element method.

We perform an a posteriori error analysis within the framework of dual
weighted residuals [2]. If J(u) is a given goal functional, this results in an
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Key words and phrases. Cahn-Hilliard, finite element, error estimate, a posteriori, dual

weighted residuals.
1Supported by the Swedish Research Council (VR) and by the Swedish Foundation
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error estimate essentially of the form

|J(u)− J(U)| ≤
N∑

n=1

∑

K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K

}
+R,

where U denotes the numerical solution and Tn is the spatial mesh at time
level tn. The terms ρu,K , ρw,K are local residuals from the first and second
equations in (1.1), respectively. The weights ωu,K , ωw,K are derived from the
solution of the linearized adjoint problem. The remainder R is quadratic in
the error.

There is an extensive literature on numerical methods for the Cahn-
Hilliard equation; see, for example, [5] and [4] for a priori error estimates.
Adaptive methods based on a posteriori estimates are presented in [1] and
[6]. However, these estimates are restricted to spatial discretization. We are
not aware of any completely discerete a posteriori error analysis.

2. Preliminaries

Here we present the methodology of dual weighted residuals [2] in an
abstract form.

Let A(·; ·) be a semilinear form; that is, it is nonlinear in the first and lin-
ear in the second variable, and J(·) be an output functional, not necessarily
linear, defined on some function space V . Consider the variational problem:
Find u ∈ V such that

(2.1) A(u;ψ) = 0 ∀ψ ∈ V,

and the corresponding finite element problem: Find uh ∈ Vh ⊂ V such that

(2.2) A(uh; ψh) = 0 ∀ψh ∈ Vh.

We suppose that the derivatives of A and J with respect to the first variable
u up to order three exist and are denoted by

A′(u;ϕ), A′′(u; ψ, ϕ), A′′′(u; ξ, ψ, ϕ),

and
J ′(u; ϕ), J ′′(u;ψ,ϕ), J ′′′(u; ξ, ψ, ϕ),

respectively, for increments ϕ, ψ, ξ ∈ V . Here we use the convention that
the forms are linear in the variables after the semicolon.

We want to estimate J(u) − J(uh). Introduce the dual variable z ∈ V
and define the Lagrange functional

L(u; z) := J(u)−A(u; z)

and seek the stationary points (u, z) ∈ V × V of L(·; ·); that is,

(2.3) L′(u; z, ϕ, ψ) = J ′(u; ϕ)−A′(u; z, ϕ)−A(u;ψ) = 0 ∀ϕ,ψ ∈ V.
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By choosing ϕ = 0, we retrieve (2.1). By taking ψ = 0, we identify the
linearized adjoint equation to find z ∈ V such that

(2.4) J ′(u;ϕ)−A′(u; z, ϕ) = 0 ∀ϕ ∈ V.

The corresponding finite element problem is: Find (uh, zh) ∈ Vh × Vh such
that

L′(uh; zh, ϕh, ψh) = J ′(uh; ϕh)−A′(uh; zh, ϕh)−A(uh; ψh)
= 0 ∀ϕh, ψh ∈ Vh.

(2.5)

By choosing ϕh = 0, we retrieve (2.2). By taking ψh = 0, we identify the
linearized adjoint equation to find zh ∈ Vh such that

(2.6) J ′(uh; ϕh)−A′(uh; zh, ϕh) = 0 ∀ϕh ∈ Vh.

We quote three propositions from [2, Ch. 6].

Proposition 2.1. Let L(·) be a three times differentiable functional defined
on a vector space X, which has a stationary point x ∈ X, that is,

L′(x; y) = 0 ∀y ∈ X.

Suppose that on a finite dimensional subspace Xh ⊂ X the corresponding
Galerkin approximation,

L′(xh; yh) = 0 ∀yh ∈ Xh,

has a solution, xh ∈ Xh. Then there holds the error representation

L(x)− L(xh) = 1
2L′(xh; x− yh) +R ∀yh ∈ Xh,

with a remainder term R, which is cubic in the error e := x− xh,

R := 1
2

∫ 1

0
L′′′(xh + se; e, e, e)s(s− 1) ds.

Since
L(u; z)− L(uh; zh) = J(u)− J(uh),

at stationary points (u, z), (uh, zh), Proposition 2.1 yields the following result
for the Galerkin approximation (2.2) of the variational equation (2.1).

Proposition 2.2. For any solutions u and uh of equations (2.1) and (2.2)
we have the error representation

J(u)− J(uh) = 1
2ρ(uh; z − ϕh) + 1

2ρ∗(uh; zh, u− ψh) +R(3) ∀ϕh, ψh ∈ Vh,

where z and zh are solutions of the adjoint problems (2.4) and (2.6) and

ρ(uh; ·) = −A(uh; ·),
ρ∗(uh; zh, ·) = J ′(uh; ·)−A′(uh; zh, ·),
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and, with eu = u− uh, ez = z − zh, the remainder is

R(3) = 1
2

∫ 1

0

(
J ′′′(uh + seu; eu, eu, eu)−A′′′(uh + seu; zh + sez, eu, eu, eu)

− 3A′′(uh + seu; eu, eu, ez)
)
s(s− 1) ds.

The forms ρ(·; ·), ρ∗(·; ·, ·) are the residuals of (2.1) and (2.4), respectively.
The remainder R(3) is cubic in the error. The following proposition shows
that the residuals are equal up to a quadratic remainder.

Proposition 2.3. With the notation from above, we have

ρ∗(uh; zh, u− ψh) = ρ(uh; z − ϕh) + δρ ∀ϕh, ψh ∈ Vh,

with

δρ =
∫ 1

0

(
A′′(uh + seu; zh + sez, eu, eu)− J ′′(uh + seu; eu, eu)

)
ds.

Moreover, we have the simplified error representation

J(u)− J(uh) = ρ(uh; z − ϕh) +R(2) ∀ϕh ∈ Vh,

with quadratic remainder

R(2) =
∫ 1

0

(
A′′(uh + seu; z, eu, eu)− J ′′(uh + seu; eu, eu)

)
ds.

3. Galerkin discretization and dual problem

In this section, we apply the dual weighted residuals methodology to the
Cahn-Hilliard equation (1.1). We denote I = [0, T ], Q = Ω× I, and

〈v, w〉D =
∫

D
vw dz, ‖v‖2

D =
∫

D
v2 dz

for subsets D of Q or Ω with the relevant Lebesgue measure dz. Let V =
H1(Ω) and W = C1([0, T ], V ). By multiplying the first equation by ψu ∈ V
and the second equation by ψw ∈ V , integrating over Ω and using Green’s
formula, we obtain the weak formulation: Find u,w ∈ W such that u(0) = g0

and

(3.1)
〈ut, ψu〉Ω + 〈∇w,∇ψu〉Ω = 0 ∀ψu ∈ V, t ∈ [0, T ],

〈w, ψw〉Ω − ε〈∇u,∇ψw〉Ω − 〈f(u), ψw〉Ω = 0 ∀ψw ∈ V, t ∈ [0, T ].

Split the interval I = [0, T ] into subintervals In = [tn−1, tn) of lengths kn =
tn − tn−1,

0 = t0 < t1 < · · · < tn < · · · < tN = T.

For each time level tn, n ≥ 1, let Vn be the space of continuous piecewise
linear functions with respect to regular spatial meshes Tn = {K}, which
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may vary from time level to time level. By extending the spatial meshes
Tn as constant in time to the time slab Ω× In, we obtain meshes Tk of the
space-time domain Q = Ω× I, which consist of (d + 1)-dimensional prisms
Qn

K := K × Īn. Define the finite element space

V :=
{

ϕ: Q̄ → R : ϕ(·, t)|Ω̄ ∈ Vn, t ∈ In, ϕ(x, ·)|In
∈ Π0, x ∈ Ω̄

}
.

Here Π0 denotes the polynomials of degree 0. For functions from this space
and their continuous analogues, we define

v+
n = lim

t↓tn
v(t), vn = v−n = lim

t↑tn
v(t), [v]n = v+

n − v−n .

For all u,w, ψu, ψw ∈ V or W, consider the semilinear form

A(u,w; ψu, ψw) =
N∑

n=1

∫

In

{
〈ut, ψu〉Ω + 〈∇w,∇ψu〉Ω + 〈w, ψw〉Ω

− ε〈∇u,∇ψw〉Ω − 〈f(u), ψw〉Ω
}

dt

+
N∑

n=2

〈[u]n−1, ψ
+
u,n−1〉Ω + 〈u+

0 − g0, ψ
+
u,0〉Ω.

Solutions u,w ∈ W of (1.1) satisfy the variational problem

(3.2) A(u,w;ψu, ψw) = 0 ∀ψu, ψw ∈ W
and the finite element problem can formulated: Find U,W ∈ V such that

(3.3) A(U,W ; ψu, ψw) = 0 ∀ψu, ψw ∈ V.

We now show that this is a standard time-stepping method. Since U(t) =
Un = U−

n = U+
n−1, W (t) = Wn for t ∈ In, we have

A(U,W ; ψu, ψw) =
N∑

n=1

∫

In

{
〈∇Wn,∇ψu〉Ω + 〈Wn, ψw〉Ω

− ε〈∇Un,∇ψw〉Ω − 〈f(Un), ψw〉Ω
}

dt

+
N∑

n=2

〈Un − Un−1, ψ
+
u,n−1〉Ω + 〈U1 − g0, ψ

+
u,0〉Ω.

(3.4)

By taking

ψu(t) =

{
χu ∈ Vn, t ∈ In,

0, otherwise,
ψw(t) =

{
χw ∈ Vn, t ∈ In,

0, otherwise,
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we see that (3.3) amounts to the implicit Euler time-stepping,

〈U0 − g0, χu〉Ω = 0 ∀χu ∈ V1,

kn〈∇Wn,∇χu〉Ω + 〈Un − Un−1, χu〉Ω = 0 ∀χu ∈ Vn, n ≥ 1,

〈Wn, χw〉Ω − ε〈∇Un,∇χw〉Ω − 〈f(Un), χw〉Ω = 0 ∀χw ∈ Vn, n ≥ 1.

Now take a goal functional J(u), which depends only on u, and set

L(v; z) = J(u)−A(v; z),

where v = (u, w), z = (zu, zw). With ϕ = (ϕu, ϕw), ψ = (ψu, ψw), stationary
points are given by

L′(v; z, ϕ, ψ) = J ′(u; ϕu)−A′(v; z, ϕ)−A(v;ψ) = 0 ∀ϕ,ψ ∈ W ×W.

With ψ = 0 we obtain A′(v; z, ϕ) = J ′(u; ϕu), the adjoint problem. So we
should compute A′(u,w; zu, zw, ϕu, ϕw) and J ′(u;ϕu). To this end we write

A(u,w; ψu, ψw) = 〈ut, ψu〉Q + 〈∇w,∇ψu〉Q + 〈w,ψw〉Q − ε〈∇u,∇ψw〉Q
− 〈f(u), ψw〉Q + 〈u(0)− g0, ψu(0)〉Ω.

Hence,

A′(u,w; zu, zw, ϕu, ϕw) = 〈ϕu,t, zu〉Q + 〈∇ϕw,∇zu〉Q + 〈ϕw, zw〉Q
− ε〈∇ϕu,∇zw〉Q − 〈ϕu, zw〉Q + 〈ϕu(0), zu(0)〉Ω.

By integration by parts in t,

〈ϕu,t, zu〉Q = −〈ϕu, zu,t〉Q + 〈ϕu(T ), zu(T )〉Ω − 〈ϕu(0), zu(0)〉Ω,

we obtain
A′(u,w; zu, zw, ϕu, ϕw) = −〈ϕu, zu,t〉Q + 〈∇ϕw,∇zu〉Q

+ 〈ϕw, zw〉Q + ε〈∇ϕu,∇zw〉Q
− 〈ϕu, f ′(u)zw〉Q + 〈ϕu(T ), zu(T )〉Ω.

The adjoint problem is thus to find zu, zw ∈ W such that

〈ϕu,−zu,t〉Q − ε〈∇ϕu,∇zw〉Q
− 〈ϕu, f ′(u)zw〉Q + 〈ϕu(T ), zu(T )〉Ω
+ 〈∇ϕw,∇zw〉Q + 〈ϕw, zw〉Q = J ′(u; ϕu) ∀ϕu, ϕw ∈ W.

(3.5)

We now specialize to the case of a linear goal functional of the form

J(u) = 〈u, g〉Q + 〈u(T ), gT 〉Ω,

for some g ∈ L2(Q), gT ∈ L2(Ω). Then

(3.6) J ′(u; ϕu) = 〈ϕu, g〉Q + 〈ϕu(T ), gT 〉Ω.
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The adjoint problem then becomes: Find zu, zw ∈ W such that

(3.7)

〈ϕu,−zu,t − f ′(u)zw − g〉Q − ε〈∇ϕu,∇zw〉Q
+〈ϕu(T ), zu(T )− gT 〉Ω = 0 ∀ϕu ∈ W,

〈ϕw, zw〉Q + 〈∇ϕw,∇zu〉Q = 0 ∀ϕw ∈ W.

The strong form of this is

(3.8)

−∂tzu + ε∆zw − f ′(u)zw = g in Q,

zw −∆zu = 0 in Q,

∂zu

∂ν
= 0,

∂zw

∂ν
= 0 on ∂Ω× I,

zu(T ) = gT in Ω.

4. A posteriori error estimates

From Proposition 2.3 we have the error representation

(4.1) J(u)− J(U) = −A(U,W ; zu − πzu, zw − πzw) +R(2),

where z = (zu, zw) is the solution of the adjoint problem (3.5) and πzu, πzw ∈
V are appropriate approximations to be defined below. The remainder is
quadratic in the error.

In order to write this as a sum of local contributions we must rewrite
A(U,W ; ψu, ψw) in (3.4). First we compute

∫
In
〈∇W,∇ψu〉Ω dt. By using

Green’s formula elementwise, we have
∫

In

〈∇W,∇ψu〉Ω dt =
∫

In

∑

K∈Tn

〈∇W,∇ψu〉K dt

=
∫

In

∑

K∈Tn

−〈∆W,ψu〉K dt +
∫

In

∑

K∈Tn

〈∂νW,ψu〉∂K dt,

where ∂νW = ν · ∇W . We divide the boundary ∂K ∈ Tn into two parts:
internal edges, denoted by En

I , and edges on the boundary ∂Ω, denoted by
En

∂Ω. So we get, with [ ] denoting the jump across the edge,
∫

In

∑

K∈Tn

〈∂νW,ψu〉∂K dt

=
∫

In

∑

E∈En
I

〈∂νW,ψu〉E dt +
∫

In

∑

E∈En
∂Ω

〈∂νW,ψu〉E dt

=
∫

In

∑

K∈Tn

−1
2〈[∂νW ], ψu〉∂K\∂Ω dt +

∫

In

∑

K∈Tn

〈∂νW,ψu〉∂K∩∂Ω dt.
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Let ∂x denote the spatial boundary and define ∂xQ = ∂Ω×I and ∂xQn
K =

∂K × In. Hence,
∫

In

〈∇W,∇ψu〉Ω dt =
∑

K∈Tn

{
− 〈∆W,ψu〉Qn

K
− 1

2〈[∂νW ], ψu〉∂xQn
K\∂xQ

+ 〈∂νW,ψu〉∂xQn
K∩∂xQ

}
,

and in the same way

ε

∫

In

〈∇U,∇ψw〉Ω dt =
∑

K∈Tn

{
− ε〈∆U,ψw〉Qn

K
− 1

2ε〈[∂νU ], ψw〉∂xQn
K\∂xQ

+ ε〈∂νU,ψw〉∂xQn
K∩∂xQ

}
.

Note that ∆W = ∆U = 0 on Qn
K for piecewise linear functions, but we find

it instructive to keep these terms. Inserting this into (3.4) and noting that
∫

In

〈W,ψw〉Ω dt =
∑

K∈Tn

〈W,ψw〉Qn
K

,

and ∫

In

〈f(U), ψw〉Ω dt =
∑

K∈Tn

〈f(U), ψw〉Qn
K

,

gives

A(U,W ; ψu, ψw) =
N∑

n=1

∑

K∈Tn

{
− 〈∆W,ψu〉Qn

K

+ 〈ε∆U + W − f(U), ψw〉Qn
K
− 1

2〈[∂νW ], ψu〉∂xQn
K\∂xQ

+ 1
2ε〈[∂νU ], ψw〉∂xQn

K\∂xQ + 〈∂νW,ψu〉∂xQn
K∩∂xQ

− ε〈∂νU,ψw〉∂xQn
K∩∂xQ + 〈[U ]n−1, ψ

+
u,n−1〉K

}
,

where we have set U−
0 = g0 for simplicity. Hence (4.1) becomes

J(u)− J(U) =
N∑

n=1

∑

K∈Tn

{
〈Ru, zu − πzu〉Qn

K
+ 〈Rw, zw − πzw〉Qn

K

+ 〈ru, zu − πzu〉∂xQn
K

+ 〈rw, zw − πzw〉∂xQn
K

− 〈[U ]n−1, (zu − πzu)+n−1〉K
}

+R(2),

(4.2)

with the interior residuals

Ru = ∆W, Rw = −ε∆U −W + f(U),
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the edge residuals

rw|Γ =

{
−1

2ε[∂νU ], Γ ⊂ ∂xQn
K \ ∂xQ,

0, otherwise,

ru|Γ =

{
1
2 [∂νW ], Γ ⊂ ∂xQn

K \ ∂xQ,

0, otherwise,

and the boundary residuals

rw|Γ =

{
ε∂νU, Γ ⊂ ∂xQn

K ∩ ∂xQ,

0, otherwise,

ru|Γ =

{
−∂νW, Γ ⊂ ∂xQn

K ∩ ∂xQ,

0, otherwise.

Here the subscript u refers to residuals from the first equation in (3.1) and
the subscript w to residuals from the second equation.

We now define πzu, πzw ∈ V. Let

(Pnv)(t) =
1
kn

∫

In

v(s) ds

be the orthogonal projector onto constants. Let πn: C(Ω̄) → Vn be the nodal
interpolator; that is, it is defined by

(πnv)(a) = v(a),

for all nodal points a in Tn. Then we define π:C(Q̄) → V by πv|In = Pnπnv.
Since Ru, Rw, ru, and rw are piecewise constant in t, we have

J(u)− J(U)

=
N∑

n=1

∑

K∈Tn

{
〈Ru, Pn(zu − πnzu)〉Qn

K
+ 〈Rw, Pn(zw − πnzw)〉Qn

K

+ 〈ru, Pn(zu − πnzu)〉∂xQn
K

+ 〈rw, Pn(zw − πnzw)〉∂xQn
K

− 〈[U ]n−1, (zu − πzu)+n−1〉K
}

+R(2).

(4.3)
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Applying the Cauchy-Schwartz inequality to each term gives

|J(u)− J(U)| ≤
N∑

n=1

∑

K∈Tn

{
‖Ru‖Qn

K
‖Pn(zu − πnzu)‖Qn

K

+ h
− 1

2
K ‖ru‖∂xQn

K
h

1
2
K‖Pn(zu − πnzu)‖∂xQn

K

+ ‖Rw‖Qn
K
‖Pn(zw − πnzw)‖Qn

K

+ h
− 1

2
K ‖rw‖∂xQn

K
h

1
2
K‖Pn(zw − πnzw)‖∂xQn

K

+ k
− 1

2
n ‖[U ]n−1‖Kk

1
2
n ‖(zu − πzu)+n−1‖K

}
+ |R(2)|.

Here hK = diam(K). For a, b, c, d ≥ 0 we have

(ab + cd) ≤ (a2 + c2)
1
2 (b2 + d2)

1
2 .

We use this inequality for each term in the previous inequality and set

ρu,K =
(
‖Ru‖2

Qn
K

+ h−1
K ‖ru‖2

∂xQn
K

) 1
2
,

ωu,K =
(
‖Pn(zu − πnzu)‖2

Qn
K

+ hK‖Pn(zu − πnzu)‖2
∂xQn

K

) 1
2
,

ρw,K =
(
‖Rw‖2

Qn
K

+ h−1
K ‖rw‖2

∂xQn
K

) 1
2
,

ωw,K =
(
‖Pn(zw − πnzw)‖2

Qn
K

+ hK‖Pn(zw − πnzw)‖2
∂xQn

K

) 1
2
,

ρK =
(
k−1

n ‖[U ]n−1‖2
K

) 1
2
,

ωK =
(
kn‖(zu − πzu)+n−1‖2

K

) 1
2
.

Note that, since Ru = ∆W = 0 for piecewise linear functions, the first term
in ρu,K and ωu,K can actually be removed. So we have

|J(u)− J(U)| ≤
N∑

n=1

∑

K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K + ρKωK

}
+ |R(2)|.

We have proved the following theorem:

Theorem 4.1. We have the a posteriori error estimate

(4.4) |J(u)− J(U)| ≤
N∑

n=1

∑

K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K + ρKωK

}
+ |R(2)|.
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Note that on each space-time cell Qn
K , the terms ρu,Kωu,K and ρw,Kωw,K

can be used to control the spatial mesh and the term ρKωK to control the
time step kn in an adaptive algorithm; see [2]. We do not pursue this here.

In the following we want to obtain a weight free a posteriori error estimate
where the weights in (4.4) are replaced by a global stability constant. We
need the following interpolation error estimate, see [2, Lemma 9.4].

Lemma 4.2. With π and πn as defined as before, there holds

‖Pn(z − πnz)‖Qn
K

+ h
1
2
K‖Pn(z − πnz)‖∂xQn

K
≤ Ch2

K‖D2z‖Qn
K

,(4.5)

‖z(tn−1)− Pnz‖K ≤ Ck
1
2
n ‖∂tz‖Qn

K
.(4.6)

Here ‖D2z‖Qn
K

denotes the seminorm
(∑

|α|=2 ‖Dαz‖2
Qn

K

) 1
2 .

In the following we assume that J(·) is a linear functional given by (3.6)
and Ω is such that we have the elliptic regularity estimate

(4.7) ‖D2v‖Ω ≤ C‖∆v‖Ω ∀v ∈ H2(Ω) with
∂v

∂ν

∣∣∣
Γ

= 0.

We also assume a global bound for f ′(u), which is reasonable since it is
known that ‖u‖L∞(Q) ≤ C (c.f. [5]).

In particular, with

g = (u− U)/‖u− U‖Q and gT = (uN − UN )/‖uN − UN‖Ω

the following theorem provides bounds for the norms of the error, ‖u− U‖Q

and ‖uN − UN‖Ω.

Theorem 4.3. Assume that ‖f ′(u)‖L∞ ≤ β and that (4.7) holds. Let zu, zw

be the solutions of (3.8). Then there is C = C(β) such that the following a
posteriori error estimates hold.

(i) Let g ∈ L2(Q) with ‖g‖Q = 1 and gT = 0. Then

|〈u− U, g〉Q|

≤ CCS

N∑

n=1

∑

K∈Tn

{
h4

K(ρ2
u,K + ρ2

w,K) + (h4
K + k2

n)ρ2
K

} 1
2 + |R(2)|,(4.8)

where

CS = sup
g∈L2(Q)

(
‖D2zu‖2

Q + ‖∂tzu‖2
Q + ‖D2zw‖2

Q

) 1
2

‖g‖Q
.
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(ii) Let gT ∈ L2(Ω) with ‖gT ‖Ω = 1 and g = 0. Then
|〈u− U, gT 〉Ω|

≤ CCS

N∑

n=1

∑

K∈Tn

{
h4

K(ρ2
u,K + σ−1

n ρ2
w,K + σ−1

n ρ2
K) + k2

nσ−1ρ2
K

} 1
2

+ |R(2)|,

(4.9)

where σ(t) = T − t,

σn =

{
σ(tn) = T − tn, n = 1, · · · , N − 1,

kN , n = N,

and

CS = sup
gT∈L2(Ω)

(
ε−1 max

I
‖zu‖2

Ω + ε−1‖zw‖2
Q

+ ‖D2zu‖2
Q + ‖σ 1

2 ∂tzu‖2
Q + ε2‖σ 1

2 D2zw‖2
Q

) 1
2
/‖gT ‖Ω.

Proof. Part (i). From Theorem 4.2 we have

ωu,K =
(
‖Pn(zu − πnzu)‖2

Qn
K

+ hK‖Pn(zu − πnzu)‖2
∂xQn

K

) 1
2

≤ Ch2
K‖D2zu‖Qn

K
,

ωw,K =
(
‖Pn(zw − πnzw)‖2

Qn
K

+ hK‖Pn(zw − πnzw)‖2
∂xQn

K

) 1
2

≤ Ch2
K‖D2zw‖Qn

K
,

and

ωK = k
1
2
n ‖(zu − πnzu)+n−1‖K

≤ k
1
2
n ‖Pn(zu − πnzu)‖K + k

1
2
n ‖zu(tn−1)− Pnzu‖K

≤ Ch2
K‖D2zu‖Qn

K
+ Ckn‖∂tzu‖Qn

K
+ |R(2)|.

Hence,

|〈u− U, g〉Q| ≤
N∑

n=1

∑

K∈Tn

{
ρu,Kωu,K + ρw,Kωw,K + ρKωK

}

≤
N∑

n=1

∑

K∈Tn

{
Ch2

Kρu,K‖D2zu‖Qn
K

+ Ch2
Kρw,K‖D2zw‖Qn

K

+ ρK(Ch2
K‖D2zu‖Qn

K
+ Ckn‖∂tzu‖Qn

K
)
}
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and the desired estimate (4.8) follows by the Cauchy-Schwartz inequality

N∑

n=1

∑

K∈Tn

h2
Kρu,K‖D2zu‖Qn

K

≤
( N∑

n=1

∑

K∈Tn

h4
Kρ2

u,K

) 1
2
( N∑

n=1

∑

K∈Tn

h2
Kρu,K‖D2zu‖2

Qn
K

) 1
2

=
( N∑

n=1

∑

K∈Tn

h4
Kρ2

u,K

) 1
2 ‖D2zu‖Q ≤ CS

( N∑

n=1

∑

K∈Tn

h4
Kρ2

u,K

) 1
2 ‖g‖Q,

and similarly for the other terms.
Part (ii). The previous bound for

∑N
n=1

∑
K∈Tn

ρu,Kωu,K applies here
also. Consider then

N∑

n=1

∑

K∈Tn

ρw,Kωw,K ≤
N−1∑

n=1

∑

K∈Tn

ρw,KCh2
K‖D2zw‖Qn

K
+

∑

K∈TN

ρw,Kωw,K .

Here,

N−1∑

n=1

∑

K∈Tn

ρw,KCh2
K‖D2zw‖Qn

K

=
N−1∑

n=1

∑

K∈Tn

ρw,KCh2
K‖σ−

1
2 σ

1
2 D2zw‖Qn

K

≤ C
N−1∑

n=1

∑

K∈Tn

ρw,Kσ
− 1

2
n h2

K‖σ
1
2 D2zw‖Qn

K

≤ C
( N−1∑

n=1

∑

K∈Tn

σ−1
n h4

Kρ2
w,K

) 1
2
( N−1∑

n=1

∑

K∈Tn

‖σ 1
2 D2zw‖2

Qn
K

) 1
2

≤ C
( N−1∑

n=1

∑

K∈Tn

σ−1
n h4

Kρ2
w,K

) 1
2 ‖σ

1
2
n D2zw‖Q

≤ CSC
( N−1∑

n=1

∑

K∈Tn

σ−1
n h4

Kρ2
w,K

) 1
2 ‖gT ‖Ω.
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The term with n = N is special. We go back to (4.3) and replace it by

∑

K∈TN

〈Rw, zw − πNzw〉QN
K

=
∑

K∈TN

〈
Rw, (I − πN )

∫

IN

zw dt
〉

K

≤
∑

K∈TN

‖Rw‖KCh2
K

∥∥∥D2

∫

IN

zw dt
∥∥∥

K
.

Here, by the regularity estimate (4.7), ε∆zw = ∂tzu + f ′(u)zw from the first
equation in (3.8), and ‖f ′(u)‖L∞ ≤ β, we have

∥∥∥D2

∫

IN

zw dt
∥∥∥

K
≤ C

∥∥∥
∫

IN

∆zw dt
∥∥∥

K

= Cε−1
∥∥∥
∫

IN

(∂tzu + f ′(u)zw) dt
∥∥∥

K

≤ Cε−1
(
‖zu(tN )‖K + ‖zu(tN−1)‖K + βk

1
2
N‖zw‖QN

K

)
.

Hence, since ρw,K = ‖Rw‖QN
K

= k
1
2
N‖Rw‖K , we have

∑

K∈TN

〈Rw, zw − πNzw〉QN
K

≤
∑

K∈TN

‖Rw‖KCh2
Kε−1

(
‖zu(tN )‖K + ‖zu(tN−1)‖K + k

1
2
N‖zw‖QN

K

)

= Cε−1
∑

K∈TN

k
− 1

2
N h2

Kρw,K

(
‖zu(tN )‖K + ‖zu(tN−1)‖K + k

1
2
N‖zw‖QN

K

)

≤ Cε−1
( ∑

K∈TN

k−1
N h4

Kρ2
w,K

) 1
2
(
‖zu(tN )‖Ω + ‖zu(tN−1)‖Ω + k

1
2
N‖zw‖Q

)

≤ Cε−1CS‖gT ‖Ω

( ∑

K∈TN

σ−1
N h4

Kρ2
w,K

) 1
2
,

where we have used σN = kN . So we have

(4.10)
N∑

n=1

∑

K∈Tn

ρw,Kωw,K ≤ CCS‖gT ‖Ω

( N∑

n=1

∑

K∈Tn

σ−1
n h4

Kρ2
w,K

) 1
2
.
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Now we compute
∑N

n=1

∑
K∈Tn

ρKωK . For K ∈ TN we use

ωK = k
1
2
N‖(zu − πzu)+N−1‖K

≤ k
1
2
N‖PN (zu − πNzu)‖K + k

1
2
N‖zu(tN−1)− PNzu‖K

= ‖PN (zu − πNzu)‖QN
K

+ k
1
2
N‖zu(tN−1)− PNzu‖K

≤ Ch2
K‖D2zu‖QN

K
+ k

1
2
N‖zu(tN−1)− PNzu‖K .

Then we have
N∑

n=1

∑

K∈Tn

ρKωK

= C
N∑

n=1

∑

K∈Tn

ρKh2
K‖D2zu‖Qn

K
+ C

N−1∑

n=1

∑

K∈Tn

ρKknσ
− 1

2
n ‖σ 1

2 ∂tzu‖Qn
K

+
∑

K∈TN

ρKk
1
2
N‖zu(tN−1)− PNzu‖K

≤ C
( N∑

n=1

∑

K∈Tn

h4
Kρ2

K

) 1
2 ‖D2zu‖Q + C

( N−1∑

n=1

∑

K∈Tn

ρ2
Kk2

nσ−1
n

) 1
2 ‖σ 1

2 ∂tzu‖Q

+ C
( ∑

K∈TN

kNρ2
K

) 1
2 ‖zu(tN−1)− PNzu‖Ω.

Using σN = kN and

‖zu(tN−1)− PNzu‖Ω ≤ 2 max
I
‖zu‖Ω ≤ 2CS‖gT ‖Ω,

gives
N∑

n=1

∑

K∈Tn

ρKωK ≤ C
( N∑

n=1

∑

K∈Tn

h4
Kρ2

K

) 1
2
CS‖gT ‖Ω

+ C
( N−1∑

n=1

∑

K∈Tn

ρ2
Kk2

nσ−1
n

) 1
2
CS‖gT ‖Ω + C

( ∑

K∈TN

kNρ2
K

) 1
2
CS‖gT ‖Ω

= CCS

( N∑

n=1

∑

K∈Tn

h4
Kρ2

K

) 1
2 ‖gT ‖Ω + CCS

( N∑

n=1

∑

K∈Tn

ρ2
Kk2

nσ−1
n

) 1
2 ‖gT ‖Ω.

This completes the proof.
¤
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Finally, we prove a priori bounds for the stability constants CS .

Theorem 4.4. Assume that ‖f ′(u)‖L∞(Q)
≤ β and ε ∈ (0, 1] and that (4.7)

holds. Then the solution of (3.8) admits the following a priori bounds, where
C = C(β). If gT = 0, then

(4.11) ‖D2zu‖2
Q + ‖∂tzu‖2

Q + ε2‖D2zw‖2
Q ≤ C‖g‖2

QeCε−1T .

If g = 0, then, with σ(t) = T − t,

ε−1 max
I
‖zu‖2

Ω + ‖zw‖2
Q + ‖D2zu‖2

Q + ‖σ 1
2 ∂tzu‖2

Q + ε2‖σ 1
2 D2zw‖2

Q

≤ Cε−1‖gT ‖2
ΩeCε−1T .

(4.12)

Proof. We first estimate ‖zw‖2
Q. To this end we use ∆zu = zw from the

second equation of (3.8) to get

〈∆zw, zu〉Ω = 〈zw, ∆zu〉Ω = ‖zw‖2
Ω.

Then we multiply the first equation of (3.8) by zu, and integrate over [t, T ],
∫ T

t
〈−∂tzu, zu〉Ω ds+ε

∫ T

t
‖zw‖2

Ω ds−
∫ T

t
〈f ′(u)zw, zu〉Ω ds =

∫ T

t
〈g, zu〉Ω ds.

By assumption we know that ‖f ′(u)‖L∞(Q)
≤ β, so we have

1
2‖zu(t)‖2

Ω − 1
2‖zu(T )‖2

Ω + ε

∫ T

t
‖zw‖2

Ω ds

≤
∫ T

t
‖f ′(u)‖L∞(Q)‖zw‖Ω‖zu‖Ω ds +

∫ T

t
‖g‖Ω‖zu‖Ω ds

≤
∫ T

t
(β2

2ε ‖zu‖2
Ω + ε

2‖zw‖2
Ω) ds +

∫ T

t
( c
2‖g‖2

Ω + 1
2c‖zu‖2

Ω) ds

≤ β2

ε

∫ T

t
‖zu‖2

Ω ds + ε
2

∫ T

t
‖zw‖2

Ω ds +
∫ T

t
( c
2‖g‖2

Ω + 1
2c‖zu‖2

Ω) ds.

Hence, with zu(T ) = gT and c = ε
β2 ,

‖zu(t)‖2
Ω + ε

∫ T

t
‖zw‖2

Ω ds

≤ ε

β2
‖g‖2

Q + ‖gT ‖2
Ω + 2β2ε−1

∫ T

t
‖zu‖2

Ω ds

≤ C
ε ‖g‖2

Q + ‖gT ‖2
Ω + Cε−1

∫ T

t
‖zu‖2

Ω ds.

Define

Φ(t) = ‖zu(t)‖2
Ω + ε

∫ T

t
‖zw(s)‖2

Ω ds.



A POSTERIORI ERROR ANALYSIS FOR THE CAHN-HILLIARD EQUATION 17

Obviously we have ‖zu(s)‖2
Ω ≤ Φ(s), so that

Φ(t) ≤ Cε‖g‖2
Q + ‖gT ‖2

Ω + Cε−1

∫ T

t
Φ(s) ds.

We apply Gronwall’s lemma to get

Φ(t) ≤ C(ε‖g‖2
Q + ‖gT ‖2

Ω)eCε−1(T−t).

This means

‖zu(t)‖2
Ω + ε

∫ T

t
‖zw‖2

Ω ds ≤ C(ε‖g‖2
Q + ‖gT ‖2

Ω)eCε−1(T−t).

We conclude
max

I
‖zu‖2

Ω ≤ C(ε‖g‖2
Q + ‖gT ‖2

Ω)eCε−1T .

(4.13) ‖zw‖2
Q ≤ C(‖g‖2

Q + ε−1‖gT ‖2
Ω)eCε−1T .

From the second equation we know zw = ∆zu. So, by (4.7) and (4.13),

‖D2zu‖2
Q ≤ C‖∆zu‖2

Q = C‖zw‖2
Q ≤ C(‖g‖2

Q + ε−1‖gT ‖2
Ω)eCε−1T .(4.14)

This takes care of the first terms in (4.11) and (4.12).
Now assume that gT = 0. Consider the dual problem (3.8) and multiply

the first equation by −∂tzu and integrate over Q to get

(4.15) 〈∂tzu, ∂tzu〉Q − ε〈∆zw, ∂tzu〉Q − 〈f ′(u)zw, ∂tzu〉Q = −〈g, ∂tzu〉Q.

So, by using zw = ∆zu from the second equation, we get

〈∆zw, ∂tzu〉Q = 〈zw, ∂t∆zu〉Q = 〈∆zu, ∂t∆zu〉Q = 1
2

∫ T

0

d
dt
‖∆zu‖2

Ω dt.

By putting this in (4.15) and using that ‖f ′(u)‖L∞(Q) ≤ β, we have

‖∂tzu‖2
Q − ε

2‖∆zu(T )‖2
Ω + ε

2‖∆zu(0)‖2
Ω

≤ ‖f ′(u)‖L∞(Q)‖zw‖Q‖∂tzu‖Q + ‖g‖Q‖∂tzu‖Q

≤ cβ2

2 ‖zw‖2
Q + 1

2c‖∂tzu‖2
Q + c

2‖g‖2
Q + 1

2c‖∂tzu‖2
Q.

Put c = 2 and kick back ‖∂tzu‖2
Q to get, with zu(T ) = gT = 0,

1
2‖∂tzu‖2

Q + ε
2‖∆zu(0)‖2

Ω ≤ β2‖zw‖2
Q + ‖g‖2

Q.

Hence, by (4.13) with C = C(β) ,

‖∂tzu‖2
Q ≤ C‖zw‖2

Q + C‖g‖2
Q ≤ C‖g‖2

Qe−Cε−1T .(4.16)
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It remains to bound ‖D2zw‖2
Q. From the first equation of (3.8) we get

ε∆zw = g+∂tzu +f ′(u)zw. Taking norms and using (4.7), (4.13), and (4.16)
gives

ε2‖D2zw‖2
Q ≤ ε2C‖∆zw‖2

Q = C‖g + ∂tzu + f ′(u)zw‖2
Q

≤ C
(
‖g‖2

Q + ‖∂tzu‖2
Q + ‖f ′(u)‖2

L∞(Q)‖zw‖2
Q

)

≤ C‖g‖2
QeCε−1T .

This completes the proof of (4.11)
Now let g = 0 and set σ(t) = T − t. Multiply the first equation of (3.8)

by −σ∂tzu to get

〈∂tzu, σ∂tzu〉Q − ε〈∆zw, σ∂tzu〉Q − 〈f ′(u)zw, σ∂tzu〉Q = 0.

Here, since zw = ∆zu and σ′(t) = −1,

〈∆zw, σ∂tzu〉Q = 〈zw, σ∆∂tzu〉Q
= 〈∆zu, σ∆∂tzu〉Q

= 1
2

∫ T

0

d
dt

(σ‖∆zu‖2
Ω) dt− 1

2

∫ T

0
σ′‖∆zu‖2

Ω dt

= 1
2σ(T )‖∆zu(T )‖2

Ω − 1
2σ(0)‖∆zu(0)‖2

Ω + 1
2

∫ T

0
‖zw‖2

Ω dt

= −1
2T‖∆zu(0)‖2

Ω + 1
2‖zw‖2

Q.

Hence,

‖σ 1
2 ∂tzw‖2

Q + ‖∆zu(0)‖2
Ω ≤ ε

2‖zw‖2
Q + ‖f ′(u)‖L∞‖σ

1
2 zw‖Q‖σ

1
2 ∂tzu‖Q

≤ 1
2(ε + β2T )‖zw‖2

Q + 1
2‖σ

1
2 ∂tzu‖2

Q.

So by (4.13) we have

‖σ 1
2 ∂tzu‖Q ≤ (ε + β2T )‖zw‖2

QCε−1‖gT ‖2
ΩeCε−1T .

Finally, from (4.7) and ε∆zw = ∂tzu + f ′(u)zw we get

ε2‖σ 1
2 D2zw‖2

Q ≤ ε2C‖σ 1
2 ∆zw‖2

Q = C‖σ 1
2 (∂tzu + f ′(u)zw)‖2

Q

≤ C
(
‖σ 1

2 ∂tzu‖2
Q + T‖zw‖2

Q

)

≤ Cε−1‖gT ‖2
ΩeCε−1T .

This completes the proof of (4.12). ¤
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Equations, Birkhäuser, Berlin, 2003.

[3] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free
energy, J. Chem. Phys. 28 (1958), 258–267.

[4] C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a
finite element method for the Cahn-Hilliard equation, Math. Comp. 58 (1992), 603–630,
S33–S36.

[5] C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal.
96 (1986), 339–357.

[6] X. Feng and H. Wu, A posteriori error estimates for finite element approximations
of the Cahn-Hilliard equation and the Hele-Shaw flow, J. Comput. Math. 26 (2008),
767–796.

Department of Mathematical Sciences, Chalmers University of Technology
and University of Gothenburg, SE–412 96 Gothenburg, Sweden

E-mail address: stig@chalmers.se

URL: http://www.math.chalmers.se/~stig

Department of Mathematical Sciences, Chalmers University of Technology
and University of Gothenburg, SE–412 96 Gothenburg, Sweden

E-mail address: mesforus@chalmers.se

URL: http://www.math.chalmers.se/~mesforus


