
From Angular excess to Curvature, Euler characteristics and

Gauss-Bonnet

Let us consider the problem of computing the area of a spherical triangle. There
are general ways of computing areas of various figures, depending on how they
are presented. In the case of a spherical triangle one would naturally start out
with a parametrization of a sphere, one traditional one being spherical coordi-
nates (as we are familiar with from the geographical notions of longitudes and
latitudes) and then we describe the area on the parameter base corresponding
to the triangle and then we set up an integral and try and compute it. In a way
it is all straightforward but in practice quite complicated and rather daunting
and anyone who has had to evaluate integrals knows, exact expressions may be
inaccessible. There is however another way that is surprisingly simple and ends
up in giving a very beautiful expression relating the area of the triangle to its
angles, and what is more, opening up a new vista of related problems and con-
cepts. I do not claim that this is the way things historically evolved, but that is
beside the point, it shows how one set of problems and concepts naturally leads
to other problems and concepts, which is the way mathematics evolves. So let
us start in an elementary way.

Given a set X let us denote by µ(X) the number of elements in X then for
any two sets A,B we get that µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B) because
the elements of the intersection A ∩B will be counted twice. The formula also
holds for any µ which gives the ’size’ of a set, provided it is additive, meaning
µ(A∪B) = µ(A)+µ(B) for any A,B disjoint. In particular this holds for areas.
Note that this is from a logical point essentially tautologous, as the formula
above is just a reformulation of additivity (A∪B = (A\B)∪ (B \A)∪ (A∩B) a
union of three disjoint sets). The formula is easily generalized to three (or any
number of sets). In fact

µ(A∪B∪C) = µ(A)+µ(B)+µ(C)−(µ(A∩B)+µ(B∩C)+µ(C∩A))+µ(A∩B∩C)

Now we consider a sphere of radius 1 (for the more general case of radius R we
need only scale areas by R2) its surface area is given by 4π which was shown
already by Archimedes (a result which nowadays any student of elementary
calculus can easily derive). Now as A,B,C we take hemispheres all obviously
of area 2π. If we intersect two hemispheres we get a segment, bordered by
two great circles (which could be thought of as meridians) which are an angle
α apart and whose area obviously is 2α as the most natural measure of angle
is in radians. Now the intersection of three hemispheres is a triangle T with
angles α, β, γ and the union of three hemispheres is the whole sphere minus the
antipodal triangle T which is congruent with T and has the same area.
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So putting everything into the equation we get

3 · 2π − 2(α+ β + γ) + µ(T ) = 4π − µ(T )

which simplifies to
µ(T ) = (α+ β + γ)− π

which is a striking and beautiful formula and also unexpected, the derivation
of which is very simple yet touched with black magic. What does it all mean?
The quantity (α+β+γ)−π is referred to angular excess, and on a sphere every
triangle has an angular excess, and the bigger the triangle the larger the excess,
in fact we have just shown that the angular excess is additive, as it is given by
the area, but this can be shown directly.

α βδ2
δ1

γ1 γ2

The two excesses are given by α + δ1 + γ1 − π and
β+ δ2+γ2−π respectively. Adding them up we get
α+β+(γ1+γ2)+(δ1+δ2−π)−π which simplifies by
setting γ = γ1+γ2 to the angular excess α+β+γ−π
of the big triangle.

But this fact reveals what may be really going on. Areas and angular excesses
of spherical triangles seem to run on parallel tracks, maybe on the same? If every
spherical triangle could be made up by special ones for which the two measures
coincide we would be done. Such building blocks exist, namely the hemispheres
(take three arbitrary points on it and we have a triangle where all the sides
make up a straight line, and whose angular excess is 3 ·π−π = 2π which is also
its area). However, a triangle cannot be made up as a union of such, but on the
other hand as a complement of a union, and this was exactly what we exploited
above, without really understanding that this was what we were doing. What
was initially seen as black magic does turn out, after some exploration, as the
most natural thing possible. The proof taken together with the after-sight (and
in a presentation we could have started with the insight) does much more than
verifies, it makes us understand why something is true. Without such, at least
occasional flashes of understanding mathematics becomes a tedious game.

Now this idea of a measure can (and ought to) be further pursued. Look
at a cube and triangles on it, they will all have angular excess of zero, unless
they contain a corner, then the angular excess jumps to π/2. This is easy to
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verify. If the triangle would contain two corners, it would be twice that. In fact
the angular excess is measured by the number of corners contained in it. This
can be generalized to any polyhedron, and each corner will contribute a certain
amount easily computed, and the angular excess is simply computed by adding
up all the contributions from corners. This makes the additive structure very
direct.
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Note that the contribution δ from each corner is given by the defect δ =
2π − ∑

i γi. Note that if C is a circle of radius r centered at the corner its
circumference will be given by (2π − δ)r If δ = 0 the corner is flat. If δ > 0 we
can call it an elliptic corner and the circumference is shorter than it ’should’ be
(i.e. in comparison with the flat case) and if δ < 0 we can call it a hyperbolic
one, and then the circumference is larger. Note that each corner will contribute
the negative of its defect to the angular excess (which surrounding an hyperbolic
corner will be negative).

We can go further. Consider a general polyhedron made out of triangles. Let
us add all the angles of the triangles. This will obviously add up to Nπ where
N is the number of triangles, where we group them three by three, each triplet
associated to a triangle. But we can also add them up corner by corner, and in
this case we will get 2pπ−∑

i δi where p is the number of corners and the δi refer
to their respective contributions. Now for a polyhedron made up of triangles,
we always have 2p − N = 4 and thus the sum ∆ of the contributions for any
triangular polyhedron will be given by ∆ = 4π a rather striking formula. There
is an analogy in two-dimensions. Consider a polygon that does not intersect
itself. It will then constitute a so called piece-wise linear approximation of the
circle. If we then add up the exterior angles (with appropriate signs, plus at
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convex corners and negative at concave cf. figure below) we will always get 2π.
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This is very intuitive as we have transversed the polygon we have turned
around once. The directions at which the sides point will change at each corner
with the amount of the corresponding external angle (taking into account the
signs). However, if the polygon would be on a sphere, this would no longer be the
case. The sum of the external angles will not add up to 2π but to 2π− δ where
δ is the angular excess of the interior of the polygon, in other words its area
(as always we tacitly assume that our sphere has radius one). This may appear
counter-intuitive. It has to do with the notion of parallel directions (vectors),
in Euclidean space this is no problem as we just take the corresponding lines
to be parallel, but there are no parallel lines on a sphere (two great circles
always intersect in two antipodal points), instead we have the notion of parallel
transport. Given two points p, q we can take the arc Lp,q from p to q and if v
is a vector at p, of if you prefer a short line segment, you choose a segment w
at q making the same angle with Lpq at q as v at p and call that the parallel
to v. The intuitive idea is that we have moved v to q without turning it (it
points to the same direction). Note we could have made the same definition
in the Euclidean space using a line joining the two points, but as noted there
is no need for it. Formally the definition is based on choosing the great circle
joining the two points, but could there be another definition? In Euclidean
geometry two lines being parallel is an equivalence relation, which allows us to
speak about directions, in particular it is transitive. Our definition of parallelity
on the sphere is obviously reflexive and symmetric but it is not transitive. If
we have three points p, q, r we can transport a vector v at p to a vector w at q,
but we could also move v to a parallel vector u at r and that to a vector t at q
but then t will not be the same as w. Equivalently we could move the vector v
along the perimeter of the spherical triangle defined by p, q, r and find out that
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the direction of v has changed with the amount given by the angular excess1.
The reader may ask how do we know that for a polyhedron with triangular

sides, or as we mathematicians say, faces. The number p of vertices (corners)
and number N of faces satisfy 2p−N = 4? This can readily be verified on the
tetrahedron, octahedra and icosahedra, but that is hardly a proof. Now in our
special case of triangular polyhedra we notice that the number of edges (L) is
going to be given by 3N/2 (every face has three sides (edges) and every edge will
be counted twice in that way). Then we can rewrite 2p−N = 2(p−E+N) and
this innocent looking expression (p−E+N) turns out to be amazingly powerful.
In fact given any polyhedron, no matter the shape of the faces, we will have
p− E +N = 2 as the reader can verify to his hearts content by considering all
kinds of polyhedra he can imagine. But why is that true?

For simplicity assume that we can fit a small sphere inside the polyhedron
such that all rays from its center intersect the polyhedron in just one point. In
this way the vertices and edges on the polyhedron will correspond to vertices and
arcs of great circles joining them, forming polygons in the sphere corresponding
to the faces of the polyhedron. We get a combinatorial structure on the sphere,
which is a spherical graph (denote it by Γ1), meaning a graph on the sphere
consisting of edges and vertices (the faces we get for free). If we have another
polyhedron we will likewise get another graph Γ2 and the union Γ1 ∪ Γ2 will
be a refinement of both. A refinement of a graph means adding new edges and
vertices, creating as well new faces. This can be achieved by a succession of
elementary steps as indicated below

V E F

+2 +2

V E F

+2 +3 +1

V E F

+1 +2 +1

V E F

+1 +1

Each step changing the number of vertices, edges and faces, but not their
alternating sum. Hence this alternating sum will be the same for all polyhedra.
This combinatorial invariant is called the Euler characteristics, although it goes
further back then Euler, and is a very fundamental concept in mathematics.
Polyhedra may look very different, but one thing they have in common is that
they can be deformed to a sphere without tearing (think of them as being made
out of very pliable rubber). One says that they are topologically equivalent, or
using a more technical term homeomorphic, which requires a rather technical
definition to be amenable to a precise mathematical treatment. We can now turn
things on its head and define the Euler characteristic e(X) of a topological space
(which we have not defined but think of spheres, tori etc) to be a topological

1In fact it is impossible to find a notion of parallel vectors without this phenomenon, as it
turns out that you cannot comb a sphere without hair sticking up at some point.
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invariant (i.e. topologically equivalent spaces should have the same invariant)
that satisfies the following axioms.

• e(p) = 1 where p is a point

• e(P ∪Q) = e(P ) + e(Q)− e(P ∩Q) (finite additivity)

• e(P ×Q) = e(P ) · e(Q)

Does such an invariant exist? In other words there are no contradictions?
(Meaning that by dividing the space up in two different ways we get different re-
sults). Leave this question wisely aside! Let us first derive some consequences2.
We have a 2 : 1 map from the circle C onto itself thus e(C) = 2e(C) and hence
e(C) = 03. Now take away a point from a circle and we have an open segment I
with e(I) = −1, thus an open square X = I× I we get e(X) = 1 and hence also
for a disc (with or without its boundary) or more generally for any polygon.

Now the Euler characteristics should be thought of a very versatile counting
function. and the axioms indicates how it should be computed from a decom-
position into simpler parts, thus to compute the number necessarily requires as
well as forces an understanding of how a space is built up. Take away the poles
of the spherical earth (remember we are thinking topologically so we do not have
to worry about metric irregularities) what we have left can be thought of as the
equator (a circle C) times an open interval I hence Euler characteristics zero.
Thus the sphere has Euler characteristic two. A torus can be thought of as the
product of two circles hence Euler characteristics zero. Take away a disc from a
torus and you get a so called handle, which will have Euler-characteristics −1.
Take away N disjoint discs from a sphere and along each of the circular borders
of the ensuing holes, attach a handle in the obvious way. We then get a surface
of eulercharacteristic (2−N)+(−N) = 2−2N where N is the number of ’holes’
in the surface.

We have now very elementary building blocks consisting of points, lines, and
discs, and if we are interested in surfaces which can be built up by a finite num-
ber of such blocks, it will mean that the surface comes with a graph, consisting
of the edges along which the discs (polygons), are glued to each other. The Euler
characteristics of such a surface must by necessity be given by V −E+F corre-
sponding to the Euler characteristics of vertices, (open) edges, and faces given
by 1,−1, 1 respectively. Thus there is a deeper reason that the combinatorial
invariant works and is the right one.

Now we can tie the ends together. Consider some surface, it could be some
deformed sphere or a cup with a handle. We might now want to make sense

2Incidentally the fist axiom can be weakened to e(p) 6= 0 as p × p = p and hence e(p)2 =
e(p× p) = e(p) hence e(p) = 1. This is pedantry, but it points out that the third axiom forces
a normalization

3If the circle is represented by the points C(θ) = (cos θ, sin θ) look at the map C(θ) 7→ C(2θ)
which identifies antipodal points C(θ), C(θ+π). If we let Z2 denote a space of two points (by
additivity we have e(Z2) = 2) it is, however, not true that C = C×Z2 as the right side denotes
two disjoint circles, so we cannot use the third axiom directly. But think of a Moebius strip
whose boundary is actually a connected circle. Cut it and it splits into two disjoint segments,
thus e(C)− 2 = 2(e(C)− 1) from which follows e(C) = 2e(C).
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of what is meant by a straight line (a so called geodesic) on a surface. If it
is a plane it is obvious, and for a sphere we are talking about great circles.
With an obvious caveat those will provide the shortest distances between two
points, which of course begs the question of what will be distances in general
on a surface. On a surface which is made up flat polygons, a geodesic is easy to
describe, it will be made up by straight lines on the faces which when they meet
at an edge have to satisfy a certain simple condition. Could we approximate a
given surface with surfaces made up by flat pieces and go to the limit? This is
a time-honored approach of mathematicians since the time of Archimedes. But
let us assume that we have solved this problem. Could we define something
like curvature at each point so that when we integrate this curvature over a
triangle (assumed to have geodesic edges) we get the angular excess (or defect).
This is true for spheres, but can we make it more general? One cheap way of
achieving this would be to define the curvature at a given point to be the limit
of the quotient of the angular excess and the area of small triangles converging
to the point. If so we would end up, basically tautologically that the integral of
the curvature of a surface X would be 2πe(X). For a sphere of radius 1 would
give us that its area is indeed 4π. The point is though that no matter how the
curvature κ it is defined we would have∫∫

X

κ = 2πe(X)

which is a beautiful formula, known as Gauss-Bonnet. It really becomes inter-
esting if we have an independent definition of curvature, which is what Gauss
came up with in the early 19th century. Recall that at corner points of a poly-
hedron, the angles around the point did not add up to the customary 2π which
could also be expressed as the length of a circumference of a circle of radius r is
not the expected 2πr. If we look at a circle of radius t on the unit sphere sphere
it will be the same as that of the circle of radius sin(t) in Euclidean space (see
below) thus 2π sin(t)

t

sin(t)
Now sin(t) = t − 1

3
t3 + 1

120
t4 . . . so we see that the

smaller t is the better does the circle approximate that of
the plane 4. One may also compute the area of the circle

which will be given by 2π(1 − cos(t) = πt2 − π t4

12
. This

give the clue to a definition of curvature as the limit

lim
t→0

A0(t)−A(t)

A0t2

where A0(t) is the area of a circle of radius t in Euclidean space, and A(t)
the area of a circle of radius t on the surface. Applied to the unit sphere we get
1 as desired.

4There will always be a ’bulge’ but it will rapidly flatten out. On a human scale, an
individual say 2 meters tall standing on level ground would see the horizon 5km away. That
he cannot see the ground beyond that modest distance is due to the curvature of the Earth.
If we would slice off that part of the bulge, he would only sink 3 cm in comparison with
inevitable irregularities, this discrepancy would be dwarfed, no matter how level we would try
to make the ground.
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We will now make two local calculations. They would not have been part of
the tool-kit of the Ancient Greeks but is nowadays expected of anyone with a
modicum of mathematical education (say that of the first year of modern univer-
sity studies). Consider on the unit sphere three points (A,B,C) equidistantly
positioned on a small circle of radius t centered around a point O.

O

P
A

B

C A

B

C

P

Now we can give 3-dimensional Cartesian coordinates for them namely
P = (0, 0, 1)
A = (sin(t), 0, cos(t))

B = (− 1

2
sin(t),

√
3

2
sin(t), cos(t))

C = (− 1

2
sin(t),−

√
3

2
sin(t), cos(t))

The great arc joining A and B is given by the intersection of the plane that
goes through A,B and the origin. Similarly for the arc given from A to C.
We would now like to compute the angle with which those two planes intersect,
which is the same as the angle made by the two normals. A normal to a plane is
a vector orthogonal to all the vectors in the plane. Given two vectors V,W we
can form its vector product V ×W (something which was part of the standard
curriculum in most high-schools around the world) which will be orthogonal
both to V and W and can hence serve as a normal to the plane spanned by
V,W . Now if we have to vectors X,Y we can express the angle θ between them
by < X · Y >= |X||Y | cos(θ) where < X · Y > denotes the inner product of
X,Y and |X|, |Y | are the lengths of X,Y respectively, in particular < X ·X >=
|X|2 5. We can now write down normals to the planes AB and AC to be

given by (−
√
3

2
cos(t),− 3

2
cos(t),

√
3

2
sin(t) and (

√
3

2
cos(t),− 3

2
cos(t),−

√
3

2
sin(t)

(I have factored out sin(t) from the formula given by the previous footnote, for
simplicity). We now take their inner-product and divide by the products of
their lengths and end up with

cos(θ(t)) =
9

4
cos2(t)− 3

4

9

4
cos2(t) + 3

4

through some simple trigonometric simplification due to cos2(t) + sin2(t) = 1.

5The inner product is a so called bi-linear form so |X + Y |2 =< (X + Y ) · (X + Y ) >=<

X ·X > +2 < X · Y > + < Y · Y >= |X|2 + 2 cos(θ)|X||Y |+ |Y |2 which is just Pythagoras
theorem when θ = π

2
and thus provides the well-known generalization of it. The point is

that < X · Y > is easily computed when X,Y are given in coordinate forms. In fact if
X = (x1, x2, x3), Y = (y1, y2, y3) then< X·Y >= x1y1+x2y2+x3y3. Furthermore we can also
write down a formula for the vector productX×Y = (x2y3−x3y2, x3y1−x1y3, x1y2−x2y1). It
is easy to verify that< (X×Y )·X >=< (X×Y )·Y >= 0 (incidentally |X×Y | = sin(θ)|X||Y |).
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Now we are only interested in very small values of t so we can replace cos2(t)
by 1 − t2 + .. plus higher powers of t which can be ignored. This essentially

goes back to Newton. We then get 6−9t2

12−9t2
after some straightforward algebraic

manipulation. Further development yields

6− 9t2

12− 9t2
=

1

2

1− 3

2
t2

1− 3

4
t2

=
1

2
(1− 3

2
t2)(1 +

3

4
t2) =

1

2
(1− 3

4
t2)

where the next to last step may warrant some explanation. We have in fact
that 1

1−t
= 1+ t+ .. plus higher order terms (cf the sum of an infinite geometric

series 1

1−t
= 1 + t+ t2 + t3 + . . . ) so we just substitute 3

4
t2 for t.

Now by the addition theorem for cosine (which all school children are ex-
pected to know6) we have that

cos[
π

3
+ u) = cos(

π

3
) cos(u)− sin(

π

3
) sin(u) =

1

2
(1− u2)−

√
3

2
u+ ..

comparing with cos(θ(t)) = 1

2
− 3

8
t2 we conclude that cos(θ(t)) = π

3
+ u where

u = 1

4
√
3
. The angular excess 3(π

3
+ u) − π = 3u =

√
3

4
t2 If we then compare

with the area of the triangle ABC we get
√
3

2
t 3
2
t =

√
3

4
t2 and everything tallies.

In fact had we not known the area A of a sphere, our initial argument would
have yielded the formula A

4π
(α+β+γ−π) and we would have obtained A = 4π

without integration!
Finally we can compute the angles APB = BPC = CPA denoting it by θ

O

P

A

B

C

O

P

A

B

C
A

B

C

P

We proceed as before and get

v = (− sin(t), 0, 1− cos(t)), w = ( 1
2
sin(t),

√
3

2
sin(t), 1− cos(t))

cos θ =
< v · w >

|v||w| =
− 1

2
sin2(t) + (1− cos(t))2

2(1− cos(t))

Using well-known identities such as 1−cos(t) = 2 sin2( t
2
) and sin(t) = 2 sin( t

2
) cos( t

2
)

this can be simplified to − 1

2
+ 3

8
t2 + . . . . Comparing with cos( 2π

3
+ u) =

cos( 2π
3
) cos(u) − sin( 2π

3
) sin(u) = − 1

2
−

√
3

2
u + . . . we get u = − 1

4
√
3
t2 + . . .

Adding up the three angles we get 2π −
√
3

4
t2 and hence on the polyhedron a

circle with radius r is given by (2π −
√
3

4
t2) r

2

2
. As sin(t) = r we can express

6cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)
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t = r+ r3

6
+ . . . and then get the area to πr2 −

√
3

8
r4 + . . . which does not tally

with πr2 − π
12
r4 + . . . for the unit sphere. This shows that our naive idea of

approximating with polyhedra does not work, the approximation is too crude,
and other more powerful ideas are needed to show that the definition above is
the one we want for curvature.

Now how should we interpret the preceeding discussion? A naive impression
of mathematics is that one learns how to solve problems systematically as in
school. For this and that problem one proceeds as follows etc. When it comes
to compute the area of some region say on a sphere or more generally on any
’curvy’ surface calculus students learn how to set up a specific integral; however
to do this in practice is quite another matter and as everyone knows who has
had a fleeting acquaintance with integration the answer seldom has a simple (in
some conventional sense) answer. Specific examples, however, can be amenable
to striking ad hoc solutions as illustrated by the example of spherical trian-
gles. The simple solution, accessible to the Greeks and even to modern people
with scant mathematical education, provided here is also striking, maybe even
more so, to a professional mathematicians who encounters it for the first time,
unaware of the existence of such a simple approach. The proof above gives
an explanation for why something is true, but not necessarily a deeper under-
standing. A step towards the latter is provided by the observation that angular
excess (or more generally angular discrepancy) is an additive property which
ties in with a fundamental theme in mathematics. People in the humanities
often make a point of contrasting mere explanation, as in the natural sciences,
with the deeper notion of understanding as being the loftier concern of those
engaged with the human spirit, without even bothering to make a clear distinc-
tion between the words. Here, in one field too boot, possible illustrations of
the two concepts, have been presented. Furthermore discrete examples of the
continuous concepts are presented and the additive countings are generalized
strikingly into the topological category7. I could not resist a slight elaboration
on the notion, illustrating on one hand a so called ’functorial’ approach com-
mon in modern mathematics setting up a way of computing defined implicitly
by its desired properties (the axioms) rather than by explicit construction. In
fact the former actually indicates how it could be defined as to give the axioms
a firm ground, but the actual construction is of less import and can be, us-
ing a Wittgensteinian metaphor, disposed of as a ladder when it has served its
purpose. More significantly it shows how starting from one piece of interesting
mathematics one becomes aware of its wide ramifications and how it can lead to
unexpected things. What strikes the mathematician is the interconnectedness
of mathematics, how different seemingly unrelated pieces have mutually benefi-

7The standard way students encounter euler numbers is as the alternating sum of so called
betti-numbers, whose definitions are rather technical and part of graduate education on simpli-
cial homology. The present author being no exception. Only as a more mature mathematician
did I accidentally come across, during an ordinary lecture for students given by an eminent
German mathematician, the notion of euler numbers, or euler characteristics as it also is
called, as a counting function, which completely changed my outlook. Chance remarks tossed
off can have profound implications also in mathematical intercourse.
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cial applications8. The oft quoted line by William Blake of seeing the world in
a grain of sand, has its special relevance to mathematics.

Noteworthy is the ’proof’ of the Gauss-Bonnet formula supplied. This illus-
trates the fact that by using the right definitions one may render proofs trivial,
not to say tautological. Such slick steps are usually taken at the end when
a subject allows a birds-eye view and provide some sort of closure. However,
there is a large amount of cheating involved and students who are predominantly
brought up on such fare get a skewed view of the subject.

Finally I included two technical calculations, which to the uninitiated may
seem impressive, if intimidating and maybe even repulsive. As far as a mathe-
matician is concerned they are routine and he may be called upon to perform
repeatedly in a day’s work. They do correspond to tools part of an inevitable
tool-kit a mathematician need to possess, just as plumber relies on his. In
the first case it does modest duty by providing a round about computation of
the area of a sphere, a curiosity which only a mathematician may savor, by
computing the area of an infinitesimal spherical triangle, hence those truncated
Taylor expansions, which may have puzzled the intermittent reader. Those ex-
pansions really correspond to computing with infinitesimals of different orders
in a formally impeccable way. The second computation, to anchor the proof of
Gauss-Bonnet led to a dead end, the common fate of most mathematical compu-
tations. Such computations normally do not entail understanding, being in the
nature of manipulations, but reveal facts which can serve as the springboards
to further developments.

8This is not something that occurs in the study of chess from the professional point of
view. One can pose questions of chess of a mathematical nature but they would have scant
interest to someone eager to improve his game.
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