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Computer’s perception of the position
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Random model: The Poisson Galton-Watson process

Random rooted tree. Each node has Po(λ)-distributed # children.

Convention: A player unable to move loses.
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Replica Symmetric ansatz

Replica Symmetric ansatz: Someone must win (true for
λ ≤ 1)

Let p = P(Bob wins under optimal play).

Alice’s winning moves come as a Poisson process of rate p, so
Po(λp)-distributed:

p = P(no event in that process) = e−λp,

and so

λ =
− log p

p
,

and

p =
W (λ)

λ
.
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Truth
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Truth

What happened?
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Truth

The ”RS” solution λ = − log p
p is the fixed-point of the map

p 7→ e−λp.

But the truth about the game comes from iterating that map.
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Truth

λ = 2.5.
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Truncated game

The iterates show Bob’s
probability of winning if the tree
is truncated after k moves.

If in reality the game is drawn,
the parity of k will determine
the winner of the truncated
game.

Draw ↔ influence of boundary
conditions remains positive
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Geography

Algorithmic Combinatorial
Game Theory

Geography:

Vertex Geography:
PSPACE complete
(Lichtensein-Sipser 1980)

Undirected Vertex
Geography: P

Letters = Nodes

Cities = Directed Edges

Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Geography

Algorithmic Combinatorial
Game Theory

Geography:

Vertex Geography:
PSPACE complete
(Lichtensein-Sipser 1980)

Undirected Vertex
Geography: P

Letters = Nodes

Cities = Directed Edges
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Undirected Vertex Geography

General graph

Alice and Bob take turns choosing the edges of a self-avoiding
walk

Whoever gets stuck loses

Why in P?

Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Undirected Vertex Geography

General graph

Alice and Bob take turns choosing the edges of a self-avoiding
walk

Whoever gets stuck loses

Why in P?
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Undirected Vertex Geography

Theorem

On a finite graph, Alice wins if and only if every maximum size
matching covers the starting point.
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Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Erdös-Renyi random graph model

N nodes

Each edge present with probability λ/N (average degree λ)

Local weak limit: The Poisson Galton-Watson process
(Poisson Bethe lattice)

If N >> λ2k , then the k-neighborhood of a random vertex is
a tree (whp)
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Max-size matchings

In the ER-graph, add a random edge (u, v).

The size of the max matching increases if some old max-size
matching leaves both u and v unmatched.

Below symmetry-breaking, this happens with probability

P(Bob wins)2 =
W (λ)2

λ2
.

Integrating: Proportion of vertices covered by max-size
matching

= 2− 2
W (λ)

λ
− W (λ)2

λ
.

Ground state of a “physical” model: States = matchings,

H(σ) = #unmatched vertices

Johan Wästlund Games, optimization and phase transitions
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Minimum cost matching

Complete graph KN with exp(N)
edge-costs.

Minimum cost (near-) perfect
matching?

Average cost per vertex = π2/12
(Mézard-Parisi 1985, Aldous 2001)
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Minimum cost matching
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Graph Exploration

2-person zero-sum game:

Alice and Bob take turns
choosing edges of a
self-avoiding walk

They pay the length of
their edge to the
opponent,

or terminate by paying
λ/2 to the opponent

Edges longer than λ are
irrelevant!

λ ≥ 0
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Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Graph Exploration

2-person zero-sum game:

Alice and Bob take turns
choosing edges of a
self-avoiding walk

They pay the length of
their edge to the
opponent,

or terminate by paying
λ/2 to the opponent

Edges longer than λ are
irrelevant!

λ ≥ 0
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Diluted Matching Problem

Optimization:

Partial matching

Cost = total length of
edges + λ/2 for each
unmatched vertex

Feasible solutions exist
also for odd N

θ ≥ 0
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Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Diluted Matching Problem

Optimization:

Partial matching

Cost = total length of
edges + λ/2 for each
unmatched vertex

Feasible solutions exist
also for odd N

θ ≥ 0
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Solution to Graph Exploration

Fix λ and edge costs

M(G ) = cost of diluted matching problem

f (G , v) = Bob’s payoff under optimal play from v

Lemma

f (G , v) = M(G )−M(G − v)
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Solution to Graph Exploration

Lemma

f (G , v) = M(G )−M(G − v)

Proof.

f (G , v) = min(λ/2, li − f (G − v , vi ))

M(G ) = min(λ/2 + M(G − v), li + M(G − v − vi ))

M(G )−M(G − v) = min(λ/2, li − (M(G − v)−M(G − v − vi )))

f (G , v) and M(G )−M(G − v) satisfy the same recursion.
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M(G )−M(G − v) = min(λ/2, li − (M(G − v)−M(G − v − vi )))

f (G , v) and M(G )−M(G − v) satisfy the same recursion.
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Solution to Graph Exploration
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Tree approximation

Poisson-Bethe-Aldous-Galton-Watson-Erdös-Renyi-
lattice/graph/process

Edge-costs from uniform distribution on [0, λ]
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Payoff distribution

F (x) = P(Bob’s payoff ≥ x) in the truncated game

F 7→ exp

(
−
∫ λ/2

−x
F (t) dt

)
.
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Payoff distribution

P(Bob’s payoff ≥ x) in the truncated game (λ = 5)
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Payoff distribution

P(Bob’s payoff ≥ x) in the truncated game (λ = 5)
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Payoff distribution

P(Bob’s payoff ≥ x), λ = 20.
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Payoff distribution

P(Bob’s payoff ≥ x), λ = 20.
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Convergence?

Theorem

E |Payoffk+1 − Payoffk | ≤
λeλ

k
.

Easy to solve for the fixed point:

F (x) = exp

(
−
∫ λ/2

−x
F (t) dt

)

gives

F (x) =
1 + q

1 + e(1+q)x
,

where

λ =
−2 log q

1 + q
.
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Johan Wästlund Games, optimization and phase transitions



Talk at Les Houches, March 2010

Convergence?

Theorem

E |Payoffk+1 − Payoffk | ≤
λeλ

k
.

Easy to solve for the fixed point:

F (x) = exp

(
−
∫ λ/2

−x
F (t) dt

)

gives

F (x) =
1 + q

1 + e(1+q)x
,

where

λ =
−2 log q

1 + q
.
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Cost of the diluted matching problem

Average cost per vertex
(from Alice’s first move):∫ 1

0
min

(
λ/2,

− log t

1 + t

)
dt

Limit cost as λ→∞:∫ 1

0

− log t

1 + t
dt =

π2

12
.
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Proof of convergence, numerical values for limit costs

Problem Limit cost Pseudo-dim 2

Matching π2/12 ≈ 0.8224670336 0.57175904959888
TSP 2.04154818642 1.285153753372032
Edge Cover W (1) + 1

2W (1)2 ≈ 0.7279690463 0.55872
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