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Decomposable Models: A New Look at Interdependence
and Dependence Structures in Psychological Research

Volker Hodapp and Nanny Wermuth

Johannes Gutenberg-Universitat Mainz

Decomposable models represent interdependence structures for observable vari-
ables. Each model is fully characterized by a set of conditional independence
restrictions, and can be visualized with an undirected as well as a special type of
a directed graph. As a consequence each decomposable model can be interpreted
either in terms of interdependencies only or as a particular kind of dependence
structure, as a recursive system or path analysis model. Under the assumption of
normally distributed variables, decomposable models determine the structure of
correlation matrices, and maximume-likelihood estimates of these can be calcu-
lated with the help of ordinary least squares estimation. Using several examples
from psychological research, we discuss the interpretation ‘of decomposable mod-
els. Furthermore, it is demonstrated how recursive dependence structures can be
specified with the help of decomposable models in a hypothesis generating (ex-
ploratory) as well as in a hypothesis testing (confirmatory) manner.

Since correlations were first calculated, there have been attempts
to integrate single relationships into structures or overall models
based on theoretical considerations. It is appropriate to speak of in-
terdependence structures if changes in one variable can lead to
changes in a whole set of relationships, and of dependence structures
if some of the investigated variables are thought of as being depen-
dent or response variables. The problem of defining adequate struc-
tures for a set of variables has remained important until today and a
.great many approaches exist.

It is our aim to describe, for applications in psychological re-
search, one particular class of models for normally distributed vari-
ables, the members of which have been called decomposable or multi-
plicative models (Wermuth, 1980). This class can be regarded as the
intersecting class of models for interdependence structures named
covariance selection by Dempster (1972), and of models for dependen-
cy structures introduced as linear recursive equations by Wold
(1954).
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reprints should be sent to Volker Hodapp, FB 06 Psychologie der Justus-Liebig-
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One essential feature of decomposable models is that they may be
used in confirmatory and in exploratory types of analyses. A particu-
lar model can be regarded as a hypothesis on a structure of rela-
tionships so that this hypothesis can be submitted to a statistical
test, or a search procedure (Wermuth, 1976b, 1980) can be used to
find a well-fitting decomposable model for a given set of data. In both
cases a likelihood ratio test statistic can be employed as criterion to
judge the assertion that a hypothesized model is supported by the
observations.

Other aspects of decomposable models that make them attractive
for applications are the following: (1) each model can be represented
by a particular kind of an undirected as well as a directed graph, and
it is interpretable in terms of (conditional) independence statements;
(2) each model leads to a condensed description of the interdepend-
ence structure in the sense that the whole covariance (or correlation)
matrix is estimated by using only parts of the observed matrix; (3) for
each model the maximum likelihood estimate of the covariance ma-
trix is expressible in closed-form with the help of ordinary least
squares estimates.

Decomposable models are distinct from factor-analytic
approaches (Joreskog, 1970; Lawley, 1940; Spearman, 1904), because
they represent structures only for observable variables. Since decom-
posable models form a subclass of linear recursive equations, they
represent a subclass of the models for linear structural relationships.
Decomposable models, though, provide new possibilities for inter-
pretation and data reduction. The actual analysis of any given decom-
posable model in terms of computing the maximum likelihood
estimates and a test statistic for its goodness-of-fit could be done with
the help of a computer program such as LISREL (Jéreskog & Sérbom,
1978), but because of certain properties of decomposable models, this
1s not necessary. In fact, it has been shown (Wermuth, 1980) that the
paper-and-pencil methods described by Wright (1923, 1934) for path
analysis do not only lead to the maximum likelihood estimates for
equation parameters but also to the maximum likelihood estimate for
the correlation matrix — if the investigated structure is a decompos-
able model.

Before we present an overview on theory relating to covariance
selection, linear recursive equations, and decomposable models, we
first identify the models with the help of their graphical representa-
tions.

Graphical Representations of Special Interdependence
and Dependence Structures
Description of Graphs for Unrestricted Models

In the following, we consider graphs with p points and, at most,

one connecting line for each pair of points. Each point represents a
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variable, and a connecting line an interdependence or a dependence
relationship. The p variables are assumed to follow a joint normal
distribution so that interdependencies as well as dependencies can be
expressed with the help of correlation coefficients.

A graph with p points is called complete if it has exactly (g)
connecting lines, and incomplete if not. It is an undirected graph, if
all connecting lines have no arrow, or equivalently all are two-headed
arrows. It is a directed graph if at least one connecting line is a one-
headed arrow.

Given these definitions, we can say that a complete undirected
graph corresponds to an unrestricted interdependence structure of the
p variables with a connecting line between points i and j representing
the partial correlation of variables i and j given all the remaining
p - 2 variables: p;;.; . i\ i) - It represents an unrestricted covar-
iance selection model (Dempster, 1972).

A subgraph of s < p points is obtained by deleting all p — s points
as well as all connecting lines to these points. Thus, a subgraph of s
points can have at most ( 5 ) connecting lines, in which case it is a

_complete graph.

Of the possible directed graphs, we consider only particular kinds
of complete directed graphs which satisfy the following two condi-
tions:

(1) there are k£ < p points at which one-headed arrows are

directed and these points can be numbered such that exactly
p — i arrows beginning at points ¢ + 1 to p point at each i €
{1, ..., Rk}

(2) the subgraph of the p — k& remaining points is undirected.

Such a graph corresponds to an unrestricted recursive depen-
dence structure in k response variables, where each response i de-
pends on all of the variables i + 1 to p but on none of the variables 1
to i — 1, and it represents uniquely what is known in econometrics
(Goldberger, 1964) as a complete system of % linear recursive equa-
tions with uncorrelated errors. A one-headed arrow pointing from j to
i denotes the partial dependence of variable i on j given all other
variables that influence response i. This dependence may be mea-
sured by the partial correlation coefficient: p;;. 1, .. s - A
two-headed arrow between any two points s and ¢ from the last p — &
points represents the partial correlation of variables s and ¢, given all
of the remaining p — k variables: py. .1, PIN s -

It is known (e.g., Wermuth, 1980) that an unrestricted inter-
dependence structure is equivalent to several of complete recursive
systems that differ only in the number of the response variables. For
four variables, Figure 1 shows all possible equivalent complete recur-
sive systems that can be defined for a fixed ordering of the variables.
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Figure 1.
Graphs of equivalent complete recursive systems.

Graphs for Covariance Selection Models

Members of the class of covariance selection models (Dempster,
1972) can be thought of as fully characterized by a complete un-
directed graph for normally distributed variables together with a set
of restrictions on variable pairs: JAC {(i,j) | 1<i<j<p} such that
Pijeir, ... pifijy = 0 for each (i,)) € I, The graph of a restricted model
differs from he complete graph by missing connecting lines for all
pairs (i,)) € I,

The set I* of restricted variable pairs in a covariance selection
model is equivalent to a set of unrestricted subsets of variables, {IV,}
= {Ny, ..., N}, that has been called the generating class of the mod-
€l. The elements of {IV,} separated by dashes have been used as (short-
cut) notation for the model (Wermuth, 1980). It has beeh noted by
Darroch, Lauritzen, and Speed (1980), in the context of equivalent
models for qualitative variables, that the generating class can be
read from the graph as the set of maximal complete subsets. A subset
of points in an undirected graph is called maximal complete if the
subgraph of these points is complete, and, if by including one more
point, an incomplete subgraph results. The equivalence to I* is then
defined by (r,s) € I* (—) there exists a N; € {N,} such that {r,s} CN,.
To give n example we use the graph of Figure 2.
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Figure 2.
Graph for a special covariance selection model.

This graph represents a covariance selection model with I* = {(1,5),
(1,6), (1,7), (1,8), (2,4), (2,5), (2,6}, (2,7), 12,8), (3,4), (3,5), (3,6), (3,7),
(3,8), (6,7), (5,8}, with {V,} = {{1,4}, {1,2,3}, {4,5,6}, {4,6.7,8}}, and
model notation 14/123/456/4678. '

The interpretation of a covariance selection model is facilitated
with the following result by Darroch, Lauritzen, and Speed (1980):

If in the undirected graph for p variables two disjoint subsets of points A and

B are separated by a subset D in the sense that all paths from A to B go

through D, then the variables in A are conditionally independent from those
in B given the variables in D.

For the model 14/123/456/4678 one obtains, for instance, that
variables 2,3 are conditionally independent of variables 5,6,7,8 given
variables 1 and 4; that variable 2 is conditionally independent of
variable 4 given variable 1; that variable 5 is conditionally indepen-
dent of 7,8 given variables 4 and 6, and so on.

Graphs for Incomplete Linear Recursive Equations

Systems of & incomplete linear recursive equations with un-
correlated errors (Goldberger, 1964) can be thought of as fully
characterized by a complete recursive system in & < p response vari-
ables (which gives an ordering of the responses such that variables
i=k may depend only on variables j € {i{ + 1,...,p} but not on vari-
ables h € {1,...,i—1}) and a set of restrictions I = {(i,)) | I=<i<j=p
and i<k} such that p;;.;.1, . )\ = O for each (i,)) € I”. The graph
of an incomplete recursive system results from the graph for a complete

recursive system by leaving out the one-headed arrows for all pairs (i,j)
e’
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The set I of restricted variable pairs in a recursive system de-
fines for each response variable  two subsets, A; and B,, of its poten-
tial influencing variables {i+ 1, ... ,p}. The set A, lists the variables
on which response i actually depends: A; = {j | j>i and (i,j) € 1P}, and
B, lists those on which it does not depend: B; = {j|j>i and (i,j) € I"}.
Figure 3 gives an example of a recursive system with responses
1,2,3.4, and 5.

Figure 3.
Graph for a special recursive system.

The model represented by Figure 3 has the set of restricted vari-
able pairs I” = {(1,5), (1,6), (1,7), (1,8), (2,4), (2,5), (2,6), (2,7), (2.8),
(3,41, 13,5), (3,6), (3,7), (3,8), (5,7), (5,8)}, and as sets of influencing
variables, A; = {234}, A, = {3}, Ay = &, Ay = {5,6,7,8}, and A; =
16}. Though th set I” is identical to I* of the covariance selection
model: 14/123/456/4678, represented by Figure 2, these two models
are not equivalent. Such an equivalence can occur, however, for de-
composable or multiplicative models, which are described in the next
section.

Recursive systems can be interpreted in terms of conditional in-
dependencies as follows:

Each response variable i is conditionalty independent of the variables in B,
given the variables in A;.

Thus, for the system in Figure 3, variable 2, for instance, is con-
ditionally independent of variables 4,5,6,7,8 given variable 3.

Graphs for Decomposable Models

A method for recognizing a decomposable model from the incom-
plete undirected graph is to detect the so-called closed loops (Bishop,
Fienberg, & Holland, 1975):

An undirected graph characterizes a decomposable model if and only if this
graph does not contain a subset of r=4 points such that the graph of these points
has exactly r connecting lines and each arbitrary starting point is reached with r
lines.
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With this result the graph of model 14/123/456/4678 in Figure 2 is
recognized as one of a decomposable model, since it does not contain
any subgraphs like those drawn in Figure 4.

SO

Figure 4.
Subgraphs that characterize non-decomposable models.

For each decomposable model—and only for these—the variables
can be ordered so that the model can equivalently be formulated as
an incomplete system of recursive equations (Wermuth, 1980).

If, for instance, the variables in Figure 2 (model 14/123/456/
4678) are renumbered as for Figure 5, then the generating class be-
comes {N,} = {{3,6}, {1,2,3}, {4,6,7}, {5,6,7,8} }, and the model notation
becomes 123/36/467/5678. 1t is equivalent to the recursive system in
Figure 6 with response variables 1,2,3,4 that have as sets of influenc-
ing variables A; = {2,3}, A, = {3}, As = {6}, and A, = {6,7}.

Figure 5.
Graph for the covariance selection model in Figure 2 with renumbered variables.

To determine from the graph of a recursive model whether it is
equivalent to a decomposable model, the following result is useful.
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o O

Figure 6.
Graph for the recursive system corresponding to the covariance selection model in Figure 5.

An incomplete recursive system in k responses is equivalent to a decomposable
covariance selection model, if and only if in its graph the subgraph of each set of
influencing variables, A;, is complete.

This is just a reformulation of a necessary and sufficient condi-
tion given by Wermuth (1980) in terms of the set of restricted vari-
able pairs. Another equivalent formulation is due to Kiiveri and
Speed (1982): if the origin points of two one-headed arrows have no
connecting line, then there is a restricted set of influencing variables
in the system.

Using these results it is seen that the recursive system in Figure
6 is equivalent to a decomposable model, but the one in Figure 3 is
not. This distinction does not only imply different possible interpreta-
tions of the model, but it also has consequences for test statistics and
maximum likelihood estimates, to be discussed in the next sections.

Overview of the Theory for Decomposable Models

Covartance Selection

Covariance selection (Dempster, 1972) provides the theory for
obtaining the maximum-likelihood estimate of the covariance matrix
in a multivariate normal distribution, where for each (i,j) € ?C
{(i,7) | 1=<i<j<p} the concentration ¢"/, which is the element in posi-
tion (i,7) of the inverse covariance matrix, is restricted to be zero. For
positive definite matrices ¥, the restriction ¢/ = 0 is equivalent to
the restriction p;;.pn, . . i = 0 (Wermuth, 1976a), since
1 ey g = - —

Pijeqa, ..., Py i) (Uiini)llz

368 MULTIVARIATE BEHAVIORAL RESEARCH



Volker Hodapp and Nanny Wermuth

and since all diagonal elements (o) of the inverse of a positive defi-
nite matrix are nonzero.

As Dempster has shown, the estimate ¥ always exists and is
determined uniquely from certain elements s;; of the observed covar-
iance matrix S (with s;; = 2; (x;; — %) (x;; — %)/ n).

6, = s;i; for (i,j) € I* and for i = j
(2]

67 =0 for (i,j) € I

This indicates that the submatrices of £ having only unrestricted
variable pairs (these are just the variable groups listed in the gener-
ating class {N,}) match the corresponding submatrices of the observed
covariance matrix. The estimated covariance &;; of each restricted
variable pair (i,j) € I* instead, may differ from the observed covar-
iance s;;. Its value is implied by the particular pattern of restrictions
and by the observed covariances of all unrestricted pairs.

Since only parts of the observed covariance matrix are needed to
compute ¥, each covariance selection model can be said to give, with
%, a condensed description of the interdependence structure. It will
differ little in positions (i,j) € I* from the uncondensed description,
the observed covariance matrix S, if the model assumptions are cor-
rect. Thus, each well-fitting covariance selection model provides the
researcher with a good data reduction in the sense that the observed
covariances of all restricted variable pairs are closely reproduced
from only knowing the covariance matrices of the unrestricted sub-
groups of variables.

The likelihood ratio test statistic, LR-x”, represents a measure of
the deviation between X and S. It can also be shown to measure the
deviation between P, the maximum-likelihood estimate of the cor-
relation structure of a given covariance selection model, and R, the
observed correlation matrix. The determinants of S and R relate as
|S] = |R| (II”_ys;), and those of ¥ and P similarly, since from
Equation 2, &;; = s;; for all i. The statistic is defined as

Il

LR-x*=nIn((2]/]S])

[3]

Il

nln((P|/|R]).

For large numbers of observations, n, this statistic follows a chi-
square distribution with degrees of freedom equal to the number of
restricted variable pairs for ¥, the number of pairs listed in I

OCTOBER, 1983 369



Volker Hodapp and Nanny Wermuth

The actual computation of X or P has to be done by iterative
algorithms like those described by Dempster (1972) or by Wermuth
and Scheidt (1977)—unless the model is a decomposable one. In the
latter case the equivalence to a recursive system leads to the simple
closed form estimate in Equation 12 below.

Systems of Linear Recursive Equations

Linear recursive equations represent a subclass of the linear
structural equation models studied by econometricians (e.g., Goldber-
ger, 1964). Some of the p variables, X, ..., X, (k < p), are considered
to be response (or endogeneous) variables. In recursive systems these
can be ordered such that each response X; may depend on variables
X; with j € {i+1,... p} but not on any one of the variables X, with
k€{l,...,i—1}. The remaining variables, X,,. ;,...,X,, that are not
thought of as responses are called exogeneous.

The dependence relationships in an unrestricted or complete re-
cursive system take on the following triangular form:

X] :LXlQX2+(11;;X;3+. . .+(X]]‘,X/‘,+Oll’k;1, IX/c-%-1+- . .+OLJ,,XI)+ U]
X‘Z: ([23X3+ RN +(X2/\.X/‘,+(lz‘k + 1Xk~1» l'lr' .. .+(¥2PXI,+ U2

(4]

Xk: Qp foor 1X/‘,+1+. . .+0L]‘,I,Xp+ Uk

In systems with uncorrelated errors the residual U; is not only re-
garded as independent from the influencing variables or regressors
X:i1,...,X,, but also from residuals in other equations, that is, from
U; with j # i. Recursive models (that have also been called incom-
plete systems) result from a complete system by requiring the regres-
sion coefficients «;; to be zero for each (i,)) € IP Cl,j) | 1<i<j=p and
i<k}

For positive definite covariance matrices the zero restriction on a
regression coefficient «,; is equivalent to a zero restriction on a
correlation coefficient, since.

Fiiely Yy f

— FYASTESS IS PN AT

[5] Pijeli+1,. .., piN T8y ,
Gipelivl, ..., PN UL

and, since in positive definite covariance matrices, not only are all
variances o;; nonzero, but also are the residual variances nonzero,
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Tuek, = i = Xpek Qi Ukis which result from regressing variable ¢
on an arbitrary set of influencing variables K; C {1, ... p} \ {i},

In complete and incomplete recursive systems with normally dis-
tributed and uncorrelated errors, the maximum likelihood estimates
of all regression coefficients in the system can be obtained by least
squares estimation applied to the equations separately. This follows
from a result by Wold (1954) or from the factorisation property of
recursive systems. Let X4 with A; = {j|j>i and (i,j) € I”} denote the
influencing variables for each response i, then the joint distribution
factorises as

6]  fiXy,....X,) = U, X[ Xa)) Xy, ... X)),

and the maximization of the likelihood function can be split up into
k + 1 independent maximizations.

For each fixed i one can obtain the (negative values of) o, as the
solution of the familiar normal equations:

I?] Si;p = .\_;/ (;(,‘/S/j Wlth] € A[: Ie A,’,

where s,; are observed covariances again.

Equation 7 shows that incomplete recursive systems do not
necessarily lead to data reductions. If for instance, the first variable
is unrestricted, so that A, = {2, ... .p}, then all observations are
needed to compute the estimates &,;, no matter how many other res-
trictions there are in the system.

The maximum likelihood estimate of the covariance matrix can
be derived as shown in an example by Wermuth (1980). Equation 6
shows that 6, = s;, for all I > k and ¢ > k. The remaining parts of S

can be computed in the order i=*k,k-1,..., 1, as
Gii = Si T Yiea, Yrea, Qu Qi (6 - 811),

18]
. “p

Fij o= Y i1 Qg Oy

with &;; = 0 for jéA,. The first line of Equation 8 indicates that &;; =
s;; if the estimated covariances and variances & of the influencing
variables A; match the corresponding observed covariances and
variances s;,. This is the case for those recursive models which are

decomposable models.
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In any case, though, the likelihood ratio test statistic for incom-
plete recursive systems takes on a simple form that can be derived
from the triangular decompositions of ~ and S:

LRx*=nln(|S]/]S])
[9]

- ke
=nln Ul s; <A, Is;i -A,UB,'),

where s;;. 4 is the estimated residual variance (s;; - 2jca, &ys;) from
regressing variable i on all influencing variables A; in the incomplete
system and s;;. aug, is the corresponding residual variance in the
complete system (with B, = {j|j>i and (i,j) € I’} and A;UB; =
{i+1,...,p}). Whenever an equation is unrestricted, it does not con-
tribute to the test statistic, since then A; = A;UB;. The degrees of
freedom are again equal to the number of restricted variable pairs, to
the number of elements in I”. Since ¢;; need not coincide with s;;, this
test statistic may not, in general, be computed from knowing only the
correlation matrices P and P.

As has been noted by Tukey (1954) the (negative values) of &,
may alternatively be computed as

[10] ay=a5 A i,

Su

where & i are obtained as the solutions of the normal equations for
standardized variables, Z; = (X; - X) /\'s;

[11]  r, = 3,6/ ry, with jeA; and leA,,

i
and r;;, the observed correlation coefficient for variables X; and X ;.

Equation 11 is also known as Wright’s (1923, 1934) rule for cal-
culating path coefficients (4j5) for a system of causal relations that is
represented by a path diagram. In the case of a recursive model with
independent errors, this rule yields maximum likelihood estimates of
the equation parameters, and a path diagram is equivalent to our
graphical representation of the model. For recursive systems with
correlated errors, however, or for non-recursive systems, Equation 11
does not, in general, lead to consistent estimates of the equation para-
meters.

Wright’s second rule, the one for computing implied correlations,
is restated in our terminology in Equation 12 below. It has been
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shown (Wermuth, 1980) that—even for incomplete recursive sys-
tems—this rule does not yield the maximum likelihood estimate of
the correlation matrix, but that it always defines the maximum
likelihood estimate, if the recursive model is a decomposable model,
too.

Decomposable or Multiplicative Models

Decomposable models form a subclass of covariance selection as
well as of recursive models. Members of this subclass possess advan-
tages of both approaches, but avoid disadvantages. Unlike covariance
selection models in general, the maximum likelihood estimate of a
decomposable covariance matrix can be expressed in closed-form: no
iterative algorithms are needed for the computations. And unlike
general recursive models, a well-fitting decomposable recursive mod-
el provides the researcher with a good data reduction: only parts of
the observations are needed to compute the maximum likelihood esti-
mates of all equation parameters and of the covariance or correlation
matrix of all ¢ variables.

A decomposable model may be characterized not only by its pre-,
viously discussed graphic representation but also by a property of its
set of restrictions. A set of restricted variable pairs has been called
“reducible” by Wermuth (1980) if one can reduce the dimensions of a
p-dimensional normal distribution over variables 1, ..., i-1, and for
variables i, . . ., p, the set of restrictions in the marginal distribution
remains the same as in the joint distribution of all p variables. For-
mally we write:

Definition

Aset I C{(G,)) | 1=i<j<p} is reducible if, for each pair (i,ji con-
tained in I, and for all A = 1, .. ., i-1, the pairs (A7) or (A,)), or both,
are also contained in I. Two results from Wermuth (1980) are then
useful:

A covariance selection model is a decomposable model if and only if the variables
may be ordered (renumbered) such that I* becomes reducible;

and
A recursive model is equivalent to a decomposable model if and only if the sct 17

is reducible.

Each model with a reducible set of restrictions can therefore be inter-
preted as a recursive system and the maximum likelihood estimate of
the decomposable correlation matrix P can be computed (Wermuth,
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1980) in the sequence i=p-1,...,1 as

for i>k (two-headed arrows),

pij = I and jeA; (existing one-headed arrows)
[12]
= Y& pyj for jeB,; and I€A; (missing one-headed
arrows).

This is just Wright’s rule for computing implied correlations. The
maximum likelihood estimates of the equation parameters are given
by Equations 7 or 10 and 11, and the test statistic can be computed
from the covariance or correlation matrix as

LR-x* = nln (2] /18]),

[13] =nn{llf., (1 - R?. a)/ (1-R7. aus) ],
with R, . 4 = V1-g; . A I s;; being the multiple correlation coeffi-

cient. All these are, in principle, paper-and-pencil methods which are,
of course, facilitated by computer programs for least squares regres-
sion.

Applications in Psychological Research

In what follows, some examples of applications in psychological
research will be described (see also Hodapp, 1982; Wermuth, 1978:
Weyer & Hodapp, 1979). The first example, taken from developmen-
tal psychology, is based on a study by Rubin (1973), dealing with
relationships between egocentrism measures and age. The purpose
here is to interpret the correlation structure of these data in terms of
a decomposable model.

The later examples demonstrate the two different strategies of
data analysis which can be pursued with the help of decomposable
models: testing or searching for a structure. In an example from so-
cial psychology, we present an analysis of marital and parental vari-
ables influencing marital satisfaction, which were investigated by
Miller (1976). This latter author stated, as an hypothesis of a causal
structure, a path diagram. In the corresponding system of incomplete
linear recursive equations, a subsystem takes on the form of a decom-
posable model. We test the goodness-of-fit of this model and, after
finding it to be incompatible with the observations, suggest a better-
fitting model.

In a separate section dealing with the exploratory approach to
decomposable models, a search procedure is discussed. We use it to
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re-analyze the data of Zeiner and Schell (1971) from experimental
learning psychology. This re-analysis combines model search, inter-
pretation of a covariance selection model, and reformulation of a
covariance selection model in terms of a system of linear recursive
equations.

An Example from Developmental Psychology

To describe a well-fitting decomposable covariance selection mod-
el, we have taken an example from a study in developmental psychol-
ogy by Rubin (1973), who stated:

Egocentrism, a central concept in Piaget's theory (Piaget 1950), has been ex-
amined in terms of the young child’s communicative, cognitive (problem-
solving), role-taking, and perceptual activities . . . . Previous theory and research
have suggested that a single factor subsumes the various forms of egocentrism.
Indeed, some (Feffer, 1959, 1970; Piaget 1950) have identified this factor as “the
inability to decenter,” that is, the child’s inability to shift his attention from one
aspect of an object or situation to another. However, few studies exist in which
investigators attempt to relate the different types of egocentrism. Those that do
exist present inconclusive results as to the exact nature of the correlations ...
Thus, one purpose of this study was to examine the nature of correlations among
tasks purporting to measure communicative, cognitive, role-taking, and spatial
egocentrism in childhood. (pp. 102-103).

Investigating this question, Rubin additionally collected data on
a few “marker variables,” which he postulated should be related to
the egocentrism measures. Of these we include only the two vari-
ables, Age and Conservation. In the classical analysis of Piaget, con-
servation skills are crucial for the ability of decentration.

Table 1

Intercorrelations of Childhood Egocentrism
Variables According to Rubin (1973)

Cogn. Spat. Cons. Comm. Role Age

Egoc. Egoc. Egoc. Tak.
Cognltlv? 1.00
Egocentrism
Spatial
Egocentrism -28 1.00
Conservation .25 .63 1.00

Communicative

.37 .65 .25 1.00

Egocentrism

Role Taking

Egocentrism -32 =73 .65 .72 1.00

Age <47 -66 .73 .73 .78  1.00

Note. n = 60.
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Spatial

Conservation i
egocentrism

Role-taking
5 )egocentrism
(recursive thinking)

®

Cognitive egocentrism Age
(private speech)

Communicative

centrism
Decomposable model 16/235/356/456 egocentris

LR-X2= 6.87 (df=] p=.443)

Figure 7.
Decomposable model for Rubin’s childhood egocentrism variables.

In Table 1, the correlation matrix from the study of Rubin (1973)
is presented. Figure 7 illustrates a well-fitting interdependence struc-
ture for these variables. The question of how this model has been
obtained is deferred for the time being. Instead, we show how such a
model can be interpreted.

In Figure 7, the variable Cognitive Egocentrism shows no direct
relationship with the other egocentrism variables. There exists only
an indirect relationship between Cognitive Egocentrism and the vari-
ables Conservation, Role-Taking Egocentrism, and Communicative
Egocentrism, where this indirect relationship is linked to age. All
variables, except for Spatial Egocentrism, are directly linked with the
variable Age. This indicates that at every stage of the developmental
sequence, it is individual experience and maturation that determines
performance. Up to this point, this interpretation coincides with the
interpretation of Rubin (1973), who wrote:

A correlation analysis provided initial confirmation of the “centration” hypoth-
esis. Measures of spatial, role-taking, and communicative egocentrism, as well
as conservation seemed to form a cluster defined by their significant interrela-
tionships. ... It is probable that the age variables account for the significant
relationships found to exist between the cognitive measure of egocentrism and

conservation. With either mental or chronological age partialled out, cognitive
egocentrism was no longer related to the latter variables. (p. 108)

In addition to this we are able to make some more differentiated
statements. Communication, the most complex of the analyzed vari-
ables, is linked with the variables Conservation and Spatial Ego-
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centrism through recursive thinking (Role-Taking Egocentrism).
According to a proposition of Feffer (1970), there exists an isomorphy
of cognitive structures which the individual develops towards physi-
cal objects and also in interpersonal relations. According to Piaget
(1950), conservation skills and the overcoming of spatial egocentrism
are the criteria indicating that a person has reached the concrete-
operational stage. At this stage, cognitive operations are available to
the child which have been described by Piaget with the concepts of
decentration and reversibility. Role taking in a metaphoric sense—
the ability to predict cognitions, motives, and feelings of other per-
sons—is represented by the variables Recursive Thinking and Com-
munication. The structure model shows a stable relationship between
these social abilities and the cognitive operations, confirming an
essential assumption of cognitive developmental theory (Flavell, Bot-
kin, Fry, Wright & Jarvin, 1968; Selman, 1976). These relationships
are maintained even when the age variables’ are held constant.
Furthermore, recursive thinking seems to form an intermediate func-
tion. According to Miller, Kessel, and Flavell (1970), recursive think-
ing means that a subject is able to comprehend the cognitions of
another person with regard to his own or other person’s cognitions
(“thinking about thinking,” “thinking about thinking about think-
ing”). Although recursive thinking is characterized by the distinction
between, and subjectivity of, personal and extraneous viewpoints;
real communication goes beyond this; it requires that the other per-
son’s role is understood and that one’s own actions are adjusted accor-
dingly.

With the rather elaborate interpretation of this example, we
hope to have shown how the approach described here is different from
the analysis using latent variables or factors. Such latent variable
analyses are based on an abstract centration factor which is supposed
to underly all egocentrism variables (see Rubin, 1973). For the above
example, the structural analysis of the directly-observed variables
has led to a more differentiated model of variable relationships.

An Example from Social Psychology

The next example illustrates how an hypothesis about a depend-
ence structure can be tested and modified with the help of decompos-

1To avoid multicollinearity, only one of the highly correlated age variables (“chro-
nological age” and “mental age”) can be included in the analysis. Our interpretation
remains unaffected regardless of which of the age variables is incorporated in the
analysis.
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able models. The data are taken from a study by Miller (1976) who
proposed a multivariate developmental model of marital satisfaction:

Conjugal companionship and communication have sometimes served alone as
criterion variables in studies of the marital relationship, and they also have
been combined with other components in measures of overall “adjustment.”
However, it seems likely that objective marital interaction variables, such as the
amount of communication and frequency of companionate activities, intervene
between the child-related variables noted above and reported satisfaction with
marriage. Consequently, the number and spacing of children was theoretically
linked to how often spouses engaged in various activities, and this frequency
measure was then related to the repondents’ attitudinal reports of marital satis-
faction. This was an attempt to examine the hypothesis that one of the key
reasons children appear to depress marital satisfaction lies in the reduced fre-
quency of companionate activities that husbands and wives typically engage in
with the arrival and rearing of children. If children generally reduce marital
companionships, then child spacing could be expected to positively influence
companionate activities (longer intervals between births would allow more com-
panionship). (p. 645)

The duration of marriage and the family socio-economic status were
introduced by Miller as exogenous variables because empirical
studies have supported a decrease of satisfaction in the course of mar-
riage, and also have pointed to relationships between child-related
variables and socio-economic status. A subsystem of the postulated
dependence relations is shown in Figure 8 (cf. Miller, 1976).

¢ A 2 1
Length of + o Numberof _ - _ Amountof __+ _ Marital
marriage chitdren companionship satisfaction
/ |

/NS
\/

Family social ______*____Chil
status spacing
< 3

Figure 8.
Miller’s theoretical mode! of variables antecedent to marita! satisfaction.

This subsystem can be translated into the following recursive
model that is equivalent to a decomposable model:

Zy = aols + U,

Zy = qosliy + agsZy + U,
Zy = sy + agsls + Uy
Zy = ausls + auelg + Uy

[14]

The coefficients of the equation system 14 represent the path coeffi-
cients and can be estimated using the observed correlations in Table
2 (below the diagonal). Further, the residuals, i.e., the discrepancies
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between the observed and the implied correlations, are presented in
Table 2 (above the diagonal).

Table 2

Intercorrelations of Variables of Marital Satisfaction
According to Miller (1976)

Marit. Amount Child Number Fam. Length
Satisf. Comp. Spac. Childr. Soc.St. Marr.

g::i:?;ction .000%  -.056 - 125 <115 . 170
ézgg:;igiship .370 .000 .000 244 .016
Child Spacing =.062 =.016 .000 .000 .24k
g‘ﬁ??;’ieﬁf 047 -.211 - 0l .000 .000
Ei'ﬁiiﬁféiiius -132 -289 .08 -.217 .000
ii?iii’gif -127  -.100 .216 0552 ~.240

Note. n = 140.

4 above diagonal residuals for the model postulated by Miller.

The implied correlations were calculated according to Equation
12. The correlation matrix with the implied correlations represents
the estimate of the theoretical correlation matrix under the assump-
tions of the model represented by Equations 14.

From the test statistic for this model given in Figure 9 and from
the residuals given in Table 2, it can be seen that this model pos-
tulated by Miller (1976) has only a weak correspondence with the
data. To obtain new hypotheses about the variable relationships, we
applied the model search procedure—described in detail in the next
section—and obtained the modified model illustrated in Figure 10.
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6 A 2 !
Length of _530 _ Number of =212 _ Amount of 370 _ Marital
marriage children companionship satisfaction

/0\32 /25
041

Family social Child
status spacing
5 3

Decomposabte model 12/234/345/456
LR-%%2=30.17 (df=7, p< .001)

Figure 9.
Path diagram of Miller's theoretical model of variables antecedent to marital satisfaction.

6 4 2 1
Length of _552_ Number of Amount of _370_ Marital
marriage children companionship satisfaction

N

Family social Child .
status spacing

Decomposable model  12/25/346/56
LR -X%=14.204 (df =9, p=1153)

Figure 10.
Modified model of variables antecedent to marital satisfaction.

The models represented in Figures 9 and 10 are clearly different.
The most obvious difference lies in the absence of any direct rela-
tionship between the variables Number of Children, Child-spacing,
and Marital Satisfaction in the new model. Furthermore, two new
direct relations were lacking in the former model: relations between
Duration of Marriage and Child-spacing, and between Socio-economic
Status and Amount of Companionship. Common to both models is a
direct dependence of Marital Satisfaction on the Amount of Compan-
ionship. The influence of the socio-economic status on the latter was
already recognized by Miller (1976):
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By analyzing these data more carefully and looking at the average compan-
ionship scores for five categories of family social status, it appeared that this
relationship was strongest in the lower categories of social class. That is, those
who were in the lowest category of family social status reported extremely low
companionship scores relative to those in the upper four categories. This is
understandable because some financial resources would be necessary to partici-
pate in several of the companionate activities referred to in the items. (p. 654)

A different explanation of the discrepancies between Miller’s
hypothesis and the modified model may be that satisfaction or dis-
satisfaction are representing only one possible way of responding to
the challenges within the family. Orden and Bradburn (1968) ‘and
Hodapp and Weyer (1980) have pointed out that responses such as
tensions, strain, and emotional disturbances may also be means of
marital adjustment, independent from any satisfaction/dissatisfaction
dimension. In agreement with other authors, Miller mentioned role
strain as a possible source of conflict. Often these tensions may be
caused by children, as the spouses have to fill their new roles as par-
ents. According to Hodapp and Weyer (1980), a significant rela-
tionship has been found to exist between the number of children and
the subjective pressure experienced by housewives, although not be-
tween the number of children and dissatisfaction.

Model Search

Description of the Procedure

The systematic search for partial zero-correlations or zero-
concentrations aims at the simplification of an interdependence struc-
ture. The so-called “Simon-Blalock approach” (Blalock, 1964; Simon,
1952) was an earlier attempt in this direction. This technique, howev-
er, is characterized by two basic difficulties. First, there is the prob-
lem of selecting appropriate models from the large number of all
possible models (see, for example, Blalock, 1962, who described a
variety of possible causal models for four variables). Second, there is
the problem of evaluating an overall model with the aid of test statis-
tics. The two problems can be solved if a model search procedure
based on the theory of covariance selection is applied.

A search procedure among decomposable models can be charac-
terized in the following way (Wermuth, 1976b, 1980): The starting
point is a situation where no zero-concentrations are required; this is
followed by a step-wise examination of the variable pairs to deter-
mine how many and which variable pairs can be considered to have a
zero-concentration. In the first step, that variable pair is selected for
which the assumption of a zero-concentration is most consistent with

OCTOBER, 1983 381



Volker Hodapp and Nanny Wermuth

the data. This is done by calculating the likelihood ratio test statistic
for every variable pair under the hypothesis of a zero-concentration
and by selecting the variable pair with the smallest statistic. In a
second step, a second variable pair is selected whose statistic has the
smallest value for the additional zero-concentration. If P represents
the estimated correlation matrix with one additional zero-
concentration in selection step n+1, compared with the correlation
matrix P, in selection step n, then Equation 15 below yields the
likelihood-ratio test statistic of an additional zero-concentration,
which is approximately chi-square distributed with one degree of
freedom:

[15]  LR-x® = nln (|Py|/|Py]).

Again, only for decomposable models, can the statistic in Equation 15
be calculated directly from determinants of parts of the observed cor-
relation matrix without explicitly determining the estimates P; and
P, first. When the test statistics of successive selection steps are
summed, one obtains the test statistic in Equation 13 for the good-
ness-of-fit of the decomposable model (with P,) to the original matrix
R without zero-concentrations. For a decision about whether a given
model is suitable, one should take into account both the test statistics
of the selection step (Equation 15) and the test statistic in Equation
13 for the overall model. Neither should correspond to a small fractile
value p of the appropriate chi-square distribution. The p-value stands
for the probability of obtaining the observed or an even larger chi-
square value if the model assumptions are correct.

In order to use an objective criterion, we speak of a well-fitting
model as long as none of the p-values for the test statistics in Equa-
tions 13 and 15 falls below .05. Clearly, this criterion is a very crude
one, but it at least excludes all poorly-fitting models from the list of
plausible models for the interdependence structure. In particular. the
use of p values introduces a dependency on sample size.

An Example from Experimental Psychology

Zeiner and Schell (1971) reported the results of a conditioning
experiment in which discrimination performance was investigated as
a function of the orienting reaction (OR):

Sokolov (1960, 1963) holds that OR’s elicitated by innocuous stimuli, either pro-
duce or are correlated with the individual’s heightened sensitivity to environ-

mental stimulation which in turn leads to increased information intake and the
facilitation of learning. On the other hand, the defensive reflex elicitated by
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intense or noxious stimuli attenuates these effects. Sokolov’s theory predicts that
Ss [Subjects] giving large responses to an innocuous stimulus should condition
better than Ss giving small responses to an innocuous stimulus. Whether or not
similar predictions can be made for groups differing on defensive reflex (DR)
magnitude to a noxious stimulus is unclear . ... It was the purpose of the pres-
ent experiment to determine the relationship between individual differences in
response magnitude to both innocuous and noxious stimuli and first and second
interval SRR [skin resistance response] magnitudes in discrimination condition-
ing. (pp. 613-614)

The experimental setup of Zeiner and Schells (1971) study fol-
lowed the pattern of classical conditioning and consisted of repeated,
combined presentation of light stimuli (CS) of different colors and
electrical shocks (UCS). In each instance, only light stimuli of one
specified color were reinforced by a shock 5 sec. later. From the mean
difference of the skin resistance responses to the reinforced and non-
reinforced light stimuli, two measures of discrimination learning
were derived. The measures related to the 5-sec. interval after the

light stimuli were called first interval response discrimination

(FDIS), whereas the measures taken 6 to 10 sec. after the light stimu-
li were called second interval response discrimination (SDIS). In addi-
tion to these two measures of discrimination performance, Zeiner and
Schell defined two simple response measures which comprised noth-
ing but the strongest skin resistance responses to the light stimuli
within the first (1 - 5 sec.) and second (6 - 10 sec.) interval. These
responses were called first interval responses (FIR) and second inter-
val responses (SIR). Furthermore, the main skin resistance responses
to the noxious and innocuous stimulus before the conditioning proce-
dure were recorded; these responses were called orienting reactions,
UCS-OR? and CS-OR.

2The term “defensive reflex” would be more appropriate, but we follow the variable
notation of Zeiner and Schell.
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Table 3

Correlation Matrix for the Variables of the Conditioning
Experiment of Zeiner and Schell (1971)

SDIS FDIS SIR FIR CS-OR UCS-OR

1 SDIS 1.00

2 FDIS .72%% 1,00

3 SIR .32% A5%% 1,00

4 FIR . 30% LS4 60%% 1,00

5 CS=~OR .19 gEe 3w .71%% 1,00

6 UCS-OR .25 .29% .09 C31% .26 1.00

The correlations between the orienting reactions and the four re-
sponse measures are shown in Table 3 (see Zeiner & Schell, 1971). In
this example, there is a clear distinction between independent (exoge-
nous) and dependent (endogenous) variables, as the authors used the
orienting reaction to the noxious and innocuous stimulus as the inde-
pendent variable in this experimental setup. As to the structure of
the relationships between the response measures, Zeiner and Schell
pointed out that all four response measures show significant intercor-
relations. For this reason, it is not possible to give a definitive inter-
pretation of the relationships between the response measures and the
independent variables. As appropriate conceptions are missing about
the relationships between these measures, it seems appropriate to
apply the model search procedure, with the orienting reactions as ex-
ogenous variables.
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Table 4

Results of Model Search Procedure for the Data of Zeiner and Schell (1971)

1=Number Set IA of Variable Model Test Statistic B Test Statistic B
Sf Condi- Pairs with Zero- Notation with 1 df with 1 df
tionally Concentrations for One Addi~ for the Total
Independ~ tional Concen- Model
ent Vari- tration
ables
1 (2.6) 12345/13456 .15292 69576 15292 .6958
2 (2.6) (2,3) 1245/13456 .66090 Jhi6ay .81383 L6657
10 (2,6) (2,3) (2.5) (1.5) 2/24/34%/45/56 1.66086 L19749 10,9478 .3616
(3.5) (3,6) (1,6) (1,3)
(1,4) (4,6)
1 (2,6) (2,3) (2,5) (3,5) 12/34/45/56 16. 54783 .00005  27.49561 L0039

(3.5) (3.6) (1,6) (1.,3)
(1,4) (h,6) (2,4)

1 {(2.6) {2,3) (2,5) (1,5) 1/2/73/%/56 35.07079 00000 117,654y - 0000
(3,5) (3,6) (1,6) (1,3)
(9 (5,6) (2.09) (3,%)
("a9) (1,2)

The results of the model search procedure are presentéd in Table
4. There exists a computer program which calculates the information
set out in this table (Wermuth, Wehner, & Génner, 1976). For every
selection step, certain characteristics of each decomposable model are
given: the set I* of restrictions on variable pairs with zero-
concentrations and the model notation as a shorthand characteristic
of the variable groups {N,} with variables belonging together. Addi-
tionally, the statistic is shown for an additional zero-concentration as
well as for the respective overall model. We chose model 12/24/34/45/
56, because the model of the next step would lead to a weak corres-
pondence with the data, not only for the single relationships [variable
pair (2,4), p = .00005] but also for the overall model (model 12/34/45/
56, p = .0039).

6 3
UCS-0R SIR
[. /
PR
/ \
T~ 1

5
(S-0R FDIS SOIs

Decomposable model 12/24/34/45/56
LR -X2=10.95 (df= 10, p=3616)

Figure 11.
Decomposable model for the data of Zeiner and Schell (1971).
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This decomposable model is presented in Figure 11. The model
shows a very simple variable structure, as in each case only two vari-
ables are directly connected with each other. In particular, the dis-
crimination performance is determined only by the orienting reaction
to the innocuous light stimulus, where the first interval response rep-
resents the crucial intermediating variable. Also, no direct rela-
tionship between orienting reaction and the second interval measures
can be shown.

Although the decomposable model permits no statements about
directed relationships at this point, the interpretation of this inter-
dependence structure as a dependence structure is highly suggestive
in view of the experimental setup. When the discrimination perform-
ance (Z,,Z,) is taken as dependent on the direct response to the light
stimuli (Z4,Z,) and the orienting reaction (Z5,Z;), and the second in-
terval measures are taken as dependent on the first interval mea-
sures, then the decomposable model may be transformed into the fol-
lowing recursive equation system:

SDIS: Zy = €12 +0+0+0+0+ U,
[16] FDIS: Zy = 0 + agyZs +0 + 0 + U,
SIR: 23 = 0134Z4 +0+ 0+ U3
FIR Z4 = (14525 + 0 + U4

The coefficients of this equation system can be read directly from
the correlation matrix because the regression equations can be traced
back to the most simple case where only one variable is used as inde-
pendent variable. Figure 12 shows the path diagram with the likeli-
hood ratio test statistic for the overall model (cf. Equation 3).

6 3
UCS-OR SIR
0
L /
FIR
5 2 72 1
(S-OR FDIS SoIS
LR-X?=10.95 (df = 10, p=.3616)
Figure 12.

Path model for the variables of the conditioning experiment according to Zeiner and Schell
(1971).
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The correlation matrix is estimated by using Equation 12. The
implied correlations for this example are:
Pas = Gu5 Pse = rastses P3s = G3aPas = I'aalas, Pas =
Gaafae = raa(rasrse), ete.

The path model confirms the Zeiner and Schell (1971) hypothesis
that persons who show stronger orienting reactions to innocuous
stimuli demonstrate better discrimination performance in the
conditioning experiment. From the responses to a noxious stimulus,
no predictions about discrimination performance can be made. As a
direct determinant of first interval discrimination (FDIS), the
response to the innocuous stimulus during the conditioning
procedure—the first interval response—could be identified. The first
interval response in turn depends on the orienting reaction before the
conditioning procedure, the CS-OR. Sokolov (1963) and Maltzman
(1967) supported these results, theorizing that the orienting reaction
is a valid index of attention, and that differences in the intensity of
attention are responsible for differences in discrimination learning
between individuals.

Discussion-

As examples from different areas of psychological research have
shown, decomposable models are well-suited to order multivariate
relationships and to obtain a unified overview of complex variable
relationships. They represent structures for systems of observable
variables which are relatively easy to interpret and which can be
tested as to their goodness of fit. For normally distributed variables,
models of interdependencies as well as dependencies are based on
measures of linear associations, as for example, correlations or
regression coefficients. This means that such a model should only be
interpreted if there are no non-homogeneous subgroups or nonlinear
relationships. Given these restrictions, decomposable models can help
the researcher to pinpoint direct. interdependencies between variables
and to identify interrelationships that exist only indirectly via the
covariation with other variables.

Presently, probably the best known models of dependencies are
linear structural equation models. One of the most serious problems
encountered in the application of linear structural equation models is
that the investigator may not be sure if the model chosen is
identified. If the models are restricted to only observable variables,
we get the linear structural equations, of which decomposable models
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are a subclass. In this case, necessary and sufficient conditions for
parameter identification are known.

For LISREL models, in general, no sufficient conditions, and no
necessary and sufficient conditions are known for parameter
identification. Instead, the program checks only a necessary condition
and continues to compute estimates if this condition is satisfied. As a
result, there are situations (all those in which the necessary condition
is satisfied although the parameters are in fact unidentified) in which
estimators are computed though “it does not make sense to talk about
an estimator” (Joreskog & Sérbom, 1978, p. 10). We regard this as a
serious problem indeed. Researchers using LISREL cannot be certain
that it makes sense to interpret the resulting computations.

Decomposable models have important properties which they do
not share with other dependence structures. The most important of
these, stated in technical terms, is the following: covariance matrices
of subgroups of variables form the set of minimal sufficient statistics
for the parameters of the joint model for all variables. The practical
implications of this can be viewed as a generalization of the notion of
a spurious correlation to variable sets. The models offer a true
reduction of dimensionality. It is necessary only to know the
associations of subgroups of variables to be able to reproduce
associations of all variables. Put somewhat differently, a well-fitting
decomposable model provides the justification to classify an
association as less important because it can be closely reproduced
from knowing only the association in the set of sufficient statistics.
What we have here is Sir Ronald Fisher’s important notion of
sufficient statistics as it applies to covariance matrices.

The second important property of decomposable models is that
such models have interpretations in terms of dependence structures
(directed graphs), as well as in terms of interdependence structures
(undirected graphs), and that we can read off from the graphs
interpretation of these structures in terms of independencies.

Decomposable models can be used in confirmatory as well as
exploratory types of analyses. Although testing of a priori hypotheses
is generally preferred, a model search among decomposable models
can be a valuable tool for gaining a better understanding of the data
if,

a. the researcher’s knowledge about the interrelations is too weak
to formulate hypotheses,

b. an hypothesized dependence structure is not supported by the
data, or

c. the intention is to find a condensed description of the data.
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In all these instances, the results of the model search permit the
formulation of hypotheses on dependence structures. These should be
judged in terms of subject-matter considerations and can be tested as
hypotheses on a new set of data.

Ordering of decomposable variable structures according to their
independence restrictions illuminates the implications of adding or
deleting certain connecting lines in the graphs of models. This is an
advantage of decomposable models, since for more complex models,
like simultaneous equation models or latent variable models, the im-
plications of adding or deleting connecting lines are not well under-
stood. Within the class of decomposable models, each model has well-
defined ‘interpretations. Each model represents a proposal for data
reduction, and there is hierarchical ordering of the models: the sim-
plest model states the complete independence of all variables; the
most complex model states that all variables are interrelated so that
no reduction in dimensionality is possible (except possibly in terms of
an underlying unobservable factor).

In summary, application of decomposable models is an attempt to
get away from overly complex models and to use—whenever this is
possible and feasible—simple descriptions of the data.
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