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Decomposable Models: A New Look at Interdependence
and Dependence Structures in Psychological Research

Volker Hodapp and Nanny Wermuth
Johannes Gutenberg-Universitiit Mainz

Decomposabie models represent interdependence structures for observable vari-
ables. Each model is fully characterized by a set of conditional independence
restrictions, and can be visualized with an undirected as well as a special type of
a directed graph. As a consequence each decomposable model can be interpreted
either in terms of interdependencies only or as a particular kind of dependence
structure, as a recursive system or path analysis model. Under the assumption of
normally distributed variables, decomposable models determine the structure of
correlation matrices, and maximum-likelihood estimates of these can be calcu-
lated with the help of ordinary least squares estimation. Using several examples
from psychological research, we discuss the interpretation'of decomposable mod-
els. Furthermore, it is demonstrated how recursive dependence structures can be
specified with the help of decomposable models in a hypothesis generating (ex-
ploratory) as well as in a hypothesis testing (confirmatory) manner.

Since correlations were first calculated, there have been attempts
to integrate single relationships into structures or overall models
based on theoretical considerations. It is appropriate to speak of in-
terdependence structures i f  bhanges in one variable can lead to
changes in a whole set of relationships, and of dependence structures
if some of the investigated variables are thought of as being depen-
dent or response variables. The problem of defining adequate struc-
tures for a set of variables has remained important until today and a
great many approaches exist.

It is our aim to describe, for applications in psychological re-
search, one particular class of models for normally distributed vari-
ables, the members of which have been called decomposable or multi-
plicative models (Wermuth, 1980). This class can be regarded as the
intersecting class of models for interdependence structures named
covariance selection by Dempster (I972), and of models for dependen-
cy structures introduced as l inear recursive equations by Wold
(1954) .

The first author is now affiliated with the University of Giessen. Requests for
reprints should be sent to Volker Hodapp, FB 06 Psychologie der Justus-Liebig-
Universitzit, Otto-Behaghel-Str. 10, D-6300 Giessen, Fed. Rep. Ger.
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One essential feature of decomposable models is that they may be

used in confirmatory and in exploratory types of analyses. A particu-

lar model can be regarded as a hypothesis on a structure of rela-

tionships so that this hypothesis can be submitted to a statistical
test, or a search procedure (Wermuth, 1976b, 1980) can be used to
find a well-fitting decomposable model for a given set of data. In both

cases a l ikelihood ratio test statistic can be employed as criterion to
judge the assertion that a hypothesized model is supported by the
observations.

Other aspects of decomposable models that make them attractive
for applications are the following: (1) each model can be represented
by a particular kind of an undirected as well as a directed graph, and
it is interpretable in terms of (conditional) independence statements;
(2) each model leads to a condensed description of the interdepend-
ence structure in the sense that the whole covariance (or correlation)
matrix is estimated by using only parts of the observed matrix; (3) for
each model the maximum likelihood estimate of the covariance ma-
trix is expressible in closed-form with the help of ordinary least
squares estimates.

D e c o m p o s a b l e  m o d e l s  a r e  d i s t i n c t  f r o m  f a c t o r - a n a l y t i c
approaches (Joreskog, 1970; Lawley, 1940; Spearman, 1904), because
they represent structures only for observable variables. Since decom-
posable models form a subclass of l inear recursive equations, they
represent a subclass of the models for l inear structural relationships.
Decomposable models, though, provide new possibil i t ies for inter-
pretation and data reduction. The actual analysis of any given decom-
posab le  mode l  in  te rms o f  comput ing  the  max imum l i ke l ihood
estimates and a test statistic for its goodness-of-fit could be done with
the help of a computer program such as LISRtrL (Joreskog & Scirbom,
1978), but because of certain properties of decomposable models, this
is not necessary. In fact, it has been shown (Wermuth, 1980) that the
paper-and-pencil methods described by Wright (1923, 1934) for path

analysis do not only lead to the maximum likelihood estimates for
equation parameters but also to the maximum likelihood estimate for
the correlation matrix - if the investigated structure is a decompos-
able model.

Before we present an overview on theory relating to covariance
selection, l inear recursive equations, and decomposable models, we
first identify the modeis with the help of their graphical representa-
tions.

Graphical R epresentations of Special I nterdependen,ce
and D epenclence S tructure s

Description of Graphs for Unrestricted Models
In the follorving, we consider graphs with p points and, at most,

one connecting l ine for each pair of points. Each point represents a
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vat' iatrle, and a connecting l ine an interdependence or a dependence
relationship. The p variables are assumed to follow a joint normAl
distribution so that interdependencies as well as dependencies can be
expressed with the heip of correlation coefficients.

A graph with p points is calied comltlete if i t has exactly ( '; )
connect ing l ines,  and incornplete i f  not .  I t  is  an tmdirected graph, i f
all connecting l ines have no arrow, or equivalently all are two-headed
irrrows. It is a clirected, graph if at least one connecting l ine is a one-
headed arrow.

Given these definit ions, we can say that a t:ontplete unclirected
graph corresponds to an unrestricted interdependence structure ofthe
p var iables wi th a connect ing l ine between points I  and. i  represent ing
the part ia l  correiat ion of  var iables r  and.7 given al l  the remaining

1 t  - 2  v a r i a b l e s :  p r l . 1 1 . . . . , 7 , i  \  l i l . I t  r e p r e s e n t s  a n  u n r e s t r i c t e d  c o v a r -
iance selection model (Dempster, I972).

A subgraph of s < p points is obtained by deleting all p - s points
as well as all connecting l ines to these points. Thus, a subgraph of s
points can have at  most t : ,  )  connect ing l ines,  in which case i t  is  a
complete graph.

Of the possible directed graphs, we consider only particular kinds
of contplete directed graphs which satisfy the following trvo condi-
tions:

(1 )  there  are  k  <  p  po in ts  a t  wh ich  one-headed ar ro rvs  a re
directed and these points can be numbered such that exactly
p -  i  arrows beginning at  points I  + 1top point  at  each I  e

.  { 1 , . . . , 1 r } ;
(2) the subgraph of the p - k remaining points is undirected.
Such a graph corresponds to an unrestricted recursive depen-

dence structure rn lz response variables, where each response I de-
pends on all of the variables i + 1 to p but on none of the variables 1
to i - 1, and it represents uniquely what is known in econometrics
tGoldberger, 1964) as a complete system of ft l inear recursive equa-
tions rvith uncorrelated errors. A one-headed arrow pointing from.7 to
r denotes the partial dependence of variable I on .7 given all other
variables that influence response L This dependence may be mea-
sured by  the  par t ia l  cor re la t ion  coef f i c ien t :  p i i  .  { ;+1 ,  . . . ,p }  \  { i i  .  A
two-headed arrow between any two points s and / from the last p * h
points represents the partial correlation of variables s and /, given all
o f  t h e  r e m a i n i n g p  -  f r  v a r i a b l e s :  p r 1 . { f t . r  1 .  . . . , t ) t \  i s . r } .

I t  is  l<nown (e.g. ,  Wermuth,  1980) that  an unrestr icted inter-
dependence structure is equivalent to severai of complete recursive
systems that differ only in the number of the response variables. For
four variables, Figure 1 shows all possible equivalent complete recrlr-
sive systems that can be defined for a fixed ordering of the variables.
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Figure 1 .
Graphs of equivalent complete recursive systems.

Graphs for Couariance Selection Models

Members of the class of covariance selection models (Dempster,
1972) can be thought of as fully characterized by a complete un-
directed graph for normally distributed variables together with a set
of restr ict ions on variable pairs: "IAc {( i , i l  |  1<l<l<p} such that
pi j . \ t , . . . ,p) \  { i , j l  :0 for each ft , j )  e/4. The graph of a restr icted model
differs from he complete graph by missing connecting lines for all
pairs (i,j) e IA.

The set IA of restricted variable pairs in a covariance selection
model is equivalent to a set of unrestricted subsets of variables, {/v'',}
: {ly'r, . . . , Nr}, that has been called the generating class of the mod-
el. The elements of {N,} separated by dashes have been used as (short-

cut) notation for the model (Wermuth, 1980). It has beeh noted b1'
Darroch, Lauritzen, and Speed (1980), in the context of equivalent
models for qualitative variables,'that the generating class can be
read from the graph as the set of maximal complete subsets. A subset
of points in an undirected graph is called maximul contplete if the
subgraph of these points is complete, and, if by including one more
point, an incomplete subgraph results. The equivalence to 1A is then
defined by (r,s) d 14 f-) there exists a l/i € tl/,) such that {r,s} e l/,.
To give n example we use the graph of Figure 2.
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Figure 2.
Graph for a special covariance selection model.

Tlris graph represents a covariance selection rnodel rvith IA : [ (1,5),
( 1 , 6 ) ,  ( L , 7 ) ,  ( 1 , 8 ) ,  ( 2 , 4 ) ,  ( 2 , 5 ) ,  ( 2 , 6 ) ,  1 2 , 7 ) .  ( 2 , 8 ) ,  ( 3 . 4 ) ,  ( 3 , 5 ) ,  ( 3 , 6 ) ,  ( 3 , 7 ) ,
(3 ,8 ) ,  (5 ,7 ) ,  (5 ,8 )  ) ,  w i th  { l / , , }  :  t  {1 '4 } ,  t \ I ,2 ,31 ,  {4 ,5 ,6 } ,  {4 ,6 .7 ,81} ,  and
nrodel notation 141 l23l 4561 467 8.

The interpretation of a covariance selection modei is facil i tated
rvith the following result by Darroch, Lauritzen, and Speed (1980):

If in the undirected graph for p variables two dis.joint subsets of points A and
B are separated by a subset D in the sense that all paths from A to B go
through D, then the variables in A are conditionally independent from those
in B given the variables in D.

For the model I41I23145614678 one obtains,  for  instance, that
var iables 2,3 are condi t ional ly independent of  var iables 5,6,7,8 given
rrar iables 1 and 4;  that  var iable 2 is condi t ional ly independent of
var iable 4 given var iable 1;  that  var iable 5 is condi t ional ly indepen-
dent of  7,8 given var iables 4 and 6,  and so on.

Graph.s for Incontplete Lirteor Recursit 'e Equatiort.s

Systems of  f t  incomplete l inear recursive equat ions wi th un-
cor re la ted  er ro rs  (Go ldberger ,  1964)  can be  thought  o f  as  fu l l y
characterized by a complete recursive system in h < p respollse vari-
ables (which gives an ordering of the responses such that variables
l<f t  may depend only on var iables 7 € { i  + 1,  .  .  .  ,p}  but  not on var i -
a b l e s  h e \  1 , . . . , i - 1 ) )  a n d  a  s e t  o f  r e s t r i c t i o n s  I D  :  {  ( i , . i )  |  1 = i - 7 < p
and l< / r |  such  tha t  p i . i . t t i  1 , . . . .p l  r  j . i i  :  0  fo r  each ( i , j )  e1 ' .  The graph

of an incomplete recursive system results from the graph for a compiete
recursive system by leaving out the one-headed arrows for all pairs (1,7)

E ID.
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The set II) of restricted variable pairs in a reculsive system de-

fines for each response variable I two subsets, A; and B;. of it-< poten-

t ia l  inf luencing var iables { l  + 1,  .  .  .  ,p} .  
' fhe set  A; l is ts the val iable-s

on which response I actually depends: Ai : U l j>i and t. i,. i l  e 11),t '  and

B; l is ts those on which i t  does not c lepend: B; :  l i  l7>i  and t i , j t  eIDl .

Figure 3 gives an example of  a recursive s) 'stenr rv i th respol tses

1 . 2 . 3 . 4 .  a n d  5 .

Figure 3 .
Graph for a special recursive system.

The model represented by Figure 3 has the set of restricted vari-

a b l e  p a i r s  I D  :  {  ( 1 , 5 ) ,  ( 1 , 6 ) ,  ( 1 , 7 ) ,  ( 1 , 8 ) ,  ( 2 , 4 ) ,  ( 2 . i l ,  ( 2 , 6 ) ,  ( 2 . 7 ) ,  ( 2 . 8 ) ,

t3 .4 r .  t3 .5 ) ,  (3 ,6 ) ,  (3 ,7 ) ,  (3 ,8 ) ,  (5 ,7 ) ,  (5 'B)  ) ,  and as  se ts  o f  in f luenc i t rs
y a r i a b l e s , A T :  { 2 , 3 , 4 r \ , A z :  { 3 } , A ,  :  A , A + :  { 5 , 6 , 7 , 8 } ,  a n d  A r , :

16I. Though th set 11) is identical to 1'a of the covariance selection

model: 141123145614678, represented by F'igure 2, these trvo modt' ls

are not equivalent. Such an equivalence can occur, horvevet'. fot' de-

composable or multiplicative models, lvhich ai'e described in the nerl

section.

Recursive systems can be interpreted iu tet'ms of conditiouarl in-

dependencies as follows:

Each response var iable i  is  concl i l ionul ly  inc lependent o1' the val iables in i ] ,
g iven the var iables in A; .

Thus, for the system in Figur'€ 3, variable 2, for- instauce. is con'

di t ionai ly independent of  var iabies 4,5,6,7.8 given val iable 3.

Grophs for Decontposable Moclels

A method for recognizing a decomposable model f i 'om the inconr-

pleter undirected graph is to detect the so-cailed closed loop-* (tr3isirop,

F ienberg ,  &  Ho i land,  1975) :

An undirected graph chalacter izes a c lecomrposable rnodel  i f  and onl f  i f  th is
graph does not ,  cotr ta in a subset  of  r>4 points such thal  the graph of ' lhese points

l - ra- .  exact ly  r  connect ing l ines and e 'ach alb i t rar ' -1 's tar t ing;  point  is  reached rv i th t '

l i n e s .
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With tlr is result the graph of model I41123145614678 in Figure 2 is
recognized as one of a decomposable model, since it does not contain
anv subgraphs l ike those drawn in Figure 4.

..\ r'\ q\
ar b_d {o,i

Figure 4.
Subgraphs that characterize non-decomposable models.

For each decomposable model-and onl-v for these-the variables
can be ordered so that the model can equivalently be formulated as
an incomplete system of recursive equations (Wermuth, 1980).

If, for instance, the variables in Figure 2 (model 741I231456t
4678) are renumbered as for Figure 5, then the generating class be-
comes i i / ,1\  :  {  13,6},  { I ,2,3},  {4, ,6,71, {5,6,7,8} } ,  and the model notat ion
becomes L23136146715678. It is equivalent to the recursive systern in
Figure 6 with response variables r,2,3,4 that have as sets of influenc-
ing var iables A t  :  {2,3},  A2 :  {3} ,  Aa :  {6} ,  and Aa :  {6,7}.

Volker Hodapp and Nanny Wermuttt

Figure 5.
Graph for the covariance selection model in Figure 2 with renumbered variables.

To determine from the graph of a recursive model whether it is
equivalent to a decomposable model, the following result is useful.
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t l ]  Pi j . { r ,  .  .  p}  r  { i , . i }  
:

368

1 sA
Figure 6.
Graph for  the recurs ive system corresponding to the covar iance select ion model  in Figure 5.

An incomplete recurs ive system in k responses is  equivalent  to a decomposable
covar iance select ion model .  i f  and only i f  in  i ts  graph the subglaph of  each set  of
inf luencing var iables,  A; ,  is  complete.

This is just a reformulation of a necessary and sufficient condi-
tion given by Wermuth (1980) in terms of the set of restricted vari-
able pairs.  Another equivalent formulat ion is due to Ki iver i  and
Speed (1982): if the origin points of two one-headed arrows have no

connecting l ine, then there is a restricted set of influencing variables
in the system.

Using these results it is seen that the recursive system in Figure

6 is equivalent to a decomposable model, but the one in Figure 3 is
not. This distinction does not only imply different possible interpreta-

tions of the model, but it also has consequences for test statistics and
maximum likelihood estimates, to be discussed in the next sections.

Oueruiew of the Theory for Decontposable Models

Couariance Selectiort

Covariance selection (Dempster, l97D provides the theory for
obtaining the maximum-likelihood estimate of the covariance matrix
in a multivariate normal distribution, where for each (i,f l  e IA -c

1{ i , i1 l f= i . j=p}  the  concent ra t ion  ur / ,  wh ich  is  the  e lement  in  pos i -

tion (1,7) of the inverse covariance matrix, is restricted to be zero. For
positive definite matrices ), the restriction oii : 0 is equivalent to
the restriction pi.i.1t,. . . ,p] r {,,. i} : 0 (Wermuth, 1976a), since

I I
( f  - '

loiioi.iSLtz

MULTIVARIATE BEHAVIORAL RESEARCH



Volker Hodapp and Nanny Wermuth

and since all diagonal elements (o") of the inverse of a positive defi-
nite matrix are nonzero.

As Dempster has shown, the estimate ! always exists and is
determined uniquely from certain elements s;; of the observed covar-
i a n c e  m a t r i x S  ( w i t h s i i  :  2 t G t i  -  f i )  ( x t i  -  i ) l n ) .

6r.i : s;; for 0,j) e.IA and for i : .i
l r l

t i { / : 0  f o r ( i , . i ) e I A .

This indicates that the submatrices of i having only unrestricted
variable pairs (these are just the variable groups l isted in the gener-

ating ciass 0/,)) match the corresponding submatrices of the observed
covariance matrix. The estimated covariance ir;; of each restricted
variable pair (i,j) e .IA instead, may differ from the observed covar-
iance s;;. Its value is implied by the particular pattern of restrictions
and by the observed covariances of all unrestqicted pairs.

Since only parts of the observed covariance matrix are needed to
compute i, each covariance selection model can be said to give, with

!, u .o.rdensed description of the interdependence structure. It wil l

differ little in positions (i,J) e .IA from the uncondensed description,
the observed covariance matrix S, if the model assumptions are cor-
rect. Thus, each well-f itt ing covariance selection model provides the
researcher with a good data reduction in the sense that the observed

covar iances of  a l l  restr icted var iable pairs are c losely reproduced
from only knowing the covariance matrices of the unrestricted sub-
groups of variables.

The likelihood ratio test statistic, LR-X', represents a measure of

the deviation betwe".r i and S. It can also be shown to measure the

deviation between P, the maximum-iikelihood estimate of the cor-

relation structure of a given covariance selection model, and F, the
observed correlation matrix. The determinants of S and ,R relate as

I  S |  :  ln |  $ry:1s; ; ) ,  and those of  i  and P simi lar ly,  s ince from

Equation 2,6ii : si i for all l . The statistic is defined as

LR-x ' -n ln ( l ls l )i t r

t3l
: ntn (l P | / lR | ).

l 'or iarge numbers of observations, rz, this statistic follows a chi-
square distribution with degrees of freedom equal to the number of
restricted variable pairs for I, the number of pairs listed in /A.
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The actual computation of i or P ha. to be done by iterative

algorithms like those described by Dempster (1972) or by Wermuth

and Scheidt  (1977)-unless the model is a decomposable one. In the

iatter case the equivalence to a recursive system leads to the simple

closed form estimate in Equation 12 below.

SJ,s/erns of Linear Recursiue Equ,ations

Linear recursive equat ions represent a subciass of  the l inear

structural equation modeis studied by econometricians (e.g., Goidber-

ger,  1964).  Some of thep var iables,  X1, .  .  .  ,Xt ,  ( .k ' -  p) ,  are considered

to be response (or endogeneous) variables. In recursive systems these

can be ordered such that each response X; ma5l depend on variables

X; with j e {i* 1, . . . ,p} but not on any one of the variables X1 with

/ r  e  {1  ,  , i  -1 } .  The remain ing  var iab les ,  X7, :  r , .  .  .  ,X ,  tha t  a re  no t

thought of as responses are called exogeneous.

The dependence relationships in an unrestricted or complete re-

cursive system take on the following triangular form:

X L = ( t L , - / ,  - , X ^ '  I  + .  .  .  * 0 1 . 1 ,  X , , -  ( - i 1 ,

In systems with uncot'related errors the residual U; is not only re-

garded as independent from the influencing variables or regressors

X,* r , . . . ,Xo ,  bu t  a lso  f rom res idua ls  in  o ther  equat ions ,  tha t  i s ,  f rom

U; with 7 + l. Recursive models (that have also been called incom-

plete systems) result from a complete system by requiring the regres-

sion coeff ic ients a; ;  to be zero for  each ( i , . i )  eI"  e{U, i l11<i<7<p and

t<f t ) .
For positive definite covariance matrices the zero restriction on a

regression coeff ic ient  a;7 is equivalent to a zero restr ict ion on a

correlation coeffi cient, since.

t4l

LbJ

Xr  :  ar :Xz *  c r13X3 *

XZ: (x2'3)('l +

Pr . i .  { i  +  1 , .p) riil : a.i.i

*  ct17rX7. -F 01. / ,  ,  tXtr*  r  *  .

* ct27,X7, * oz.l, . 1X h,- r * .

* at tXr,*  (J t
* ct,r,X,, - U.,

and, since in positive
varianceS oi; nonzero,

370

definite covariance matrices, not only are all

but also are the residual variances nonzel'o,
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(rri ,,fr; : (ri,: - i l  e K, cri l u11, \YhiCh result from regressing variable i

or urr arbitrary set of influencing variables K; q {1, . . . ,pl \ {t}.
In complete and incomplete recursive systems with normally dis-

tributed and uncorrelated errors, the maximum likelihood estimates

of all regression coefficients in the system can be obtained by least

squares estimation applied to the equations separately. This follows

from a result by Wold (1954) or from the factorisation property of

recursive systems. LetXa with Ar:  { i l i> l  and G, i )  e1D} denote the

influencing variables for each response l, then the joint distribution

factorises as

r ^ - l

L b J f tX , , .  .  . ,X , , )  :  ( f l j i : ,  l - \X , l  X .o  t  )  f - tX1 . ,  1 , , X 1 ) ,

and the maximization of the l ikelihood fur-rctiou can be

/r + 1 independent maximizations.
For each f ixed I  one can obtain the (negat ive values

solut ion of  the fami l iar  normal equat ions:

-spl i t  up into

of) ctiL as the

rvhere s; ;  8r€ observed covar iances again.

Equat ion  7  shows tha t  incon- rp le te  recurs ive  sys tems do t ro t

necessarily lead to data reductions. If for instance, the first variable

is  unres t r i c ted ,  so  tha t  .41  :  {2 , . . . .p } ,  then a l l  observa t io t rs  a t 'e

needed to compute the est imateS c\r / , ,  no matter hou'many othet ' res-

trictions there are in the systern.

The maximum likelihood estimate of the covariance matrix can

be der ived as shown in an example by Wermuth (1980).  Equat ion 6

slrows that d7, : s1r for all l , > h and / > /e. The remaining palts of !

c a n  b e  c o m p u t e d  i n  t h e  o r d e r  i : k , h - I ) . . . , 1 ,  a s

{ r i i .  :  S i i  *  I i u - ^ { ,  ) l e r t ,  dU ,J r i ,  (& t t  -  S l ; ) ,

,i i.i : Il',- r . 1 d.i1. ri 7.1,

l / l

i-8]

rvith drr : 0 for jdAt. The first l ine of Equation 8 indicates that 6ii :

s;; if the estimated covariances and variances Crlr of the influencing

var iables Ai  match the corresponding observed covar iances and

varianceS s/r. This is the case for those recursive models rvhich are

clecomposable models.
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In any case, though, the likelihood rutio test statistic filr itrcotrt-
plete recursive systems takes on a simpie fbrm that can be det'ir"t'ri
from the triangular decompositions of I and S:

LR-x t : n l n ( l : l / lS l )
l -9]  

:  n ln ( l r i j -  r  s i i  . .q,  /s i i  .  a uni) ,

where sii..A; is the estimated residual variance (si; - I l .a, ci.;7s7,) frortr

regressing variable i on all influencing variables A; in the incomplete

system and s1; . A,uB; is the corresponding residual variance in the

compiete system (with B; :  {"r  l " r>i  and ( i , j )  e 1D} and AiUBi :

{ i+1 , . . . ,p }  ) .  Whenever  an  equat ion  is  unres t r i c ted ,  i t  does  no t  con-

tribute to the test statistic, since then A; : AiUBi. The degrees of

freedom are again equal to the number of restricted variable pairs, to

the number of elements in ID. Since ir;; need not coincide with s;;, this

test statistic may not, in general, be computed from knowing only the

correlat ion matr ices P and P.

As has been noted by Tukey (1954) the (negative values) of &;7

may alternatively be computed as

[10 ]  d i r  :  c l  J i

where & ;l are obtained as the solutions of the normal equations for

standardized var iables,  Zi  :  (Xi  -  Xr l r ' " ,  :

[11] ri j  : Iz ,1 ;i r7;, with jeA, and /eA;,

and r;;, the observed correlation coefficient for variables X; and X,
Equation 11 is also known as Wright's (1923, 1934) rule for cal-

culating path coefficients (dji) for a system of causal relations that is
represented by a path diagram. In the case of a recursive model with
independent errors, this rule yields maximum likelihood estimates of
the equation parameters, and a path diagram is equivalent to oul
graphical representation of the model. For recursive systems with
correiated errors, however, or for non-recursive systems, Equation 11
does not, in general, lead to consistent estimates of the equation para-
meters.

Wright's second rule, the one for computing implied correlations,
is restated in our terminology in Equation 12 below. It has been
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shorvn (Wermuth, 1980) that-even for incomplete recursive sy s-
tems-this rule does not yield the maximum likelihood estimate of
the correlation matrix, but that it always defines the maximum
likelihood estimate, if the recursive model is a decomposable model,
t oo .

Decornposoble or Multiplicatiue Models

Decomposable models form a subclass of covariance selection as

well as of recursive models. Members of this subclass possess advan-

tages of both approaches, but avoid disadvantages. Unlike covariatrce

selection models in general, the maximum likelihood estimate of a

decomposable covariance matrix can be expressed in closed-fol 'm: Iro

iterative algorithms are needed for the computations. And unlike

general recursive models, a weli-f itt ing decomposable recursit 'e mod-

el provides the researcher with a good data reduction: only parts of

the observations are needed to compute the maximum likelihood esti-

nrates of all equation parameters and of the covariance or correlation

matr ix of  a l l  f  var iables.
A decomposable model may be characterized not only by its pr€-,

viously discussed graphic representation but also by u property of its

set of restrictions. A set of restricted variable pairs has been ealled
"reducible" by Wermuth (1980) i f  one can reduce the dimensions of 'a

p-d imens iona l  normal  d is t r ibu t ion  over  var iab les  1 , . . . ,1 -1 ,  and fb r

var iables i ,  .  .  . ,  p,  the set  of  restr ict ions in the marginal  d istr ibut ion

remains the same as in the joint distribution of all p variables. For-

rrrallv we rvrite:

Definition

A setl  e {(t , j )  |  1<i<.r<p} is reducible i f ,  for each pair ( i , . i ,  .o, 'r-
tained in "I, and for all h : I, . . . , i-1, the pairs (h,i) or (h,j), or both,
are also contained in /. Two results from Wermuth (1980) are then
useful:

A covar iance select ion model  is  a decomposable model  i f  and onlv i f ' the var i r i l - r les
may be ordered (renumbered) such that IA becomes reducible;

and

A recur-s ive model  is  equivalent  to a decomposable model  i f  and onl f  i f ' the sut  l l
i s  reduc ib le .

Each model rvith a reducible set of restrictions can therefore be inter-

preted as a recursive system and the maximum likelihood estimate of

the decomposable correlation matrir P .u.r be computed (Wermuth,
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1980)  in  the  sequence i :p -1 ,  .  .

P i . i  :  t ' i i

:  I l c r , l  P t i

for l>lr (tu'o-headed arrows),
and7eA; (existing one-headed arron's)

for  . IeB; and 1€Ai (missing one-headed

arrows,.

1  ^ -
t  a ts

[ 121

[13]

This is just Wright's rule for computing implied correlations. The
maximum likelihood estimates of the equation parameters are given
by Equations 7 or 10 and 11, and the test statistic can be computed
from the covariance or correlation matrix as

LR-x' lsl ),
r  (1  -  f t i . . t , )  |  ( 1 -R?  .o ,uu ) f ,

r t i t  I
\ l & l  ,

tilf:
: l L

- n
In
ln

with Ri  A,  :  \ 'T -r , ,  ,  fu being the mult ip le correlat ion coeff i -
c ient .  Al l  these are,  in pr inciple,  paper-and-penci l  methods which ar.e,
of course, facil i tated by computer programs for' least squal.es l-egl'es-
s ion .

Applications in Pq,chologicol Researc|t

In rvhat follows. some examples of applications in psychological
research rvil l  be described (see also Hodapp, LgB2; Wermuth, 197,_!:
weyer & Hodapp, 1979). The first example, taken from developmen-
tal  ps-r 'chology, is based on a study by Rubin (1973),  deal ing rv i th
relationships between egocentrism measures and age. The purpose
here is to interpret the correiation structure of these data in terms of'
a decomposable model.

The later examples demonstrate the two different strategies of'
data analysis which can be pursued rvith the help of decomposable
models: testing or searching for a structure. In an example from so-
cial psychology, we present an analysis of marital and parental vali-
ables influencing marital satisfaction, which were investigated b1'
Mi l ler  (1976).  This lat ter  author stated, as an hypothesis of  a causal
structure, a path diagram. In the corresponding system of incornplete
linear recursive equations, a subsystern takes on the frtrm of a decom-
posable model. We test the goodness-of-fit of this model and, after
finding it to be incompatible with the observations, suggest a better-
fitt ing model.

In a separate section dealing rvith the expioratory apploach tt-r
decomposable modeis, a search procedule is discussed. We use it to
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re-analyze the data of Zeiner and Schell (1971t from experimental

learning psychology. This re-analysis combines model search, inter-

pretation of a covariance selection model, and reformulation of a

covariance selection model in terms of a system of l inear recursive

equat ions.

An Exomple from Deuelopmental Psychology

To describe a well-f itt ing decomposable covariance selection mod-

el, we have taken an example from a study in developmental psychol-

ogy by Rubin (1973), who stated:

Egocentr ism. a centra l  concept in Piaget ' :  theory (Piaget  1950),  has been ex-
amined  in  te rms  o f  the  young  ch i l d ' s  commun ica t i ve .  cogn i t i ve  (p rob len - r -

solving). role-taking, and perceptual activities . . . . Previous theory and t'esearch
have suggested that a single factor subsumes the various forms of egocentrism.
Indeed, some (Fef fer ,  1959, 1970; Piaget  1950) have ident i f ied th is factor  as " the
inabi l i tv  to decenter,"  that  is ,  the chi ld 's  inabi l i ty  to shi f t  h is at tent ion f rom one
aspect of an object or situation to anothe:'. However. few studies exist in which
investigators attempt to relate the different types of egocentrism. Those that do
exist present inconclusive results as to the exact nature of the correlations . . .
Thus,  one purpose of  th is study was to examine the nature of  corre lat ions alnong
tasks purport ing to measure communicat ive.  cogni t ive,  ro le- taking,  and spat ia l
egocentr ism in chi ldhood. t .pp.  102-103).

Investigating this question, Rubin additionally collected data on

a few "marker variables," which he postulated should be related to

the egocentrism measures. Of these we include only the two vari-

ables, Age and Conservation. In the classical analysis of Piaget, con-

servation skil ls are crucial for the abil ity of decentration.

T a b l e  1

I n t e r c o r r e l a t i o n s  o f  C h i l d h o o d  E g o c e n t r i s m
V a r i a b l e s  A c c o r d i n g  t o  R u b i n  ( t 1 7 3 )

C o g n .  S p a t .  C o n s .  C o m m .  R o l e  A g e
E g o c .  E g o c .  E g o c .  T a k .

C o g n i  t i v c
E g o c e n t r i s m  

1  ' o o

S p a  t i a  I
E g o c e n t r i s m  

' 2 8  ' l  ' o o

C o n s e r v a t i o n  . 2 5  . 5 5  1 . O O

C o m m u n i c a t i v e
E g o c e n t r i s m  

' 3 7  ' 5 5  ' 2 5  1  ' o o

R o l e  T a k i n g
E g o c e n t r j - s m  

' 3 2  ' 7 3  ' 5 5  ' ? 2  1  '  o o

Age . 4 2  . 5 6  . 7 3  . 7 3  . 7 8  1 . o o

N o t e .  n  =  5 0 .
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Conservaf ion Spatiat
egocentrism

Rote -  taking
egocentr ism
(recurs ive th ink inq)

Communicat ive
egocentr lsm

[ogni t ive
(pr ivate

egocentr ism
speech)

Age

Decomposabte model 16 12351356/456
LR-X t=  6 .87  (d f  =7 ,  p= .443 )

Figure 7.
Decomposable model for Rubin's childhood egocentrism variables.

In Table 1, the correlation rnatrix from the study of Rubin t1973)
is presented. Figure 7 i l lustrates a well-f itt ing interdependence struc-
ture for these variables. The question of how this model has been
obtained is deferred for the time being. Instead, we show horv such a
model can be interpreted.

In Figure 7, the variable Cognitive Egocentrism shows no direct
relationship with the other egocentrism variables. There exists only
an indirect relationship between Cognitive Egocentrism and the vari-
ables Conservation, Role-Taking Egocentrism, and Communicative
Egocentrism, where this indirect relationship is l inked to age. All
variables, except for Spatial Egocentrism, are directly l inked rvith the
variable Age. This indicates that at every stage of the developmental
sequence, it is individual experience and maturation that determines
performance. Up to this point, this interpretation coincides with the
interpretation of Rubin (1973), who wrote:

A correlat ion analysis provided in i t ia l  conf i rmat ion of  the "centrat ion" h1'poth-
esis.  Measures of  spat ia l ,  ro le- taking,  and communicat ive egocentr ism, as rvel l
as conservation seemed to form a cluster deflned by their significant interrela-
t ionships.  .  .  .  I t  is  probable that  the age var iables account for  the s igni f icant
relationships found to exist between the cognitive measure of egocentrism and
conservat ion.  With e i ther mental  or  chronological  age part ia l led out ,  cogni t ive
egocentr ism was no longer re lated to the lat ter  var iables.  (p.  108)

In addition to this we are able to make some more differentiated
statements. Communication, the most complex of the analyzed vari-
ables, is l inked with the variables Conservation and Spatial Ego-
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centr ism through recursive thinking (Role-Taking Egocentr ism).
According to a proposition of Feffer (1970), there exists an isomorphy
of cognitive structures which the individual develops towards physi-
cal objecls and also in interpersonal relations. According to Piaget
(1950), conservation skills and the overcoming of spatial egocentrism
are the criteria indicating that a person has reached the concrete-
operational stage. At this stage, cognitive operations are available to
the child which have been described by Piaget with the concepts of
decentration and reversibility. Role taking in a metaphoric sense-
the ability to predict cognitions, motives, and feelings of other per-
sons-is represented by the variables Recursive Thinking and Com-
munication. The structure model shows a stable relationship betrveen
these social abilities and the cognitive operations, confirming an
essential assumption of cognitive developmental theory (Fiaveil, Bot-
kin, Fry, Wright & Jarvin, 1968; Selman, 1976). These relationships
are maintained even when the age variablesl ar 'e held constant.
Furthermore, recursive thinking seems to form an,intermediate func-
tion. According to Miller, Kessel, and Flavell (1970), recursive think-
ing means that a subject is able to comprehend the cognitions of
another person with regard to his own or other person's cognitions
("thinking about thinking," "thinking about thinking about think-
ing"). Although recursive thinking is characterized by the distinction
between, and subjectivity of, personal and extraneous viewpoints,-
real communication goes beyond this; it requires that the other per-

son's role is understood and that one's own actions are adjusted accor-
dingly.

With the rather elaborate interpretation of this example, we
hope to have shown how the approach described here is different from
the analysis using latent variables or factors. Such latent variable
analyses are based on an abstract centration factor which is supposed

to underly all egocentrism variables (see Rubin, 1973). For the above
example, the structural analysis of the directly-observed variables
has led to a more differentiated model of variable relationships.

An Example from Social Psychology

The next example illustrates how an hypothesis about a depend-
ence structure can be tested and modified with the help of decompos-

rTo avoid multicoll inearity, only one of the highly correlated age variables ("chro-

nological age" and "mental age") can be included in the analysis. Our interpretation

remains unaffected regardless of which of the age variables is incorporated in the

analysis.
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able models. The data are taken from a study by Miller (1976) who
proposed a multivariate developmental model of marital satisfaction:

Conjugal companionship and communication have sometimes served alone as
criterion variables in studies of the marital relationship, and they also have
been combined with other components in measures of overall "adjustment."
Horvever, it seems likely that objective marital interaction variables, such as the
amount of communication and frequency of companionate activities, intervene
betrveen the child-related variables noted above and reported satisfaction with
marriage. Consequently, the number and spacing of children was theoreticall l '
l inked to how often spouses engaged in various activities, and this frequencl'
measure was then related to the repondents' attitudinal reports of marital satis-
faction. This was an attempt to examine the hypothesis that one of the key
reasons children appear to depress marital satisfaction lies in the reduced fre-
quency of companionate activities that husbands and wives typically engage in
rvith the arrival and rearing of children. If children generally reduce marital
companionships, then child spacing could be expected to positively influence
companionate activities (longer intervals between births rvould allow more com-
pan ionsh ip ) .  (p .645 t

The duration of marriage and the family socio-economic status were
in t roduced by  Mi l le r  as  exogenous var iab les  because empi r i ca l
studies have supported a decrease of satisfaction in the course of mar-
riage, and also have pointed to relationships between child-related
variables and socio-economic status. A subsystem of the postulated
dependence relations is shown in Figure 8 (cf. Mil ler, 1976).

Figure 8.
Mil ler 's theoretical model of variables antecedent to marital satisfact ion.

This subsystem can be translated into the fol lorving l 'ecursive

model that is equivalent to a decornposable model:

Zt :  a1222 * (J I

l-t'j 
Zz : az3Z:t * u2qZq + (J2

L-^r  Zs:  a : l lZ l  I  u '1 , - ,27 ' '  I  Us

Za : a{.,Zi -r aaqf,6 -F (J4.

The coef'ficients of the equation system 14 represent the path coeffi-
cients and can be estimated using the observed correlations in Table
2 (below the diagonal).  Further, the residuals, i .e.,  the discrepancies
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between the observed and the implied comelations, are presented in
Table 2 (above the diagonal).

T a b l e  2

I n t e r c o r r e l a t i o n s  o f  V a r i a b l e s  o f  M a r i t a l  S a t i s f a c t i o n
A c c o r d i n g  t o  M i l l e r  ( t g l 6 )

M a r i t .  A m o u n t  C h i l d
S a t i s f .  C o m p .  S p a c .

Number  Fam.
C h i l d r .  S o c . S t .

L c n g t h
M a r r .

M a r i  t a l
S a t i s f a c t i . o n

A m o u n t  o f
C o m p a n i o n s h i p

C h i l d  S p a c i n g

N u m b e r  o f
C h i l d r c n

F a m i l y  S o c i a l
E c o n o m i c  S t a t u s

L e n g t h  o f
M a r r i a g e

. o o o a  - . a 5 6  . 1 2 5  .  I  1 5

. o o o  . o o o  . 2 4 4

- . 0 1 6  . o o o  . o o o

- . 2 1 1  - . O 4 1  . O O O

. 2 8 9  .  O 4 8  - . 2 1 7

- .  1 O O  . 2 1 6  . 5 5 2  - . 2 \ A

. 3 7 0

- . C 6 2

. o \ 7

.  1 3 2

. l ; l

.  1 7 0

. o  1 5

. 2 4 4

.  oo0

.  ooo

N o t e .  n  =  f 4 O .

" A b o * r .  d i a g o n a l  r e s i d u a l s  f o r  t h e  m o d e l  p o s t u l a t e d  b y  M i l l e r .

The implied correlations were calculated according to Equation
12. The correlation matrix with the implied correlations represents
the estimate of the theoretical correlation matrix under the assump-
tions of the model represented by Equations 14.

From the test statistic for this model given in Figure 9 and from
the residuals given in Table 2, it can be seen that this rnodel pos-
tulated by Miller (1976) has only a weak correspondence rvith the
data. To obtain new hypotheses about the variable relationships, we
applied the model search procedure-described in detail in the next
section-and obtained the modified model il lustrated in Figure 10.
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Length of  .530 -  Numben of
m a r r i a g e  c h i t d n e n

2 n '
- .212 

-  Amount sY 370 -Mari tat
companionsh ip  sat  is f  ac t ron

F a m i t y  s o c i a i
s ta tu  s

5

,  .041  _  th i td

DecomposabIe  mode l
L R  -  1 z  =  3 0 . 1 7  ( d f  =

6 4
Leng th  o f  .552-  Number  o f
mar r iage  ch i ld ren

s P a c r n g
3

12 t234 t345 /456
7 ,  p .  001  )

ch i td  .
spactng

12  125  |  3 t *6156
- 9 ,  p = . 1 1 5 3 )

21
Amount sf  370_ Mari tal
companionship sat isf  aciron

q

Fa mity
s t a t u s

Decomoosabte  mode l
LR - iz = 1t- .20r-  (df

Figure 10.
Modified model of variables antecedent to marital satisfaction.

The models represented in Figures 9 and 10 are clearly different.

The most obvious difference lies in the absence of any direct rela-

tionship between the variables Number of Children, Child-spacing,

and Marital Satisfaction in the new model. Furthermore, two new

direct relations were lacking in the former model: relations betrveeu

Durat ion of  Marr iage and Chi ld-spacing, and between Socio-economic

Status and Amount of Companionship. Common to both models is a

direct dependence of Marital Satisfaction on the Amount of Compan-

ionship. The influence of the socio-economic status on the latter rvas

already recognized by Mi l ler  (1976):
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By' analyzing these data more carefully and looking at the average compan-
ionsirip scores for five categories of familv social staLus. it appeared that this
relationship was strongest in the lower categories of social class. That is, those
who were in the lowest category of family social status reported extremely lorv
companionship scores relative to those in tl"re upper four categories. This is
understandable because some financial resources would be necessary to partici-
pate in several of the companionate activities referred to in the items. (p. 654)

A different explanation of the discrepancies between Miller's
hypothesis and the modified model may be that satisfaction or dis-
satisfaction are representing only one possible way of responding to
the chailenges within the family. Orden and Bradburn (1968)'and
Hodapp and Weyer (1980) have pointed out that responses such as
tensions, strain, and emotional disturbances may also be means of
marital adjustment, independent from any satisfaction/dissatisfaction
dimension. In agreement with other authors, Miller mentioned role
strain as a possible source of conflict. Often these tensions may be
caused by children, as the spouses have to fill their new roles as par-
ents. According to Hodapp and Weyer (1980), a signif icant rela-
tionship has been found to exist between the number of children and
the subjective pressure experienced by housewives, although not be-
tween the number of children and dissatisfaction.

Model Search

Description of the Procedure

The systematic search for part ial  zero-correlat ions or zero-
concentrations aims at the simplification of an interdependence struc-
ture. The so-called "Simon-Blalock approach" (Blalock, 1964; Simon,
1.,95n was an earlier attempt in this direction. This technique, howev-
er, is characterized by two basic difficulties. First, there is the prob-
iem of selecting appropriate models from the large number of all
possible models (see, for example, Blalock, 1962, who described a
variety' of possible causal models for four variables). Second, there is
the problem of evaluating an overall model with the aid of test statis-
tics. The two problems can be solved if a model search procedure
based on the theory of covariance selection is applied.

A search procedure among decomposable models can be charac-
terized in the following way (Wermuth, 1976b, 1980): The starting
pclint is a situation where no zero-concentrations are required; this is
follorved by . step-wise examination of the variable pairs to deter-
mine horv many and which variable pairs can be considered to have a
zero-concentration. In the first step, that variable pair is selected for
which the assumption of a zero-concentration is most consistent lvith
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the data. This is done by calculating the l ikelihood ratio test statistic

for every variable pair under the hypothesis of a zero-concentration

and by selecting the variable pair with the smallest statistic. In a

second step, a second variable pair is selected whose statistic has the

smallest value for the additional zero-concentration. If P, tep.esents

t h e  e s t i m a t e d  c o r r e l a t i o n  m a t r i x  w i t h  o n e  a d d i t i o n a l  z e r o -

concentrat ion in select ion step n*I ,  compared with the correlat ion

matr ix P" in select ion step n,  then Equat ion 15 below yieids thc

l ikel ihood-rat io test  stat ist ic of  an addi t ional  zero-concentrat ion,
rvhich is approximately chi-square distributed with one clegree of
freedom:

t 15 l  LR-x ' :  r z l n ( lP ,  l / lP t l ) .

Again, only for decomposable models, can the statistic in trquation 15

be calculated directly from determinants of parts of the observed cor-
relation matrix rn'ithout explicit ly determining the estimates P1 and

P2 first. When the test statistics of successive selection steps are

summed, one obtains the test statistic in Equation 13 for the good-

ness-of-fit of the decomposable model (with Pr ) to the original matrix

,R rvithout zero-concentrations. For a decision about whether a given

model is suitable, one should take into account both the test statistics

of the selection step (trquation 15) and the test statistic in Equation

13 for the overall model. Neither should correspond to a small fracti le

value p of the appropriate chi-square distribution. The p-value stands

for the probabil ity of obtaining the observed or an even larger chi-

square value if the model assumptions are correct.

In order to use an objective criterion, rve speak of a weil-f itt ing

model as long as none of the p-values for the test statistics in Equa*

tions 13 and 15 falls below .05. Clearly, this criterion is a ver-v crucle

one, but it at least excludes all poorly-fitt ing models frotn the l ist of'

plausible models for the interdependence structure. In particuiar. the

use of p values introduces a dependency on sampie size.

An, Exontple from Experirnertal Pq'chology

Zeiner and Schell (1971) reported the resuits of a conditioning
experiment in which discrimination performance was investigated as
a f 'unction of the orienting reaction (ORt:

Sokolor' (1960, 1963) holds that OR's elicitated by innocuous stimuli, either pro-
duce or are correlated u'ith the individual's heightened sensitivity to environ-
mental stimulation which in turn leads to increased information intake and the
lacil itation of learning. On the other hand, the defensive reflex elicitated bv
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intense or noxious stimuli attenuates these effects. Sokolov's theory predicts that
Ss [subjects] giving larg'e responses to an innocuous stimulus should condition
better than Ss giving small responses to an innocuous stimulus. Whether ot' not
similar predictions can be made for groups differing on defensive reflex (DR)
magnitude to a noxious stimulus is unclear . . . . It was the purpose of the pres-
ent experiment to determine the relationship betrveen individual differences in
response magnitude to both innocuous and noxious stimuli and first and second
interval SRR fskin resistance response] magnitudes in discrimination condition-
ing. (pp. 613-614)

The experimental setup of Zeiner and Schells (1971) study fol-
lowed the pattern of classical conditioning and consisted of repeated,
combined presentation of light stimuli (CS) of different colors and
electrical shocks (UCS). In each instance, only light stimuli of one
specified color were reinforced by a shock 5 sec. later. From the mean
difference of the skin resistance responses to the reinforced and non-
reinforced light stimuli, two measures of discrimination learning
were derived. The measures related to the 5-sec. interval after the
l ight st imuli  were cal led f irst interval response discrimination
(FDIS), whereas the measures taken 6 to 10 sec. after the light stimu-
li were called second interval response discrimination (SDIS). In addi-
tion to these two measures of discrimination performance, Zeiner and
Schell defined two simple response measures which comprised noth-
ing but the strongest skin resistance responses to the light stimuli
within the first (1 - 5 sec.) and second (6 - 10 sec.) interval. These
responses were called first interval responses (FIR) and second inter-
val responses (SIR). Furthermore, the main skin resistance responses
to the noxious and innocuous stimulus before the conditioning proce-

dure were recorded; these responses were called orienting reactions,
UCS-OR2 and CS-OR.

zThe term "defensive reflex'r wbuld be more appropriate, but rve follow the variable
notation of Zeiner and Schell.
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C o r r e l a t i o n  M a t r i x  f o r
Expe r imen t  o f

T a b l e  3

t h e  V a r i a b l e s  o f
Z e i n e r  a n d  S c h e 1 l

t h e  C o n d i t i o n i n g
( t g z t )

SDIS  FDIS  S IR F I R  C S . O R  U C S - O R

1 SDIS

2  FDIS

3 SrR

4 FIR

5  C S - O R

6 ucs-on

' l  .oo

. J 2 x *  1  .  O O

. 3 2 *  . 4 5 * *  l . O O

. 3 C *  . 5 4 * *  . 5 O * *

. 1 9  . 4 3 x *  . 3 1 *

. 2 5  . 2 9 *  . O g

1 . O O

. 7 t * *  1 . O O

. 3 1 *  . 2 5  l . o o

N o t e .  n  =  4 8 .

* g  < ' 0 5 .

* * g < . o 1 .

The correlations between the orienting reactions and the four re-
sponse measures are shown in Table 3 (see Zeiner & Schell, 1971). In
this example, there is a clear distinction between independent (exoge-
nous) and dependent (endogenous) variables, as the authors used the
orienting reaction to the noxious and innocuous stimulus as the inde-
pendent variable in this experimental setup. As to the structure of
the relationships between the response.measures, Zeiner and Schell
pointed out that all four response measures show significant intercor-
relations. For this reason, it is not possible to give a definit ive inter-
pretation of the relationships between the response measures and the
independent variables. As appropriate conceptions are missing about
the relationships between these measures, it seems appropriate to
apply the model search procedure, with the orienting reactions as ex-
ogenous variables.
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T a b l e  4

R . 3 u l t s  o f  M o d e l  S e a r c h  P r o c o d r r r c  f o r  t h e  D s t a  o f  Z e i n e r  a n d  S c h . l l  l t f Z t )

The results of the model search procedure are presented in Table
4. There exists a computer program which calculates the information
set out in this table (Wermuth, Wehner, & Gdnner, 1976). For every
selection step, certain characteristics of each decomposable model are
g i v e n :  t h e  s e t  1 A  o f  r e s t r i c t i o n s  o n  v a r i a b l e  p a i r s  w i t h  z e r o -
concentrations and the model notation as a shorthand characteristic
of the variable groups $/,) with variables belonging together.. Addi-
tionally, the statistic is shown for an additional zero-concentration as
well as for the respective overall model. We chose model l2l24l34l45l
56, because the model of the next step would lead to a weak corres-
pondence with the data, not only for the single relationships [variable
parr (2,4), p : .00005] but also for the overall model (model I2l34l45l
56 ,  p  :  .0039) .

UIS -OR
3

S I R

,/'/'/,-'/

_______Z

F D I  S

F igu re  11 .
Decomposable  model  for  the data o f  Ze iner  and Schel l  (1971) .
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This decomposable model is presented in Figure 11. The model
shows a very simple variable structure, as in each case only two vari-
ables are directly connected with each other. In particular, the dis-
crimination performance is determined only by the orienting reaction
to the innocuous light stimulus, where the first interval response rep-
resents the crucial intermediating variable. Also, no direct rela-
tionship between orienting reaction and the second interval measures
can be shown.

Although the decomposable model permits no statements about
directed relationships at this point, the interpretation of this inter-
dependence structure as a dependence structure is highly suggestive
in view of the experimental setup. When the discrimination perform-
ance (ZyZ) is taken as dependent on the direct response to the light
stimuli (Zs,Z) and the orienting reaction (Zs,Zr), and the second in-
terval measures are taken as dependent on the first interval mea-
sures, then the decomposable model may be transformed into the fol-
lowing recursive equation system:

SDIS:

t16] 
FDIS:

SIR:

FIR:

17
z r l

zz:

z3 :

zq :

dnZz + 0 + 0 + 0 + 0 + Ul

0 + a 2 a Z a * 0 + 0 + U 2

aetZa + 0 + 0 + Uj

sasZ, + 0 + U4

The coefficients of this equation system can be read directly from
the correlation matrix because the regression equations can be traced
back to the most simple case where only one variable is used as inde-
pendent variable. Figure 12 shows the path diagram with the likeli-
hood ratio test statistic for the overall model (cf. Equation 3).

6
UC S_OR
/
I
I

I
\
\
\ 5 2

3
SIR

? I

SDISCS-OR

LR-X2=10 .g5  (d f  =  10 ,  p= .36161

Figure 12.
Path model for the variables of the conditioning experiment according to Zeiner and Schell
( 1 s 7 1 ) .
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matrix is estimated by using Equation 12. The

for this example are:

P+6 : 04s Pso :  f4st l6r  0gS :  daaO+s :  fB4f4S,0gO :

&s+pae : ha(rssrs6), etc.

The path model confirms the Zeiner and Schell (1971) hypothesis
that persons who show stronger orienting reactions to innocuous
st imul i  demonstrate bet ter  d iscr iminat ion per formance in  the
conditioning experiment. From the'responses to a noxious stimulus,
no predictions about discrimination performance can be made. As a
di rect  determinant  of  f i rs t  in terval  d iscr iminat ion (FDIS),  the
response  to  the  innocuous  s t imu lus  dur ing  the  cond i t i on ing
procedure-the first interval response-could be identified. The first
interval response in turn depends on the orienting reaction before the
conditioning procedure, the CS-OR. Sokolov (1963) and Maltzman
(1967) supported these results, theorizing that the orienting reaction
is a vaiid index of attention, and that differences in the intensity of
attention are responsible for differences in discrimination learning
betrveen individuals.

Discussion'

As examples from different areas of psychological research have

shorvn. decomposable models are well-suited to order multivariate
reiationships and to obtain a unified overview of complex variable
relationships. They represent structures for systems of observable
variables rvhich are relatively easy to interpret and which can be
tested as to their goodness of fit. For normally distributed variables,
models of interdependencies as well as dependencies are based on
measures of l inear associat ions, aS for example, correlat ions or
regression coefficients. This means that such a model should only be
interpreted if there are no non-homogeneous subgroups or nonlinear
relationships. Given these restrictions, decomposable models can help
the researcher to pinpoint direct interdependencies between variables

and to identify interrelationships that exist only indirectly via the

covariation with other variables.
Presently, probably the best known models of dependencies are

linear structural equation models. One of the most serious problems
encountered in the application of linear structural equation models is

that  the invest igator  may not  be sure i f  the model  chosen is

identified. If the models are restricted to only observable variables,

we get the linear structural equations, of which decomposable models
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are a subclass. In this case, necessary and sufficient conditions for
parameter identification are known.

For LISREL models, in general, no sufficient conditions, and no
necessary  and su f f i c ien t  cond i t ions  are  knorvn  fo r  parameter

identif ication. Instead, the program checks only a necessary condition

and continues to compute estimates if this condition is satisfied. As a
result, there are situations (all those in which the necessary condition
is satisfied although the parameters are in fact unidentif ied) in rvhich

estimators are computed though "it does not make sense to talk about
an estimator" (Jdreskog & Scirbom, 1978, p. 10). We regard this as a
serious problem indeed. Researchers using LISREL cannot be certain

that it makes sense to interpret the resulting computations.
Decomposable models have important properties which they do

not share with other dependence structures. The most important of
these, stated in technical terms, is the following: covariance matrices
of subgroups of variables form the set of minimal sufficient statistics
for the parameters of the joint model for all variables. The practical

implications of this can be viewed as a generalization of the notion of
a spur ious correlat ion to var iable sets.  The models of fer  a t rue
reduc t ion  o f  d imens iona l i t y .  I t  i s  necessary  on ly  to  knorv  the
assoc ia t ions  o f  subgroups  o f  var iab les  to  be  ab le  to  reproduce

associations of all variables. Put somewhat differently, a well-f itt ing
d e c o r n p o s a b l e  m o d e l  p r o v i d e s  t h e  j u s t i f i c a t i o n  t o  c l a s s i f ; r  a n

association as less important because it can be closely reproduced
from knowing only the association in the set of sufficient statistics.
What  we have here  is  S i r  Rona ld  F isher 's  impor tan t  no t ion  o f
sufficient statistics as it applies to covariance matrices.

The second important property of decomposable models is that
such models have interpretations in terms of dependence structures
(directed graphs), as well as in terms of interdependence structures
(undirected graphs),  and that we can read of f  f rom the graphs
interpretation of these structures in terms of independencies.

Decomposable models can be used in confirmatory as lvell as
exploratory types of analyses. Although testing of a priori hypotheses

is generally preferred, a model search among decomposable models

can be a valuable tool for gaining a better understanding of the data
if,

a. the researcher's knowledge about the interrelations is too weak
to formulate hypotheses,

b. an hypothesized dependence structure is not supported by the

data, or

c. the intention is to find a condensed description of the data.
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In all these instances, the results of the model search permit the

formulation of hypotheses on dependence structures. These should be
judged in terms of subject-matter considerations and can be tested as
hypotheses on a new set of data.'

Ordering of decomposable variable structures according to their
independence restrictions illuminates the implications of adding or
deleting certain connecting lines in the graphs of models. This is an
advantage of decomposable models, since for more complex models,
like simultaneous equation models or latent variable models, the im-
plications of adding or deleting connecting lines are not well under-
stood. Within the class of decomposable models, each nrodel has well-
defined interpretations. Each model represents a proposal for data
reduction, and there is hierarchical ordering of the models: the sim-
plest model states the complete independence of all variables; the
most complex model states that all variables are interrelated so that
no reduction in dimensionality is possible (except possibly in terms of
an underlying unobservable factor).

In summary, application of decomposable models is an attempt to
get away from overly complex models and to use-whenever this is
possible and feasible-simple descriptions of the data.
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