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SUMMARY

A certain class of patterns of association can be investigated by fitting multiplicative models to a
contingency table or by using covariance selection on a covariance matrix. We show that each multiplicative
model for a contingency table corresponds to one particular covariance selection model, and we point at
the resulting similarities in the interpretation of patterns, in test statistics for each pattern and in implied
marginal associations among variable pairs.

1. INTRODUCTION

The purpose of analyzing data is to find structures which are complex enough to fit
the data but simple enough to facilitate interpretation. Structures describing interrelations
among several variables may be called patterns of association. We characterize a certain
class of patterns by the concept of zero partial association and show that it is this class
of patterns which can be studied by fitting multiplicative models to a contingency table
or by fitting certain covariance selection models to a covariance matrix.

The theory of log-linear models (Birch [1963]) as well as the theory of covariance
selection (Dempster [1972]) has been developed for many variables. Before these methods
can find widespread use as data analytic tools, however, at least three problems have to
be resolved: First, and most important, is the question of how to interpret complex models.
Second, programmable algorithms should be available to compute estimates and test
statistics for a given pattern of association. Third, methods and algorithms have to be
developed to guide the choice among several plausible patterns of association for a given
set of data. Following is a brief review of the results achieved so far with regard to these
aspects:

For log-linear models, interpretations of the models and of individual parameters of the
models have, for instance, been proposed by Roy and Kastenbaum {1956], Darroch [1962],
Bishop [1971] and Goodman [1970, 1973]. The parameters that are known as “high order
interactions,” however, are difficult to interpret. The computational problems with obtain-
ing cell estimates for a given log-linear model have been solved by Bishop [1967]. A Fortran
program to fit log-linear models is now available from Goodman. No programmed methods
are yet available for the model search. A Bayesian approach to analyzing contingency
tables is due to Lindley [1964].

The parameters in covariance selection models have been termed “concentrations,” and
only their geometrical interpretation has been given (Dempster [1969]). Extensive iterations
are required for Dempster’s [1972] proposed cyclic-fitting and Newton-type algorithms
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which can be used to compute the estimates under a given covariance selection model
and to select models.

In this paper we make use of analogies between multiplicative models for contingency
tables and covariance selection models. In Section 3 we discuss the different possible patterns
of association for three variables. We present rules for the interpretation of patterns and
for computing test statistics. IFurthermore, for each pattern we show the implications for
the marginal associations among variable pairs. Sections 4 and 5 give the patterns for
four variables and generalizations to many variables.

2. NOTATION AND ASSUMPTIONS

Of the many possible interrelations among variables we concentrate on a class of patterns
characterized by zero partial associations, that is, by partially independent pairs of vari-
ables. This class of patterns is frequently being studied either implicitly or explicitly
whenever a covariance selection model is fitted to a covariance matrix, or whenever inde-
pendence hypotheses are tested in a contingency table.

2.1 Covariance Selection.

More precisely, for covariance selection models it is assumed that p variables follow a
joint normal distribution represented by the density

/2
fx) = (i) |Z]7 exp {—3x"Z7'x}, (1)

where X and its inverse X' are both p X p positive definite symmetric matrices. The
(¢, 1) element o,; of E is the covariance between z; and z; , and o', the (7, j) element of £77,
has been termed ‘‘concentration.” The (7, j)th elements of the p X p correlation matrix P
and of the inverse correlation matrix P~ are p;; = o,;/0:: %0, and p*' = 0., %0, %0,
respectively.

If no restrictions are imposed on the parameters ¢°’, the maximum likelihood estimate
for the covariance structure is known to be the observed covariance matrix. Dempster [1972]
shows the existence of a unique estimate £ of ¥ in a covariance selection model with some
of the parameters ¢'’ for ¢ # j restricted to zero. He proves that this estimate £ is maximum
likelihood and that £ is completely defined by the pattern of zeros in the inverse X7

With n observations on each of the p variables, the sample covariance is defined as

8y = 1 Z (@ — E)(xj — ji)y @)

where

i1s the mean observation on the ¢th variable and the (7, 7} element of the observed corre-
lation matrix R is 7,; = s,;/s,,'"%s;;'"%.

2.2 Multiplicative M odels for Contingency Tables.

Birch [1963], on the other hand, used log-linear models to distinguish between different
hypotheses in a contingency table. A fixed number of observations, n, can be classified by
combinations of p variables where variable jhas<; = 1, --- |, I, categories, j = 1,2, - -+, p.
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Let n., . ......, be a typical observed cell count in a J];......., I; contingency table. For

log-linear models it is assumed that the cell count N, . ... ,, follows a multinomial distri-
bution,

PN iaoriip = My, eee i) & ) H (M, iy, ee i) ot 3)
with m,, .,......, as the expected cell value in cell (4, , 22, --- , 7,) of the p-dimensional

contingency table. For the log-linear model formulation the logarithm of the expected cell
value is regarded as the sum of several parameters, the “interaction terms,” denoted here
by “w”’. For example, consider the so called saturated model for three variables with
(G ,12,1) = (4,4, %), T,,I.,I, =1,J, K):

In M0 = w4+ Uy + Uiy T Uz F Uieen F Ui T Uesio T Uiesain (4)

with
A:uﬂi) = ;uzu) = ;uli(k) =0
Zunun = ;uxaum =0 Y i
; :
Zumm = ;uﬂ(,‘k) =0 v i
;
Zuw(m = Zum(;m =0 v I
7

and

Zu123(i1'k) =0 Vv 1
Zulzs(“k) = 0 V 74]{,
Z Uizsiin = 0 v k.
k

The different possible unsaturated log-linear models are the result of restricting some of
the “interactions,” the u-parameters, to equal zero. The multiplicative models are un-
saturated models for which the expected cell values can be computed multiplicatively from
certain marginal tables and for which interpretations in terms of independencies exist.
For an extensive discussion see Goodman [1970].

2.3 Tests for Different Patlerns.

Likelihood ratio-tests, which are known to follow asymptotically a x*-distribution, can
be used to test whether a hypothesized model or pattern fits the data. The likelihood func-
tion evaluated at the maximum likelihood estimates can be written as

InL « —’21 In [B], (5)

and
InLoe 30 (i) IR e, (6)

in the multivariate normal and in the multinomial distributions, respectively, Let L, , L.
denote the likelihood for two different patterns, then the likelihood ratio-test statistic,
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—2In(l,,/L;), measures the change in fit. These statistics are easy to compute whenever
the likelihood can be factorized. We show below how these factorizations can be derived in
the contingency table context and for covariance selection models.

3. PATTERNS FOR THREE VARIABLES

Three variables give rise to three coneceptually distinet patterns characterized by zero
partial associations: either one, two or all three variable pairs are conditionally independent.

3.1 Multiplicative Models in Contingency Tables.

Let m,;: denote the expected cell count for the (7, §, k)th cell. The requirement of exactly
one zero partial association can be expressed either through its effect on the expected cell
count m,;;, , or through its effect on the log-linear model, that is, on the parametrization of
In m;;, . Suppose that variables 2 and 3 are independent given variable 1, then the expected
cell count is

My = My My /M, v ik (7N

withm;; = Z,, Mg, My p = Z i My, as the two-dimensional marginal tables of variables 1,

2 and 1, 3, respectively, and m, = Zik m;;, as the one-dimensional table of variable 1.
As Birch has shown

In My = U + Uiy + Uzciy + Usy T+ Uieiin T Uisen Y ik (8)

is equivalent to (7) where the interaction terms, or u-parameters, satisfy the restriction as
described for the saturated model in (4). From (3) and (8) it can be shown that the minimal
sufficient statistics for the parameters of this pattern are the observed marginal tables of
variables 1, 2 and 1, 3. Therefore, the notation 12/13 is being used here.

In analogy with analysis of variance ideas pattern 12/13 has been interpreted as a model
with no three-factor-interaction and no two-factor-interaction between variables 2 and 3,
that is with %z = Upzsisn = 0 in the saturated model (3). We emphasize—in analogy
to covariance selection models—that it is a pattern with zero partial association of the
variable pair (2, 3).

A less complex pattern is defined by

Mg = Myp.m_p/m. . v ik, 9)
or by
In my; = w4+ w6y + Uiy + Usry F+ Uiziin v ik,

The notation for this model is 12/3. The familiar interpretation is that variable 3 is inde-
pendent of variables 1 and 2 together, or that it is a pattern with only one two-factor-

interaction, u,5;;, . We, however, stress that 12/3 is a model with two zero partial associa-
tions for (2, 3) and (1, 3). This becomes evident after noticing that the conditions u. i, =
Urez(iik) = 0 and Uizciky = WUizs(ije) = 0 are both satisfied.

Finally, for model 1/2/3 the one-dimensional marginal tables of variables 1, 2 and 3 are
the minimal sufficient statisties, and
My = m;, m;m g /m. " Y ik (10)
or

In M = u -+ Uyl + Ussy -
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The model can be interpreted either as the pattern with mutually independent variables,
as the pattern with no two-factor-interactions or as the model with exactly three zero
partial associations.

3.2 Covariance Selection M odels.

We shall now identify the different patterns in a correlation matrix. Let R be the sym-
metric observed correlation matrix [r,;] with determinant D,,; and inverse

1 - 7'232 — (e — Tagtiz) — (s — 7'127'23)A
_ 1
R = D 1 - 7'132 _(7'23 _ 7'127'13) . (11)
123
1 - 7'x22 |

The inverse can be expressed in terms of partial correlation coefficients r;; , and deter-
minants of submatrices D;; where

e e I o 12
and
D, =1—7
Thus,
Dy —712.4(D1aD30)*  —r1a.5(D1pDya)"?
R = 511; Duy —7a5 i(D1a D) |- (13)

D,

From (1), (13) and an analogous expression for the expected inverse correlation matrix
P! it follows that the “concentration” p’’ is simply a multiple of the partial correlation
coefficient p,; , . Thus, with the assumption of a positive definite covariance matrix, zero
concentrations are equivalent to zero partial correlations, and therefore distinct covariance
selection models can be interpreted as patterns requiring zero partial associations. For
example, consider again model 12/13, the case of zero partial association between variables
2 and 3, that is the pattern with p** = 0. This implies pss.; = 0, OF psz = p12p13 , and as
estimated correlations

P = 1 7ris |- (14)

Furthermore, it can be seen either directly or from (15),
Dia = DiDi(l — 7. %); 45§ = [, (15)
that the determinant of P in (14) is
[B| = D.,D,; . (16)

When we require p;s.; = pss.; = 0, we have model 12/3 and both pis = pispss and
p2s = piapiz have to hold. This can be satisfied only if p;3 = pz5 = 0; therefore
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1 r, O
P = 1 07; |P| = Dy, . 17)
1

Similarly, for model 1/2/3 we require pi2.5 = p1s.2 = pzs.. = 0 and, as the estimated corre-
lation matrix, simply the identity matrix.

We have shown how patterns with zero partial associations can be regarded as multi-
plicative models for contingency tables and as covariance selection models as well. Thus,
similar interpretations are possible whether qualitative or quantitative variables are being
studied. Similarities in the likelihood ratio tests based on (5) and (6) also become obvious.

3.3 Analogies in Test Statistics.

Consider, for instance, the test against the saturated model for pattern 12/13 or, equiv-
alently, the test for zero partial association of variable pair (2, 3). From (3), (6) and (7) it
follows that the likelihood ratio-test on I X (J — 1) X (K — 1) degrees of freedom is

2{(2 N N0 j) — [(Z 7. Inmy; ) + (Z n. Inn, ;) — (Z n;. Inng ). (18)

tik
On the other hand, for a correlation matrix it follows from (1), (5) and (14) that the like-
lihood ratio test on one degree of freedom is
—n{ln Dyy3 — [In D;; 4+ In D;3 — In Dy} (19)

with D; as the determinant of the correlation “matrix’”’ with one element, that is with
ln D1 = 0.

The analogies for three variables are summarized in Table 1.
3.4 Analogies in I'mplied Marginal Associations.

In the case of a correlation matrix, we obtained for each pattern explicit expressions of
the implied marginal correlations. It can be expected that corresponding patterns in a

TABLE 1
SUMMARY TABLE FOR THREE VARIABLES
Type of pattern Examples
Case Number Number of Conditionally Notatiaon Log~likelihood Implied
of conditionally independent for the evaluated at the marginal
patterns independsnt variable pairs pattern maxs likalihood associations
variable estimates
pairs
3! 1 (2,3) 12/13 T 4T, =T )
@ 1 ’ 12411370 223 %4293
3 ' _ _
b (3 2 (2,3)(1,3) 12/3 Tip*Ta=Ty Qy3=Qs = 0
3
c (3) 3 (2,3¥(1,3)(1,2) 1/2/3 T #T 4T 4-2T, Q3= 843= 9= 0

"Definition of symbols in Table 1:

symbal contingency table covariance matrix symbol contingency table covariance matrix
T : . ln D
T12 It . In Do 2 EA LR 2
ij J
: : 1In D
T3 oMt N In By T ErgL A, 1

In 1
T3 Inwinn In Dy To notnn
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contingency table have similar implications for the marginal associations. For attribute
data a “correlation coefficient”” has been defined (see Kendall and Stuart, [1961]) as

2\ 1/2 . n 2\ 1/2
gza . (X__) = (Zk (7Lik71‘.. n:fk)) . (20)

n n; NN,

This coefficient is computed from an observed two-dimensional contingency table. A coeffi-
cient 4 as implied by the maximum likelihood estimates 1,;. can be defined similariy.

Suppose, for instance, that pattern 12/13 describes a 2° table, then s ;, = > . n;;n; /0,
and 1t can be shown that

. Hm.. —nn 5\

Y23 = (%:( : I;z,nkn2 .-t) = (2013 - (21)

Furthermore, pattern 12/3 implies 915 = 4.5 = 0, and pattern 1/2/3 implies ¥, = 5 =
4.3 = 0. These results are all analogous to those obtained for the correlation matrix. When-
ever the variables in a contingency table are not dichotomous, we conjecture that a velation
similar to (21) holds, that is $2; < ¢12015 -

The data analyst can use this information about implied coefficients of association to
decide for a given coustellation of observed marginal associations, whether a hypothesized
pattern is likely to be consistent with the data or not. If, for instance, the sample size is
large and we observe r;, = 73 = .8 and 7,3 = .63 (or g2 = g13 = .8 and g3 = .63), then
only pattern 12/13 will fit the data. All other patterns can be ruled out because the implied
correlations do not agree well with the observed correlations. Pattern 12/23, for instance,
implies ¥13 = 71273 = .5 while the observed correlation is .8. Similarly, each of the patterns
12/3, 13/2, 23/1 or 1/2/3 implies zero marginal associations while all observed correlations
are large.

The main difference between patterns in a covariance matrix and patterns in a contin-
gency table is that the (partial) correlations—by assumption—have to be the same for
all values of the other variables while in a contingency table partial associations may differ
within different layers of the other variables. Once the data are reduced to a correlation
matrix, changes in partial association with different values of a third variable can no longer
be detected. On the other hand, in a contingency table tests are available (e.g. Bishop [1971])
to determine whether partial associations are the same or not.

One effect of this difference is that in a contingency table a given constellation of marginal
associations of variable pairs can look as if it were produced by a simple pattern although
it is the result of changing partial associations. It is only in a correlation matrix that there
exists a one-to-one relationship between implied coefficients of association and the described
patterns of association.

4. PATTERNS FOR FOUR VARIABLES

With four variables, there are (;) = 6 variable pairs that can have zevo partial asso-

ciation but the number of conceptually distinct patterns is ten. The patterns, or models,
differ not only by the number of zero partial associations but also by how often one given
variable is partially unrelated to the other variables.

4.1 Ten Patterns with Different Interpretations.

We describe one version for each of the ten distinet patterns in some detail:
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b)

c)

d)

e)
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There are (?

example, variables 3 and 4 are independent given variables 1 and 2 jointly, then the
model is denoted as 123/124.

> possible versions with exactly one zero partial association. If, for

If two variable pairs are to have zero partial association, (2 possible versions exist,
and either one variable is involved twice or not.

Case b; :

If, for instance, the variable pairs (3, 4) and (2, 4) are conditionally unrelated, then
model 123/14 results. The familiar interpretation for this pattern is that variable 4
is independent of variables 23 conditional on variable 1.

Case b, :

If, instead, the variable pairs (1, 2) and (3, 4) are partially unrelated, the model is
denoted as 13/14/23/24. The two variable pairs with zero partial association have
no variable in common and the pattern is not a multiplicative one.

With three zero partial associations there are (g) versions and three distinet patterns:

one variable is involved three times in the zero partial associations (e.g. model 123/4),
two variables appear twice among the partially unrelated pairs (e.g. 13/14/23) or
three variables are involved twice. The last requirement is equivalent to having one
variable with no zero partial association (e.g. model 12/13/14).

Case ¢, :

For pattern 123/4, the partially unrelated variable pairs are (1, 4), (2, 4) and (3, 4),
and variable 4 is completely independent of variables 1, 2, and 4 together, as well.
Case ¢, :

Let the partially unrelated variable pairs be (1, 2), (2, 4) and (3, 4), then the pattern
is denoted as 13/14/23 and variable 4 is independent of 2 and 3 conditional on vari-
able 1 while variable 2 is independent of 1 and 4 conditional on variable 3.

Case cs :

If only variable 1 is partially related to all of the other three variables, then the
pairs (2, 3), (2, 4) and (3, 4) are the three pairs with zero partial association. The
resulting model is denoted as 12/13/14. It implies independence of variables 2, 3 and 4
conditional on variable 1.

With exactly four zero partial associations there are (because of symmetry reasons,

as under b) two distinet types of patterns within the (g) versions,

Case d, :

For the zero partial associations of pairs (1, 2), (1, 3), (2, 4) and (3, 4) we get variables
1 and 4 being independent of 2 and 3 jointly. The pattern is denoted as 14/23.
Case d, :

If the pairs (1, 4), (2, 3), (2, 4) and (3, 4) are partially unrelated, the resulting pattern
is 12/13/4. Here, variable 4 is independent of 1, 2 and 3; furthermore, variables 2
and 3 are conditionally independent given variable 1.

With five variable pairs having zero partial associations, there are (6> versions., If

5
only variables 1 and 2 are partially and marginally related, the pattern is 12/3/4.
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f) Finally, there is only one pattern with exactly six partially unrelated variable pairs,
the pattern with four mutually independent variables: 1/2/3/4.
The ten different patterns and their implied marginal associations are listed in
Table 2, together with their factorization of the likelihood for the multivariate normal
and for the multinomial distribution.
4.2 Patiern 123/4 in a Contingency Table.

Take as an example Case b, , that is pattern 123/14, with exactly two zero partial asso-
ciations, namely for variable pairs (3, 4) and (2, 4). In the contingency table context the
zero partial association is achieved if in the corresponding log-linear model the two-factor-
interactions and all higher order interactions involving the variable pair are zero. More
precisely, compared with the saturated model with (¢, , %, , 45, 7s) = (4, 4, k, I) we require
for pattern 123/14 that

Ussrn) = Uisacirn = Ussacieny = Uresagiseny = O
and (22)
Usa(iy = Uies(isn = Uzaacien = Ureaaiipn = O
Under those assumptions the log-linear model is
Inmee = u + we + Uy + Usy + sy
F Uiniiny F Uisem T Ui T+ Uaacin T Uieaciin - (23)

An equivalent expression in terms of the expected cell counts is

TABLE 2
SUMMARY TABLE FOR FOUR VARIABLES

Type of

pattern Examples
Case No.of Conditionally indepen- Notation Log-likelihood sva- Implied marginal associatiaons in a
pat- dent variable pairs for the luated at the max. correlation matrix
tern pattern Iikelihbood estimates
(04394t %3940 %20 3 Qra* %4 pd
13514 3524 12 M3424" ¥14%23
> 6 (3,4) 123/124 Ti23 1247 T2 34~ )
“Q2
by 12 (3,4)(2,4) 123/14 T123% T4 Ty 0347 €13Q1a # 824701284
b, 3 (3,43(1,2) 13/14/23/24 iterative solution nesded
<, 4 (3,4)(2,4)(1,4) 123/4 Ty23*T4 T Q34= 0247 9470
°, 12 (3,8)(2,0(1,2) 13/14/23 Ty3TeatT o3 (T4 T5) @302 Q3Qai @04™ 934033 12783083
©3 4 (3,4)(2,4)(2,3) 12/13/14 T2t Tya*T 42Ty 34703 Gat Qum2%4t 37820
d, 3 (3,4)(2,4)(1,2)(1,3) 14/23 Ty4*T237Tg Q34=0p4= @y 2= &y 3°0
dp 12 (3,4){2,4)(1,4)(2,3)  12/13/4 T2t Taat T (T To) 03470247 €405 9237942 U3
8 6 all except (1,2) 12/3/4 TyptTa+T,4-2Ty 034702470237 Q14= &30
f ! all 1/2/3/4 TatT#T5+T4=3Tg 9347 R24= 0237 Q4= 913= 0120
*Definitian ‘of selected symbols in Table 2:
symbol contingency table covariance matrix symbol cantingency table covariance matrix
T Zn; In n. . In D T Zn. In n In O
123 ijk ijk. ijke 123 14 i1 i..l 1..1 14
g Anm tn Dy To LA in 1

i
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Mije M. 1

Mijpr = m

(24)

The minimal sufficient statistics for the u-parameters in (23) are the marginal tables
of variables 1, 2, 3 and 14, that is, n;;; and n,_, , respectively. This explains the notation
123/14. The pattern can be interpreted in either of three ways: If from (23) it is a model
with four two-factor interactions and one three factor interaction, if from (24) it is the
model with variables 2 and 3 being independent of variable 4 within each layer of variable 1,
if from (22) it is a pattern with two zero partial associations.

The likelihood can be factorized into the marginal tables of variables 1, 2, 3, of variables
1, 4 and of variable 1. From (6) and (24)

InL o (2 i Inng) + (O me  Inng ;) — (Do n . Inn,. ). (25)
i1k il 7

Further, it can be shown that in a 2*table the marginal associations implied by pattern
123/14 are

F2a = 14024 and 4 = J13f14 - (26)
4.3 Pattern 123/14 in a Correlation Mairiz.

On the other hand, in a correlation matrix a variable pair has zero partial association
if its partial correlation coefficient is equal to zero. And, since an element of an inverse
covariance matrix, the ‘“concentration” is a multiple of a partial correlation coeflicient,
each pattern with zero partial correlations is a covariance selection model as well.

In general, with four variables we have

1/2
s '—’I'u,kz(DikzDikz)

= 27
Diin @7)
and
r - Tejoe = Tirali0 .k - Tisoe T wTitk (28)
R (1 - "'u.kz)lﬂ(l - "'iz.k2)1/2 (Dikl/DklDik)l/z(DiIcl/Dleik)l/z
and the determinant D)., can be expressed in six different ways as
DD D,,,D
Dygys = 2we220e ooy Diaellaos (g ooy
1234 D34 ( 12.34 ) D24 ( 13.24 )
D.sD
= _1213) - a- 7'34.122)' (29)
12

When we require p* = p** = 0 or, equivalently, pis.12 = pss.13 = 0, the resulting pattern
is (analogy to the contingency table context) denoted as 123/14. The two zero partial
correlations imply that pss.; = pus.1p24.1 A0d p2s.1 = p23.1p34.: , Which in turn can only be
satisfied if pss.; = pee.1 = 0, that isif pss = piap1s a0d p2s = p12p1s. Therefore, the maximum
likelihood estimates of the marginal correlations assume a rather simple form:

Pas = Tislia, Poa = Tiolis
and (30)
. i 7 34
Poi =iy i {ij #= 24
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The determinant of this estimated correlation matrix can be computed from submatrices
involving variables 1, 2, 3 and variables 1, 4 as

!p! = D123D14 . (31)

Consequently, the likelihood function evaluated at the maximum-likelihood estimates is
from (1) and (31):

InL « — g (In Dyys + In Dy — In Dy), (32)

and the likelihood ratio test—as in the case of the multiplicative model in contingency
tables—can be computed without evaluating the maximum likelihood estimates explicitly.
The advantage of this fact increases with the number of variables being studied.

5. GENERALIZATIONS TO p VARIABLES

We now indicate how the analogies in the interpretation of patterns, test statistics and
implied marginal associations look like for p variables.

5.1 The Pattern With One Zero Partial Association.
To simplify notation, let K denote the set with p — 2 indices from 1 to p except for
7 and j,

K=f{n|n=1---,p,n#1n#j} (33)
Similarly, let <K = {n{n =1, --- , p;n &= j},15K = {n|n =1, ---, p}. Then, the

inverse elements #**, r'’, 7'’ of the correlation matrix R can be expressed in terms of the
partial correlation coefficient r;; x , and in terms of determinants D;x , D;x , Diix :

1/2
Fo= —Tii.K(DiKDiK) . Dix ii Dz’K.

(34)

DiiK ! DiiK ’ Dz’iK

These relations, in turn, allow the partial correlation coefficient in terms of inverse elements
to be written as

_Tii

Tiik = AR (35)

Furthermore, the determinant of the p-dimensional correlation matrix can be computed as

Dix = QLI'(—Dj—K a- Tii.Kz)- (36)

DK '

Thus, it follows that the likelihood |P| for a covariance selection model with exactly one

zero concentration (¢’ = 0) or, equivalently, with one zero partial correlation coefficient
(pis.x = 0) is:

! -n/2
L« B = (_—DfKD"K) , (37)
Dx

that is, it may be computed from determinants of submatrices without evaluating the
maximum likelihood estimate $,; .
If there is exactly one zero partial association for variable pair (¢, j), a simple matrix
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formula for p,; can nevertheless be given in terms of the observed correlations. Let the
p X p matrix R be partitioned as

I
l 2
|
R=| " ! | Rix , (38)
R1KT RiKT ’l Rix p— 2
————— s
2 p— 2
then the observed partial correlation for (7, 7) is
—1 T
ik = Tii RixRex Rix (39)

(1 — RiRux Rix™)"2(1 — R, Rux 'Rix)2

Proof: From
l:'l — RixRax Rix’ 7 — RuxRaex” R } ) }VTH 7‘“1_1
1 - RiKRKK_IRiKT

7'“

and from (34) and (36) we get
D,k Tii.K(DiKDiK)l/z

E‘ii T“‘J_I B Dx Dx
- )
7,11 21-&

D

then relation (39) follows. A few additional arguments lead from (39) to the maximum-
likelihood estimate as

pii = RuRix 'Ryx", orto (40)

Poi = Ty — im —ana

In the contingency table context the most complex of the multiplicative models with
(I; — 1YI; — 1) [k I, degrees of freedom is the pattern with exactly one zero partial
association: For all layers of the variables in K, variables 7 and j are independent; the
expected and estimated cell counts satisfy:

m. ixMq . N kM.
Mijg = — AR ’ Mg = — B LK, (41)
m..x n. .k

The log-likelihood can then be computed from observed marginal tables,
InL o« (X n,xlnnx) + (D nixlnn.g) — (D n.xlnn x) (42)
iK iK K

just as in a correlation matrix where the log-likelihood could be computed from submatrices
(see (37)):

InL « —g lln D;x + In D,x — In Dgl. (43)

Furthermore, in a 27 contingency table the implied marginal association
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o 2\1/2
" mi;n, — N, N;.,
S = (Z( i : i ))

LN N (O

will be similar to the one implied in a correlation matrix (similar to (40)).

5.2 A Pattern With Several Zero Partial Associations.

All multiplicative models can be derived and interpreted as patterns with several zero
partial associations, be it in the contingency table context or in the correlation matrix
context. For instance, suppose we want to test the following hypothesis in a correlation
matrix: Variables 1, 2, and 3 are independent after eliminating the influence of variables
4 to p. This hypothesis corresponds to pattern 145, --- |, p/245, -.- |, p/345, --- , p, or to
zero partial associations of the pairs (1, 2), (1, 3) and (2, 3). The likelihood for this pattern
and thus a likelihood ratio test statistic may be found by a stepwise elimination of partial
associations, that is by repeatedly applying a rule like (37)

p12 0 — Disss, .- pDosss,ooe _ Il“,]

D345'..._p

p12 — 13 __ 0_) D145."'.DD2345"”.P = ]ﬁl (44)
D45,...'1,

D D,y ... ,D "
12 13 23 145,+++,p 245, 2P 345,**+,p
=0— AT = |P|.
P P (Dys, ... )" ||

If the implied marginal associations, the maximum likelihood estimates g2, f13, P2s , are of
interest, they can be computed as

..... pR45....,1J_1R1'45,....1JT fOI' (i) ]) = (17 2): (17 3); (27 3)' (45)

This follows from (40) and from arguments similar to those described previously for pattern
123/14, that is from

P12.45,+--,p = 0

plz — p13 = 0{___> P12.345,+4,p — 0 = Prads, ey = 0 (46)
o

P13.245,+44,p = _
P23.145,++4,p = P23.45,5+2p «

In a contingency table the estimated cell counts and the test statistic for pattern
145, --- , p/245, - -- , p/345, - -+ , p can be obtained stepwise—similarly as in (44)—to be

(Z nih..._;ﬂ)(vz ngh...',‘,)(-z n,-‘_...‘i,,)
mi,i,,n-,,’,, — ta,ts $1.%s t1,%a . (47)

( Z n,-h...‘;ﬂ)Z

i1.0a,%s

Furthermore, the marginal associations 45 , $13 , ¥2s in a 2” table will be similar to those
in (45).

5.8 Applications.

Patterns with zero partial associations may be of interest either within the context of
confirmative or of explorative types of analysis. Examples for the first case are hypotheses
on conditional independence that occur in observational studies if the influence of several
confounding variables is suspected. For instance, in studies on changes in blood circulation
potential confounding variables are age, weight and length; in studies on prenatal mal-
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formations birth order or sex may be important background variables. Explorative model
search procedures, on the other hand, may be used in all those situations where a factor
analysis or a cluster analysis could be considered; for instance, to study the interrelations
of personality traits or of the symptoms of a disease. In a forthcoming paper we shall
propose a model search procedure among multiplicative models for quantitative or quali-
tative variables.

ACKNOWLEDGMENT

I wish to thank the referees for their very constructive criticism on an earlier version
of this paper.

ANALOGIES ENTRE MODELES MULTIPLICATIFS DANS LES TABLES DE CONTINGENCE
ET SELECTION DE COVARIANCE

RESUME

On peut étudier une certaine classe de modéles d’association en ajustant des modéles multiplicatifs
4 une table de contingence ou en utilisant la sélection de covariance sur une matrice de covariance.

Nous montrons que chaque modéle multiplicatif pour une table de contingence correspond 4 un modéle
particulier de sélection de covariance et nous mettons en évidence les ressemblances qui en résultent pour
I'interprétation des modéles, pour les tests statistiques utilisés pour chaque modéle, et pour les associations
marginales implicites entre paires de variables.
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