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SUMMARY

An approximation to the maximum likelihood estimates of the parameters in a model
can be obtained from the corresponding estimates and information matrices in an extended
model, i.e. a model with additional parameters. The approximation is close provided that
the data are consistent with the first model. Applications are described to log linear
models for discrete data, to models for multivariate normal distributions with special
covariance matrices and to mixed discrete-continuous models.
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1. I N T R O D U C T I O N

On the whole in maximum likelihood fitting, the more parameters the greater the
difficulty in computing estimates. There are exceptions however. For instance, the model
of direct interest, which we call the reduced model, may be derivable by assigning fixed
values to some of the parameters in another model, which we call the extended model,
for which estimates are available in simple closed form.

The object of the present paper is to show how maximum likelihood estimates under
the reduced model can be found to a close approximation from those in the extended
model. For example, this yields simple noniterative procedures for the fitting of models
involving a multivariate normal distribution with a covariance matrix for which some
elements of the concentration matrix, i.e. inverse covariance matrix, are required to
vanish, the covariance selection models of Dempster (1972). The extended model here
involves an arbitrary covariance matrix, for which explicit maximum likelihood estimation
is via the observed covariance matrix. The resulting approximate maximum likelihood
estimates for reduced models can either be used directly, or can form effective initial
values for an iterative calculation.

The formulae reduce in a special case to those for the deletion of explanatory variables
in least squares estimation of regression coefficients (Cochran, 1938).

2. GENERAL THEORY

We consider an extended model defined by a parameter <f> = (0, y), where 0 and y are
in general vector parameters and a reduced model obtained by fixing y at some given
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748 D. R. Cox AND NANNY WERMUTH

point, denoted by y0. The usual regularity conditions for maximum likelihood theory
are assumed.

Under the extended model there is a maximum likelihood estimate <f> = (6r, ye) with
information matrix and asymptotic covariance matrix respectively

ns-H': tl
The usual relations analogous to regression adjustments hold; for instance the covariance
matrix of 9 given a fixed value y = yQ is

= (he) • (2)^ee.y = Z-eeZ'8yZ.yy^re
 = (he) •

Linear regression coefficients may as usual be computed in two ways, namely as

(3)

One of these may be much simpler than the other, depending on the sizes and forms of
the matrices involved.

It would be possible to develop the following argument directly in terms of the log
likelihood but, because it is changes in the log likelihood that are important, it is more
convenient to work directly with the gradient evaluated at the true parameter point,
denoted by U with components Ug, Uy.

Then under extended and reduced models respectively, we have, using (1), that

Iea(Oe-O) + Iey(Ye-v)~Ue, he(i-e)^Ue. (4)

When y = y0 we thus get that

Sr-0e + Igg Iffy( ye - y0).

That is, if we write

§r = Oe + Ie}ley(yt-y0) (5)

= er-leyl-ry(ye-y0) (6)

then 0r is close to 6r, given y = y0. Indeed 9r-6r = Op{n~x), where n is the sample size.
Note that the approximation holds in probability only when y = 7o- Thus for data that

are inconsistent with y = y0, BT may differ appreciably from 0r and indeed in some cases
6r may lie outside the parameter space, for example, may correspond to a probability
outside [0,1] or to a negative variance.

It follows from (2) that asymptotically 0r is in general more precise than 6r, having
the covariance matrix associated with the linear regression of 6e conditional on y,. In
general 0, = 0r if ye = y0 or if I8y = 0, that is when the parameters are orthogonal (Cox
& Reid, 1987). More generally the adjustment from 0, to 0r will be smaller, and usually
more accurate, if near orthogonality can be achieved.

In applying these results, it will often be best to replace the expected information
matrix by asymptotic equivalents, in particular the observed information matrix at (0f, ye).

Note that when maximum likelihood estimates are also quasilikelihood estimates
retaining their essential asymptotic properties under incompletely specified models, our
results still apply.
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Approximation to maximum likelihood estimates 749

3. A SIMPLE EXAMPLE

Before addressing in §§ 4-6 the types of problem which motivated this work, it is useful
to look at a relatively simple example.

Example 1: Curved exponential family. Estimation in a curved exponential family
provides an illustration of the above results (Efron, 1975). To take a specific example,
let (Y,, Y2) be independentlynormally distributed with mean (0, ad2), where a is a
known constant and let var ( Yt) = var ( Y2) = a2jn, where a\ is known. The extended
model has an arbitrary mean vector, written for the present purpose as (0, aO2+ y). Thus
0,= Yx,ye=Y2 — aY\. A direct calculation yields at y = 0 the information matrix and
its inverse

n I~l + 4a202 2a0"| _. a2, [l -2a0 1
7(0, y ) = — , I (0, y)=— 2 2 -

Thus, on replacing 0 in 7~' by the consistent estimate Yt = 0f, (5) yields

H Y2). (7)1 l+4a'Y2i

It follows from the above matrices that asymptotically

var (0r) = (<To/n)(l + 4a202)"', var (0,) = al/n.

The structure of 0r can be examined directly by writing Y, = E( Yj) + {a2
0/n)^Zj, so that

Z,, Z2 are independent N(0,1) random variables. Then

4. APPLICATIONS TO DISCRETE DATA

We now apply the results of § 2 to models for multivariate discrete data in which
certain contrasts of log probabilities are zero (Birch, 1963; Goodman, 1970; Cox & Snell,
1989). Many of these models can be interpreted in terms of schemes of conditional
independence for some, but by no means all, of which maximum likelihood estimates
are available in simple closed form (Haberman, 1974; Darroch, Lauritzen & Speed, 1980).

We take as extended model the saturated model in which all probabilities vary freely.
We therefore reparameterize in terms of the parameters of interest in the reduced model
and the parameters to be set to zero and evaluate the information matrix for the new
parameters.

Let there be p discrete variables with levels (0, . . . , / , - — 1) (j = 1 , . . . , p) so that there
are L = / , . . . Ip levels or cells in the contingency table. We write

7T = (17, , . . . , 7TL)T V = (1 /7T, , . . . , 1 /7T L ) T

for vectors of probabilities and reciprocals of probabilities. For asymptotic calculations
we suppose that none of the TT, is very small. Write, for example, Dn for the diagonal
matrix formed from the elements v. For simplicity, we concentrate on the arguments for
p binary variables, i.e. take /, = 2 (j = 1 , . . . , p), L = 2P.
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750 D. R. Cox AND NANNY WERMUTH

We take as extended model an arbitrary multinomial distribution over L cells, so that
from n independent observations rre is formed from cell proportions and

n cov (irt) = Dn - TTTTT. (9)

The Jacobian of the transformation from v to log TT is D~J, so that asymptotically

n cov (log ve) = D;1 - eeT, (10)

where e is a vector of ones. Because D~' TT = e, it follows that

where / is the identity matrix and, the right-hand side being idempotent, it follows that
(9) and (10) are generalized inverses. This is connected with the result that in a full
exponential family the canonical parameter and associated moment parameters have
mutually inverse information and covariance matrices and with the more general notion
of dual parameters (Dempster, 1971).

One important reparameterization is in terms of the factorial contrasts of log IT defined
by

wliere T defines contrasts in a standard factorial system (Yates, 1937; Good, 1958), via

with T~l=2~"T.
The asymptotic covariance matrix of A, is

7 - cov (log 7f,)T- = L

where T~le = (1 0 . . . 0)T, and Tin is a column of T. Thus

(V TT~X - I2 ' wTT<2) i,TTip)\
n cov(A)

where Til)TD^T<J) = 1. TTJX for i=j and all remaining products are elements of
{J^T*2 ' , . . . , pTTK/')}) since elementwise products of columns of the design matrix just
reproduce one of the other columns in the design matrix.

To fit a reduced model in which certain of the A's are zero, we pick out the rows and
columns of (11) so that an upper block refers to the parameters 9 of ultimate interest
and the lower block to the parameters y fixed at 0 under the reduced model. Application
of the results of § 2 is then immediate, incidentally without matrix inversion.

This procedure has been tested on a number of empirical examples all confirming that
6r and 6r agree to a close approximation, provided that the data are consistent with the
reduced model, y = y0, as judged from the studentized interactions.

Example 2 :2x2 table with near independence. It is worth illustrating these results on
a simple example where direct calculation is possible. Consider a 2 x 2 contingency table
defined by two binary random variables A and B, with iri} = pr (A = i, B =j), n0 being
the corresponding cell frequency, 2 ny = n. Suppose that the TT^ are arbitrary in the
extended model and that the reduced model corresponds to independence.
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Approximation to maximum likelihood estimates 751

We start from

77oo = exp (£ + ix + C)/T, TT-,0 = exp ( -£ + fi

7T0, = exp U ~ V- ~ £) / r , 7rn = exp ( -£ - /A +

where

is a normalizing constant playing the role of an overall mean.
In the notation of §2, 6 = (£ p), y = £, <£ = (£, /t, £). In a notation consistent with

non-binary data, we sometimes write, for example, kf, the main effect of A at level i, etc.
Table 1 is a numerical example, illustrating close agreement between 0r and 6r, arising

in part because the sample two-factor interaction is small.

Example 3: 23 table with no three-factor interaction. We now illustrate how the procedure
of § 2 provides a noniterative accurate approximation in the fitting of a model for which
no explicit maximum likelihood solution is available (Bartlett, 1935). Table 2 gives counts,

Table 1. Numerical example of 2x2 table: estimates and covariance matrices

(a) Estimates

Level of
A B Type of

/ i j ntj TTH,. interaction 0, 0r 0r

1 0 0 10 009 A -1-548 -1-540 -1-540
2 1 0 30 0-27 \$ = { -0-504 -0-490 -0-490
3 0 1 20 0-18 A£ = M -0-301 -0-279 -0-279
4 1 1 50 0-46 A£,B = £ - 0 0 4 6 0 0

(b) Covariance matrix

0-0036 0-0060 0-0040 0-0023
0-0127 0-0023 0-0040

00127 0-0060
0-0127

Covariance matrix is \T{D~^ -eeT)T, with tr estimated by n,,.
Studentized interaction is, for example, for A £ ? = -0-046/V0-0127 = -0-40.
Chi-squared goodness of fit, 0-17 (1 d.f.) based on 8r or 0r.

Table 2. Symptoms of gestosis

A

•

0
1
0
1
0
1
0
1

Level of
B

j

0
0
1
1
0
0
1
1

c
k

0
0
0
0
1
1
1
1

n,jk

2342
609
44

6
45
36
9

14

Type of
interaction
at levels 0

A
XA

A8

\AB

Ac"
\AC

A8*'
XABC

Studentized
interaction

3-04
17-80
2-73

16-52
3-85
8-41
0-29

-3-8673
0-2068
1-2103
01857
11233
0-2615
0-5718
00195

-3-8712
0-2020
1-2136
01969
11253
0-2741
0-5707
0-0000

-3-8713
0-2021
1-2138
01964
11255
0-2736
0-5705
00000

Chi-squared goodness of fit (1 df) based on 0r or 8r, 0-075.
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752 D. R. Cox AND NANNY WERMUTH

studentized interactions and fitted parameters. The data (Wermuth & Roller, 1976)
concern symptoms of gestosis, an illness with still unknown aetiology, occurring during
pregnancy. The symptoms are oedema, present i = l; proteinuria, present j=\; hyper-
tension, present k = 1.

Maximum likelihood fitting of the reduced model requires iteration. The procedures
of § 2 provide a noniterative accurate approximation.

5. APPLICATION TO SOME MULTIVARIATE NORMAL MODELS

In § 4 we dealt with a class of problems connected with discrete random variables. We
now turn to two rather different types of reduced model connected with the multivariate
normal distribution.

In the first, the extended model is that for a random sample from an arbitrary
multivariate normal distribution, whereas under the reduced model certain elements of
the concentration matrix, i.e. the inverse of the covariance matrix, vanish (Dempster,
1972). The zero elements correspond to assumptions of conditional independence.

In the second, the extended model is that for the so-called general linear model in
which a vector of response variables has linear regression on a fixed set of explanatory
variables with multivariate normal errors and a regression of the same form for each
component response but with functionally independent parameters, i.e. regression
coefficients. In the reduced model some of these regression coefficients are zero, so that
the regressions of the separate components are allowed to have different structures
(Haavelmo, 1943).

In both cases the maximum likelihood estimates under the extended model take a
simple form. In the first case these are determined by the sample mean and covariance
matrix, or its inverse, and in the second they are the separate least squares estimates and
the covariance matrix of residuals.

Suppose, first, then that Y-(Y(i),..., Y(q)) has the multivariate normal distri-
bution, M N , ( / I , I ) with mean /x and covariance matrix 1 and that a random sample
V, (t = 1 , . . . , n) is available.

It is convenient to list the distinct elements of 2 as a vector a = (crn, cr12, a-,,,..., o"w).
Under the extended model

where /I is the vector of sample means and

Now fi, and So are independently distributed with /2~ N(fi, n~l 1) and asymptotically
( 7 ~ M N {cr, n~' Iss (I)}, where Iss (£) is the matrix with elements (Isserlis, 1918)

ncov(a,j,6-kl) = aik aJt + a,, ajk. (12)

Here, however, we need the information or covariance matrix for the estimate not of cr
but of (o, the vector formed from the elements of the concentration matrix ft = 5T'. This
is achieved via the simple asymptotic result that a> ~ N{io, Iss (ft)}.

To see this suppose first that fi is known, equal to zero without loss of generality.
Then Z = V ( 1 ~ M N (O, ft) so that the vector of average sums of squares and products
about the origin formed from Z, (r = l , . . . , n ) is asymptotically MN{ID, n~' Iss (ft)}.
Replacement of ft by ft and the mean squares and products about the origin by those
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Approximation to maximum likelihood estimates 753

about the sample mean leaves the asymptotic result unchanged. Note finally that the
matrix of average sums of squares and products about the origin is n~1£lTYTYCl = n~'ft.

To use these results, we need as before to define the 0's and -y's appropriately and to
pick out the rows and columns of Iss (ft) relevant for 9. Because of orthogonality the
estimation of /i, can be disregarded. Similar arguments would not hold if the reduced
model were to be specified by zero marginal correlations, i.e. by zero elements of 1.

In the extended model the canonical parameters are fiTd and (I. We have, however,
worked with the mixed orthogonal parameterization (fi, fl).

Example 4: Smallest known non-decomposable covariance matrix. Table 3 gives means
and sample covariance matrix for four variables measured on 684 female students
(Spielberger, 1983; Spielberger et al., 1983). The variables are X, anxiety state; Y, anger
state; Z, anxiety trait; U, anger trait. Trait variables are viewed as stable personality
characteristics of a person and the state variables as denoting behaviour in specific
situations. A model suggested by psychological theory has X±U\(Y,Z) and
Y JL Z|(X, U). The fit of the model is good as shown by the studentized interactions in
Table 4, and 0r and 6r agree closely and in this instance differ little from 0,.

To study the second regression problem, let Y be an n x q matrix of response variables
with independent rows, each multivariate normal with covariance £ and with E( Y) = x/3,
where x is an n xp matrix of known explanatory variables and fi is a p x q matrix of
unknown parameters. Then under the extended model, )3 = (xTx)~lxTY, corresponding
to applying ordinary least squares to each component variable in turn. Further the

Table 3. 684 female students: Means and covariance matrix of 4 values

X
Y
Z

u

37

18

•1926

•8744
X

(a) Covariance matrix

24
44

15

•9311

•8472

(b) Means

•2265
Y

21-6056
17-8072
32-2462

21-2019
Z

15-6907
21-8565
18-3523
43-1191

23-4217
U

Table 4. 684 female students: Estimates of
studentized concentrations and concentrations and
precisions under extended and reduced models

Type of
parameter

<"«

O)yy

Oxz

O>\;

W--

<"vn

« \ H

(I)-,,

0)....

Studentized
concentration

10-70
—

-1112
-0-66

0-99
-7-95
-7-93

00560
-0-0213

00404
-0-0267

0-0012
0-0576
0-0017

-0-0019
-00142

00346

I
00567

-00214
00397

-0-0267
00000
0-0567
0-0000

-00116
-00137

0-0348

i
0-0568

-00213
0-0397

-0-0267
-00001

0-0567
-0-0002
-00115
-00136

0-0348

Chi-squared goodness of fit (2 d.f.), 1-95 for flr, 2-10 for 6r.
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754 D. R. Cox AND NANNY WERMUTH

maximum likelihood estimate of 2 is formed from the matrix of residual sums of squares
and products and is independent of /3, and so can be disregarded in the following
calculations. The covariance matrix of the vector formed by 'stacking' the columns of y§
is 2 ® (xTx)"'. Again to apply the results of § 2 to a model in which some of the components
of /3 are zero, we pick out the relevant rows and columns.

Example 5: Simplest linear regression problem requiring iterative estimation. Suppose
that there are two component variables, q = 2, and that Vll) is assumed to have regression
on the first explanatory variable, Y(2) on the second. For simplicity suppose that both
regressions are through the origin, and that we have n independent pairs. The extended
model is

y,

with unknown covariance matrix for the pairs (Y{1\ V<2)). The reduced model is obtained
from the special case -y, = y2 = 0. The 4x4 information matrix of (0U, 62e, yi», 72?) is

(D222xnXl2

Thus by (5)

a5122x,
c3222x (2

:,,x,2] To),,
x2

2 J L "
2x,,x,2

w122x2
2

Kenny (1979, p. 236) reported for 724 U.S. cities correlations between X, no. of police
per cap, 1969; V, no. of reported burglaries per cap, 1969; Z, no. of police per cap, 1968;
U, no. of reported burglaries per cap, 1968. See Table 5. It is sensible to consider the
hypothesis that each 1969 value is predicted from the corresponding 1968 value but that
the information on the other variable in 1968 does not improve prediction, that is X iL U\Z
and Y JLZ\U.

Table 5. 724 U.S. cities. Correlations between four variables

X
Y
Z

u

1 0-39
1

0-86
0-35

1

043
089
0-47

1

Table 6 shows studentized regression coefficients under the extended and reduced
models. Although there is evidence of lack of fit, 6r and 6r agree closely.

One distinction between the two problems analysed in this section is that in the second
conditioning takes place on a pair of variables, whereas in the first problem all variables
are treated as random, in fact as multivariate normal. Provided that interest is focused
on the appropriate regression coefficients and not on other aspects of the system under
study, the arguments for conditioning are powerful and include the substantial extra
generality achieved by evading assumptions on the distributional form of the explanatory
variables.
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Approximation to maximum likelihood estimates 755

Table 6. 724 U.S. cities. Estimates of studentized regression
coefficients under the extended and reduced models

Type of
parameter

0, = /3T- „
7l = P.u.z
y2 = p^_ u

*2 = ^ w . ' -

e 4 = o>12

0c = (Off

Studentized
regression
coefficients

39-37
1 54

-4-63
49-22

Or

0-844
0033

-0-088
0-931
0-260
0065
0-202

Or

0-881
0
0
0-886
0-261
0-068
0-208

i
0-882
0
0
0-886
0-261
0068
0-208

Chi-squared goodness of fit (2d.f.), 22013 for 0r, 22015 for 6r.

Within the framework of maximum likelihood estimates a conditional formulation can
be converted into an unconditional one, indeed in many ways. For if the conditional log
likelihood is 1(6; x), where x is a vector of 'fixed' explanatory variables and g(x; 8) is
the density of x as a random variable, where the parameter spaces of 0 and 8 are separate,
the overall log likelihood is 1(6; x) + logg(x; 8), and entirely separate maximum likeli-
hood estimation of 8 and 6 follows. Note that it is crucial that all information relevant
to 6 is contained in the first term. Given first a joint distribution of all variables, including
x, this concentration of information in the conditional distribution will hold, if at all,
only for a particular choice of parameters.

Given the conditional log likelihood 1(6; x), the simplest choice of g(x; 8) giving an
easily handled joint distribution is likely to be the exponential family distribution
generated by the pure functions of x entering 1(0; x) and having moment parameter 5.
Thus for normal theory simple linear regression the conditional log likelihood involves,
as well as the sufficient statistics 1y,,1y2, 1x,y,, the functions 2x,, 1x2. It is therefore
sufficient to give the x's the exponential family distribution generated by 1x,, 1x],
equivalent to a normal distribution for the x,. The maximum likelihood estimates of Sx(,
'Lx2 are those of the marginal parameters and maximum likelihood analysis of the bivariate
normal model with all parameters unknown is, for the regression coefficient, the same
as maximum likelihood analysis of the conditional model.

By an extension of this argument, the second example above could have been treated
via the maximum likelihood analysis of a random sample from a 4-variate normal
distribution in which Xx, X2 are assigned unknown means and marginal covariance
matrix. Conceptually the conditional approach is usually preferable, although there may
sometimes be computational advantages in the unconditional analysis. The connection
between logistic regression and log linear models is another illustration of these points,
where the assigned distribution for x is multinomial on the observed points, a useful
notion only when the number of such points is small.

6. APPLICATION TO MIXED DISCRETE-CONTINUOUS MODELS

Finally we consider applications in which a mixture of discrete and continuous variables
is involved, in particular via graphical association models (Lauritzen & Wermuth, 1989).
Let there be p discrete variables with / , , . . . , /p levels, so that L = / , . . . Ip is the total
number of level combinations or cells, the corresponding vector of probabilities being
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756 D. R. Cox AND NANNY WERMUTH

TTT= (TT, , . . . , TTL). Suppose also that there are q continuous variables Yil),..., Yiq) and
in the /th cell let ^(l) = EfY*0), atj{l) = cov(y( l), y0 )) , 2(0 and ft(/) = {!(/)}"' being
the corresponding covariance and concentration matrices. For a CG-distribution the joint
distribution within a cell is multivariate normal and in the important homogeneous case
1(1) = 1. We write, as in § 5, /xT(/) and crT(/) for column vectors of parameters.

Now the parameterization in terms of expected counts mrT, means (JLT =
(/xT(l), . . . . nT{L)) and covariances crT= (o"T(l),..., crT(L)), is orthogonal with covari-
ance matrix formed from three blocks of the respective components. Replacement of crT

by o)T, the corresponding concentration matrix preserves the block diagonal structure.
In the homogeneous case the separate covariance or concentration matrices for each cell
are replaced by a single matrix.

If models involving conditional independencies among the discrete components con-
sidered marginally are of interest we follow the procedures of § 4. If, with the CG-family,
conditional independencies involving both discrete and continuous components are
considered (Wermuth & Lauritzen, 1990), we must transform to the canonical parameters
ft = 2~' and £T = nT0,.

We transform first to the canonical parameters ft = 2"' , £T = /tz.Tft and S with

and in a further step to canonical interaction parameters. For instance, for two discrete
random variables, A, B and two continuous variables X, Y, the quadratic ip, the linear
7j, and discrete canonical interactions, A, in a nonhomogeneous CG-distribution are

= M[<oxy(l)], +Y = M[coyy(l)l

V A = M[S],

where, for example, [<*>.„(/)] denotes the Lx 1 vector of precisions for X and M is the
Kronecker product of inverses of design matrices for the discrete variables.

Thus, if I, = 2, I2 = 3 we may take

M •[: -:
- 1

0
1
1

1

1
0

- 1

1
- 2

1

The conditional independence hypothesis A JL B | (X, Y) is in this case reflected in zero
two-factor interactions in all six interaction vectors, i.e. in the last two terms of
(//x, tl>XY,..., A being zero.

The covariance matrices of estimates of the canonical parameters can be computed
via the block-diagonal structure of the orthogonal estimates TT, p., &, using the appropriate
transformation matrices. No explicit matrix inversion is needed.

The concentration matrix of the moment estimates is

{n cov (77, /I, «r)}~' = diag {Dt,-eer, D^nm]. Air,o,US^ID,]},

where the second and third components are themselves block-diagonal square matrices
of sizes qL and q'L respectively, where q' = \q{q + 1), and Df is a diagonal matrix with
elements 5 for precisions, iou and 1 for concentrations, o>y (1+7).
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Approximation to maximum likelihood estimates 757

A transformation from (TTT, [/LI(/)]T, [o-(l)]T) to (irT, [>,M(/)]T , [7r,o-(/)]T) and back
involves the transformation matrices

7-,=

A «•(/)]

o

0

o
0 -\

II 0
Dv®Ia

0
0

Further a transformation from (TTT, [TT//I(/)]T, [7r/<x(/)]T) to

with a,j(l) = n,(l)nj(l) and back involves T2, 77", where
L O O
0 0

, ' L .

77' = 0
0
0

where B(l) is the matrix of derivatives of a(l) with respect to p.,. For instance for q = 3
variables X, Y, Z we have, suppressing subscripts, that

"2/*x fjiy nz 0 0 0

0 ux 0 2/AV /i2 0

0 0 (JLX 0 / iv 2^2

The covariance matrix of counts, sums, sums of squares and products is

n2T2Tx cov (TT, /I, &)TjTj,

the inverse being the covariance matrix of (S, £, -Dfoj), a fact exploited by Dempster
(1973) in deriving the covariance matrix for estimates of canonical parameters in a
homogeneous CG-distribution. His results are reproduced by replacing D^,/,] in the last
line of 7, by a matrix of zeros, and replacing Dn®Iq by /,.

The asymptotic covariance matrix of the canonical parameter is, with minus denoting
a generalized inverse,

cov (5, C, a)) = n T3 77 i , COV(TT, (JL, cr) T, 77 77 ,

where T3 = diag (IL, IqL, -Dr® IqL), and with explicit expressions for the other inverses
being given above.

Finally, the variances of canonical interactions are needed to compute studentized
interactions as a basis for judging the adequacy of fit of the reduced model.

The computations are considerably simpler if conditional independencies among the
discrete variables are not of interest. From the block-diagonal covariance matrix of
(TT, /X, a>) that of (TT, £, w) can be obtained via the transformation matrix

0 0

A
0

nd)]

0

Again suppressing subscripts, it can be shown that in a cell with count n

n* cov (£, cS) =
Iss

where C has the same dimension and form as B with means replaced by corresponding
linear canonical parameters; the parameters £, ui are orthogonal to v.
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Example 6: Numerical example of conditional independence model for two discrete and
one continuous variable. Table 7 gives counts, means and variance for two binary and
one continuous variable. It is the simplest mixed association model requiring iterative
fitting for maximum likelihood estimation (Edwards, 1990; Frydenberg & Edwards, 1989).
The reduced model has A iL B \ Y and in this two two-factor interactions involving A
and B are zero (Lauritzen & Wermuth, 1989), namely \AB = 0, where \AB is the standard
two-factor interaction calculated from log 77̂ —5̂ .̂ /0-, and TJ/*S = O, the latter being in
this special case equivalent to the factorial requirements of no two-factor interaction in
means (Cox, 1984). Table 8 gives studentized canonical interactions and approximate
and exact maximum likelihood estimates.

Table 7. Numerical example for 2 discrete and
one continuous variable

1

0
1
0
1

J
0
0
1
1

"u
180
120
20

180

32
5

26
- 2

a
60
60
60
60

Table 8. Numerical example for 3 variables.
Studentized interactions and parameter estimates

Type of
interaction
at levels 0

A"

A"
KAB

V
vA

vB

vAB

a''

Studentized
interaction

-12-8026
-1-4631
-0-1402

—
13-6368

5-9075
-0-4897

-8-2405
-3-9292
-0-3208
-0-0306

0-2542
0-2292
00542
00042
00167

i
-8-1362
-3-8355
-0-2914

0-0000
0-2458
0-2219
00502
0-0000
00162

I
-8-1444
-3-8240
-0-2919

0-0000
0-2461
0-2223
00504
0-0000
00162

Chi-squared goodness of fit (2d.f.): based on 0r, 1-29; 0r, 1-28.

Example 1: Effects of child rearing styles; 2 discrete and 2 continuous variables. Table
9 summarizes observations on 117 children of two binary variables A, vigilance of child;
B, supportive behaviour of father and of, X, anxiety of child; Y, inconsistent behaviour

Table 9. 117 children. Counts, means and covariance matrices for
2 discrete and 2 continuous variables

Means, yn Covariance matrices

23-3636 X 66-3388 45-0744
Y . 481405

25-4103 X 411598 230039
Y . 43-4727

21-2069 X 18-5065 90820
Y . 19-6124

23-4815 X 27-4102 7-4966
Y . 33-7311

1

0

1

0

1

J
0

0

1

1

22

39

29

27

28-5455

33-6154

260134

30-8148
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of mother scored on a continuous scale (Kohlmann, Schuhmacher & Streit, 1988). A
reasonable hypothesis is that supportive or unsupportive behaviour of the father will
have no direct effect on the child's vigilance, i.e. on whether the child is intensely collecting
information on potentially threatening events. This corresponds to the hypothesis
A JL B | (X, Y). Again this model needs iterative fitting and leads to a chi-squared goodness
of fit (6 d.f.) of 4-46 on 6 degrees of freedom based on 6r and of 4-55 based on Br. Table
10 summarizes some relevant results of fitting.

Table 10. 117 children. Estimated interactions
involving both A and B

Type of
interaction
at levels 0

\AB

V
ABX

VABY

tABX

^ABXY

d,ABY

Studentized
interaction

0-74
-100
-014
-0-94

015
-0-37

1-6304
-01410
-00172
-0-0060

0-0008
-0-0025

Note that in these last examples the structure of the CG-models is such that absence
of interaction involves a special linking of the parameters defining the continuous and
discrete components of the model and hence is not assessed from fairly standard analysis
of continuous and discrete aspects separately.

While it is necessary to use canonical parameters in the last examples, it is desirable
so far as feasible to keep to orthogonal parameters, in particular to avoid the large
differences between 6e and 0r consequent on major nonorthogonality. For instance, if
the canonical parameters are used in fitting a random sample from a single normal
distribution the correlation between the estimates is -(1+jcv2)"1, where cv is the
coefficient of variation, standard deviation divided by mean, and hence is often close to
1 with consequent unreliability in the estimation formula (2). A similar conclusion is
likely in comparable more complicated cases.

7. DISCUSSION

We are very grateful to a referee for suggesting a connection with the generalized least
squares method of Grizzle, Starmer & Koch (1969) for the analysis of log linear models
for multinomial data. In fact a rather general relation of this kind holds for certain curved
exponential family models embedded in full exponential family models, in particular for
generalized linear models (McCullagh & Nelder, 1989).

Suppose that, possibly after reduction by sufficiency, we have a vector Y, with E (Y) = -q,
such that for some function /»(.), the reduced model is h(r)) = xe8 and that the extended
model is a full exponential family with moments or canonical statistic Y; for the extended
model we write /I(TJ) = z<f>, where z = (xe, xy), <f>T= (0j, yl). Note that fje = Y.

Examples include a multinomial model, with Y the cell proportions, TT the cell
probabilities, arbitrary under the extended model subject to 2TT, = 1, and with h(in) =
log TT\, for instance, and the two regressions model, Example 5. Here the vector Y consists
of the right-hand sides of the two least squares equations and the matrix of residual sums
of squares and products.
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Under the extended model with canonical statistic Y, maximum likelihood estimates
are obtained by equating the canonical statistics to their expectations, or equivalently by
writing h(rjr) = h(Y) = z$e. We write Ve for the asymptotic covariance matrix of h( Y)
obtained from the observed information matrix under the extended model; note that V,
is determined by the data and does not involve unknown parameters. The asymptotic
covariance matrix of <£, is {zTV~z)~l, where generalized inverses could be avoided, but
are convenient to cover the multinomial case where STT, = 1 and Y is the vector of all
cell proportions, also summing to one. The key equation (5) now gives

i = de + {xl V~xe )-\xeV-exy)ye.

An apparently different approach is to apply the method of generalized least squares
(Aitken, 1935) to the reduced model using as 'weighting matrix', however, Vf, the
covariance matrix under the extended model, i.e.

e? = (xT
ev;xey

1{xT
ev-h(Y)}.

We can write the equation defining <f>e as (zTV~z)4>e = zTV~h( Y). After expressing
this in partitioned form corresponding to (0, y) it follows that 6r = 6*.

Special cases are the procedure of Grizzle et al. (1969), in which Vr is determined via
the covariance matrix of cell proportions in a multinomial distribution, and Example 5,
with the covariance matrix estimated from the residuals in the extended model fit of
separate least squares equations. The exact maximum likelihood estimates satisfy an
equation of the same form as that for 6* but with Ve, and in general Xe, calculated at
6; see, for example, Cox & Snell (1989, p. 176). We do not address the difficult issues
of convergence to and uniqueness of solution of the formal maximum likelihood estimat-
ing equations. Note, however, that when h(.) is itself linear, then the generalized least
squares estimates 6*, and hence 0r, will be close to the maximum likelihood estimates
8r whenever V, calculated from the data is close to V, calculated at 6.
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