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A note on the quadratic exponential binary distribution
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SUMMARY

The joint distribution of p binary variables is studied in the quadratic exponential form containing
only 'main effects' and 'two-factor interactions' in the log probabilities. Approximate versions of
marginalized forms of the distribution are studied based on Taylor expansion and a number of
conclusions drawn.
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1. INTRODUCTION

Consider the joint distribution for p binary random variables Au .. ., Ap in which

log pr {Aj = ij {j = 1 , . . . , p)} = n + £ ocjij + £ , > / t xjkijik. (1)

Here ij = + 1 , n is a normalizing constant and the a's are unknown parameters. The distribution
(1) is sometimes called a quadratic exponential distribution.

In a sense this is the binary analogue of the multivariate normal distribution. Thus it has virtually
the same number of unknown parameters and when n independent and identically distributed
observations are available the likelihood has the exponential family form with the one-way and
two-way tables of frequencies as canonical statistics. Further the conditional distribution of, say,
(Au A2) given all remaining variables is formed by subtracting from (1) a function of i 3 , . . . , ip so
that the resulting log odds ratio in the conditional 2 x 2 tables for (Au A2) is 4<x12, for all values
of ( i 3 , . . . , ip). This is qualitatively similar to the interpretation of concentrations, i.e. the off-diagonal
elements of the inverse covariance matrix, via the partial correlation of two variables given all
remaining variables (Wermuth, 1976).

Similarly, if we condition on all variables except one, say on A2,..., Ap, we have that the
conditional logistic transform for At is

2«! + 2(a12i2 + . . . + a lpip).

Thus 2aj is the average logistic transform, the average being taken over equally weighted values
± 1 for the other variables. Sadly this interpretation has no direct operational force. As is general
for log odds ratios, there is a double interpretation of 2a.jk as the conditional regression coefficient
of Aj on Ay and of Ak on Ajt in both cases given all other variables.

Unfortunately, however, the distribution (1) does not retain its exact form under marginalization
and conditioning (Cox, 1972). These considerations restrict its usefulness, although Zhao & Prentice
(1990) and Fitzmaurice & Laird (1993) have provided methods by which (1) can be combined
with a specification of the marginal distribution of individual components.

The object of the present paper is to show that closure under marginalization and conditioning
can, however, be achieved approximately; some consequences are explored.
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2. EXPANSIONS FOR MARGINAL PROBABILITIES

If we marginalize (1) with respect to Ap, that is compute the distribution of (Au ..., Ap-,), we
have that

log pr {Aj = i,- (; = 1, . . . , p - 1)} = /* + log 2 + E otjij + E,->it ajkijik

+ log cosh (<xp + £ ccJpij), (2)

where E denotes summation over _/ = 1 p — 1. Suppose now that the interaction parameters
are small.

Because

log cosh (a + e) = log cosh a + e tanh a + \e2 sech2 a + ge3(—2 sinh a sech3 a) + O(e4),

it follows that products of three variables, representing departures from (1), arise, as would be
expected, first from the cubic term. A typical term is

-2ahPaJ2P
aJ3P

 s i n h «P s e c h 3 aP = - « A P « A P « * P * ( « P ) .

say. The function g(.) is odd, is zero at <xp = 0 and as ap-> ±oo, and is less than 0-8 throughout.
In many fields of application a log odds ratio of 1, that is an ccjk of g, would be quite substantial
so that in many cases the three-factor interaction will be small and this has been confirmed by
numerical work. Note, however, that if p is appreciable there will be many three-factor terms. Note
also that if all the aJk and <xp are positive the three-factor contribution is negative.

If we ignore cubic and higher-order terms in the expansion, we have a (p — 1 )-dimensional
quadratic exponential model in which the new coefficients are

H(P) = n + log 2 + log cosh ap + 2 E a?P s e c h 2 ap> (3)

a(P>; = a ; + ajptanh aP> (4)

a(P>./* = «;* + o-iP^P s e c h 2 <V ( 5 )

The argument can now be repeated marginalizing successively over a set of variables, leading
to the following general result. Suppose that A is partitioned into two parts, A = (B, C) of dimen-
sions pB,Pc- Let;, k refer to B, and r, s to C. Then the marginal distribution of B is approximately
of the quadratic exponential form with parameters

= A* + Pc log 2 + £ r log cosh ar + £ ^Jr aj, sech2 ar, (6)

(C)y = a,- + E , <*jr tanh ar + £ r + 5 ccjrccrs tanh as sech2 ar, (7)

a<cy* = «/* + Er a/ra* ' ()

The subscript (C) is a reminder that marginalization over the distribution of C has taken place.
The results are best proved inductively starting with the case of three variables.

The conditional distribution of C given B can now be obtained by subtraction of the log prob-
ability for the marginal distribution of B from that for the joint distribution of B, C. We obtain
another quadratic exponential model to the order of approximation under consideration.

3. SOME IMPLICATIONS

We now consider briefly a number of implications of the above formulae. All the conclusions
are, of course, subject to the approximations used in § 2.

First, suppose that, possibly after interchanging the definition of the levels of particular compo-
nents, we have that <xjk ^ 0 for all j , k. This gives an analogue of the MTP2 multivariate normal
distributions (Karlin & Rinott, 1980) in which partial correlations of all orders are nonnegative.
It follows from (8) that as we marginalize over more and more components the conditional associ-
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ation between any given pair of components is nondecreasing and indeed in most cases is strictly
increasing. Further, the Yule-Simpson paradox, a sign change in aJk as the conditioning set changes,
is not possible to this order.

Secondly, various special choices of parameters can be made in (1). Thus an analogue of the
intraclass model with constant mean would be obtained by setting a, = a, <xjk = e. These are not
directly interpretable in terms of marginal properties and two-way associations, although 4e is the
conditional log odds ratio between a pair of variables given all the remaining ones. However (8)
shows that the marginal two-way log odds ratio is approximately 4e + 4(p — 2)e2 sech2 a.

For example, for p = 4, Table 1 compares exact and approximate log odds ratios after marginaliz-
ation; note that e = 0-4 corresponds to a conditional odds ratio of e1'6 = 4-95 which in many contexts
would be a large association.

Table 1. Log odds ratios of distributions derived by
marginalization from a four-dimensional quadratic

exponential distribution with a} = a, <xjk = e

Exact 1
Exact 2
Approx.

Exact

a = 0-4
e = 0-4

1-97
2-18
2-15

2-81

a = 0-2
e = 0-2

3-dim.
0-93
0-96
0-95

2-dim.
115

a = 0-2
6 = 0-4

distribution
205
216
2-22

distribution
300

a = 0
e = 0

0-91
0-95
0-94

110
Approx. 2-70 111 2-83 107

The values Exact 1, Exact 2 correspond to the conditional
2 x 2 tables at the two levels of the third variable. The differ-
ence between them arises from the small three-factor inter-
action induced by the marginalization. Approximate values
are from (8).

Thirdly, we can adapt the results to provide an approximate partitioning of logistic regression
analogous to the partitioning formula for least squares regression which in Yule's notation for
regression coefficients can be written

013=013.2 + 012.3023-

We consider for simplicity three binary variables. Repeated application of the formulae of § 2 then
shows that

+ 2ri2.3y23 sech2 a2 ,

where the y's are logistic regression coefficients; the factor \ arises because the levels of the binary
variables are coded (— 1,1) rather than (0,1). For example, y13 2 is the logistic regression coefficient
of Av on A3 in the regression of At on A2, A3, that is taken conditionally on A2. Note, however,
that, because the equation is accurate only to quadratic terms in the regression coefficients, the
second term could be written in different forms, for example replacing y12.3 by y12. To this extent,
the parallel with the least squares formula is somewhat contrived.

So far we have discussed a single distribution for A, fitting from a simple random sample being
via maximum likelihood for a log linear model. If there are explanatory variables one possibility
(Fitzmaurice & Laird, 1993) is that the probabilities of each component depend on explanatory
variables, for example via a linear logistic model. In this model, which is analogous to a multivariate
normal regression, the additional parameters a}1[ correspond to concentrations in the residual
covariance matrix. These second-order parameters would be specified and estimated separately.
To express the conditional log odds parameters a,- in terms of the marginal Sj, we need to invert
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the expansion (7). The answer is that to second order

ocj = Sj - £ ajr tanh Sr + tanh &} £ a2
r sech2 <5r, (9)

the summation being for all r =#;. Here (5r is one-half the marginal log odds for AT\ that is

If now the dj are specified by loglinear models, e.g.

and the ajk left unspecified, or perhaps constrained to be equal, there results a nonlinear model to
be fitted by maximum likelihood or, perhaps, in special cases by the device described for so-called
reduced models by Cox & Wermuth (1990).

One further possible use of (1) is to set out models for stationary binary time series by setting
a.j = a. and by re-expressing the second-order parameters in terms of marginal lagged associations.
That is, the initial specification (1) of associations would give the log odds of two values a given
distance apart conditional on all previous, intermediate and subsequent values and because this is
on the whole not a good way to specify and interpret time series structure it has to be replaced
by a different specification. We shall not explore this issue here.

Sometimes binary data are produced by median dichotomy of all components. Inversion of (7)
into the form (9) shows that this requires that for all j we have a,- = 0. Then (8) simplifies to the
especially simple form

a<Oj* = a j * + Zr

More detailed calculation shows that in this case the quadratic exponential form is retained to a
higher degree of accuracy.

A key property of the multivariate normal distribution is that if, say, Ax is independent of A2

and Av is independent of A3 then At is independent of (A2, A3). This is true also conditionally on
a further set of variables. To the order of accuracy of our expansions, the same property is true
for the quadratic exponential distribution. To see this consider p = 3 and apply (8) twice to show
that to the required order a12 = a13 = 0, thus showing that, for example, Av is also conditionally
independent of, say, A2 given A3, etc. This condition is important for justifying the representation
of relations between sets of variables via binary analogues of covariance graphs (Cox &
Wermuth, 1993).

Essentially the same algebra shows that if we start, again for three variables, from the assumption
that Ay is conditionally independent of A2 given A3 then, to the order being considered,

a<3>i2 = a(2)i3«(i)23 sech 2 a 3 ,

in which the a's are measures of dependence of pairs of variables marginalizing over the third
variable. This is a fairly direct analogue of the result in normal theory that if 1̂  is conditionally
independent of Y2 given Y3, then

corr (ylf Y2) = corr (Yu Y3) corr (Y2, Y3).

Finally we consider the analogue in the present context of a single factor model for correlations,
namely a latent class model with just two unobserved classes. For this consider p observed binary
variables (Alt..., Ap) as before and an unobserved binary variable L. Suppose that their joint
distribution is such that conditionally on L the As are mutually independent. Then the joint
distribution of (Au ..., Ap, L) is of quadratic exponential form with ajk = 0 for ;, k = 1, . . . , p.

It follows on marginalizing over L that the joint distribution of (Alt..., Ap) is approximately
of quadratic exponential form with the a(L)Jk satisfying a tetrad condition exactly that characterizing
the correlations in the single factor multivariate normal model, namely
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This follows from (8) which leads directly to

from which the vanishing of tetrads follows immediately.

4. AN EMPIRICAL EXAMPLE

Finally we give a brief illustration with some empirical data. Table 2 specifies the joint distribution
of four binary variables arising in a study (Week, 1991) of German high school students. The four
variables are: A, change of school during high school years; B, repetition of a high school class; C,
change of a primary school class; D, father with at least 13 years schooling, the Abitur. For each
variable, — 1 corresponds to yes, +1 to no.

Because of the temporal ordering of the variables, a recursive study of dependence would be
reasonable, but here we use the data to examine the joint distribution. Table 2 shows also the fitted
frequencies under a quadratic exponential model. The agreement is good, with a likelihood ratio
chi-squared value of 6-5 on 5 degrees of freedom.

Table 2. Distribution of four binary variables concerning German high-school children;
fitted frequencies for quadratic exponential model

A B C D Obs. Fitted A B C D Obs. Fitted

- 1
+ 1
- 1

+ 1
- 1
+ 1
- 1
+ 1

- 1
- 1
+ 1
+ 1
- 1
- 1
+ 1
+ 1

+
+
+
+

I - 1
L - 1

j

I - 1

I - 1

I - 1

I - 1

I - 1

40
49
44

100
77

125
62

385

42-3
44-4

37-0

109-3

71 8

132-5

71-9

372-6

- 1
+ 1
- 1
+ 1
- 1
+ 1
- 1
+ 1

- 1
- 1
+ 1
+ 1
- 1
- 1
+ 1
+ 1

- 1
- 1
- 1
- 1
+ 1
+ 1
+ 1
+ 1

+ 1
+ 1
+ 1
+ 1
+ 1
+ 1
+ 1
+ 1

22
44
16
95
78

247
71

571

24-6
43-7

18-2

90-5

78-3

244-4

65-9

578-4

Table 3 shows the estimates of the parameters in the quadratic exponential model. To illustrate
the formula (8) we computed for each pair of variables the marginal log odds ratio summing out
over the complementary pair of variables. These are also shown in Table 3 together with the
approximations derived from (8). The agreement in all cases is excellent showing that the marginal
properties can indeed be found directly from the coefficients in the quadratic exponential model,
i.e. from the conditional log odds ratios.

Table 3. Data concerning German high-school children: estimated parameters
for quadratic exponential model; comparison of marginal log odds and

approximation (8)

(A,B) (A,C) (A,D) (B,C) (B,D) (C,D)

Cond. log odds
Marg. log odds
Approx. (8)

103
102
102

0-56
0-67
0-68

0-52
0-55
0-54

013
0-23
0-21

- 0 1 7
- 0 0 5
- 0 0 5

0-63
0-67
0-68

aA = - 0 - 5 5 5 , «B = - 0 1 8 2 , ac = 0-596, 6tD = 0025 ;

AM = 0-258, 6tAC = 0 1 4 1 , &AD = 0 1 3 1 , &BC = 0-033, &BD = - 0 0 4 3 , aCD = 0157 .
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