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 SUMMARY

 After some discussion of the purposes of testing multivariate normality, the paper concentrates

 on two different approaches to testing linearity: on repeated regression tests of non-linearity and
 on exploiting properties of a dichotomized normal distribution. Regression tests of linearity are used
 to examine the adequacy of linear scoring systems for explanatory variables, initially recorded on

 an ordinal scale. Examples from recent psychological and medical research are given in which the
 methods have led to some insight into subject-matter.
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 1. Introduction

 Much of the 'classical' approach to the multivariate analysis of continuous variables
 rests to some extent on multivariate normality. Most of the distribution theory and
 optimality of standard test procedures derive directly from this assumption. More
 importantly, the methods of data reduction hinge on the calculation of sample mean
 vectors and covariance matrices, or sometimes of 'robust' versions of these quanti-
 ties. The exponential family structure of the multivariate normal distribution
 provides a strong theoretical justification for such data reduction.

 There are several reasons for checking multivariate normality. Occasionally the
 central limit theorem may be thought to have operated when the data were
 generated. Then this itself may be the hypothesis of interest about data generation.
 Next we might want to learn about the effect of departures from standard assump-
 tions on the properties of formal tests of significance and interval estimates.
 Thirdly, the substantive objective might involve use of the multivariate normal form
 to calculate some derived probabilities, for example concerned with particular
 extreme regions for future observations. Finally we may be concerned that the
 reduction of the observations to covariance matrices overlooks important features
 of the dependences of intrinsic interest.
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 348 COX AND WERMUTH

 The present paper concentrates on the last objective which we believe to be often
 the most important in applications. Thus, the procedures discussed here are not
 direct generalizations of those used for testing univariate normality.

 In Section 2 we first review and extend suggestions of Cox and Small (1978) to
 test normality via repeated standard regression tests of non-linearity; another
 approach uses properties of a dichotomized normal distribution (McFadden, 1955)
 to test normality. In Section 3 we outline somewhat similar ideas applied to the
 analysis of ordinal data.

 2. Testing Multivariate Normality

 We suppose that observations ys, (s = 1, ..., p; 1 = 1, ..., n) are available for
 p continuous (response) variables for n independent individuals and concentrate
 here on two types of systematic departure from multivariate normality: the presence
 of

 (a) curvature in the relationship between a pair of variables and
 (b) an 'interactive' effect in which the slope of the linear relationship between

 two variables depends on the value of a third variable.

 Non-linearity in the dependence of ys on Yt is detected by inserting a squared
 term y2 in the regression of ys on Yt. An interaction in the dependence of ys on Yt
 and yu is detected by inserting a cross-product term ytyU in the regression of ys on
 Yt and y, To achieve numerical stability it is helpful to subtract a constant such
 as its mean from Yt and yu before squaring and computing cross-products. These
 are standard procedures (Ezekiel, 1926; Cox and Small, 1978). For testing
 significance in a single application they lead to Student t-statistics, to be denoted

 Qs, t and Qs, tu respectively.
 In applications some choices are to be made and the following recommendations

 are based on largely qualitative arguments which may be amended in the light of
 more extensive practical experience.

 (a) All possible p (p - 1) Student t-statistics for squared terms should be cal-
 culated unless there are prior reasons for concentrating on some particular
 terms because they are of special intrinsic interest or because experience of
 previous similar data has shown them to be likely to be non-linear.

 (b) In fitting say the term in y2 in the regression of ys on Yt and y2, it has to
 be decided what other terms to include in the fit. Sensible initial strategies
 seem to be either not to include any other explanatory variable, so that non-
 linearities in marginal relations are detected, or, if p is small, to include all
 other important (explanatory) variables, or, if p is large, to include all other
 (explanatory) variables contributing appreciably to the linear regression.

 (c) Similar remarks apply to the 2 p (p - 1 ) (p - 2) possible choices of cross-
 product terms ytyu in the linear regression of ys.

 One important general issue is that if the joint distribution of (X, Y) is of
 interest, then, even if Y is a response variable, it is fruitful to consider both the
 regression of Y on X, X2 and of X on y, y2. The reason is that it may happen that
 the quadratic term in the latter but not in the former regression becomes substantial.
 A possible interpretation is then (Cox and Wermuth, 1993) that the conditional
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 variance of the response Y changes systematically with X.
 In all, 1 p2(p - 1) Student t-statistics are available and so in any rough assess-

 2

 ment of significance allowance for selection is necessary and restrictions on
 prior grounds on the number of statistics will aid sensitivity. Arranging the t-values
 in tables permits convenient examination only for few variables. For larger sets of
 t-values we suggest plotting them against expected values of normal order statistics
 (Cox and Hinkley, 1974), i.e. we plot the rth largest statistic against

 (1)
 n + 4) l

 Although considerable caution is needed in interpretation, we find such prob-
 ability plots helpful when there are enough points, say 20 or more. Note further
 that

 (a) the degrees of freedom of the t-statistics should be sufficiently large for the
 standard normal distribution to be a reasonable approximation to the
 Student t-distribution,

 (b) modest correlation between different t-statistics may produce systematic
 displacement from the unit line, but this effect should become less important
 as the number of essentially independent points plotted increases, and

 (c) outliers in one variable may show in the plot by a number of extreme points
 associated with that variable and an inspection of scatterplots is necessary
 to distinguish such outliers from systematic non-linearity. It would be
 helpful to know more about the effects of correlation on such plots.

 Especially when there is a large number of observations an alternative approach
 to testing consistency with multivariate normality can be based on dichotomizing
 all variables at their medians. In each of the resulting 2 x 2 x 2 tables frequencies
 are equal in pairs and given by simple functions of the marginal correlations
 (McFadden, 1955). For any three of the resulting dichotomized variables A, B and
 C the corresponding probabilities are

 ABC I

 POOO = - + ? AB + ?AC + VBC (2)
 ABC 1

 PIoo = 8- AB - AC + T7BC (
 etc., where for instance

 '?AB = (4ir)1sin-P12

 and P12 is the correlation between the two normal variables generating A and B.
 In general the contribution of say 71AB in equations (2) is positive if A and B take
 the same values and negative if they take different values. To see this, note that
 changing the level of A is equivalent to changing the sign of the underlying normal
 variable and hence to changing signs of the corresponding correlation coefficients.
 It follows that the probabilities are equal in pairs:

 ABC ABC ABC ABC ABC ABC ABC ABC

 Pooo = PiI , Pioo = Poii Polo = Pioi Pilo = Pooi
 Also the three-factor interaction vanishes, whether calculated directly from the
 probabilities or from the log-probabilities.

 An arbitrary trivariate normal distribution of zero mean and unit variance has
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 three adjustable parameters whereas an arbitrary three-variable binary distribution
 with marginal probabilities 2 has-four, showing that there is 1 degree of freedom
 for testing consistency with the special symmetries implied in particular by tri-
 variate normality. Thus, whenever there are enough observations to obtain reliable
 estimates of medians, a large linear or log-linear three-factor interaction in one of
 the three-way contingency tables formed by the median dichotomized variables is
 evidence for non-linearity.

 The following examples illustrate the types of interpretation suggested by such
 analyses. In the first example there are six variables and a small sample size,
 whereas in the second example there are three variables and a reasonably large
 sample size.

 2.1. Example 1 (Blood Glucose Control)
 From on-going investigations of determinants of blood glucose control

 (Kohlmann etal., 1993) we have previously analysed observations for 70 diabetic
 patients, all having had fewer than 10 years of formal schooling (Cox and Wermuth,
 1993). We show here that the same two variables which have an interactive effect
 on metabolic adjustment of all 70 patients show up when checking for non-
 linearities between the variables in a collective of only 32 patients, all from the
 second stage of data collection 1 year after the first.

 The variables are Y, a particular metabolic parameter (the glycosylated haem-
 oglobin), X, a standardized score for particular knowledge about diabetes, and W,
 duration of illness in months. Furthermore, three different attitudes of the patients
 are measured as subscale sum scores of a questionnaire. The attitudes are intended
 to capture to whom or to what the patient attributes what is happening about his
 illness: Z, social externality (powerful others are responsible); U, fatalistic
 externality (mere chance determines what occurs); V, internality (the patient sees
 himself as mainly responsible). Summary statistics are given in Table 1. There
 are only two large outlying marginal t-statistics among the 60 product terms; for

 regressions of Z on Y, W, Y x W (Qzy =3.61) and of Y on Z,W,Zx W

 TABLE 1

 Observed marginal correlations (lower half), observed partial correlations given all remaining variables
 (upper half), means and standard deviations for 32 diabetic patients with fewer than 10years offormal
 schooling

 Variable Y X Z U V W Z x W

 Y: glycosylated 1 0.20 0.26 0.24 0.35 0.02 0.48
 haemoglobin

 X: knowledge -0.09 1 -0.49 -0.56 -0.45 0.08 -0.11
 Z: social externality 0.27 -0.51 1 -0.08 -0.28 0.04 0.03
 U: fatalistic externality 0.08 -0.51 0.33 1 -0.56 0.01 -0.22
 V: internality 0.15 -0.08 -0.18 -0.41 1 -0.08 -0.24
 W: duration 0.02 0.08 0.02 0.02 -0.12 1 0.01

 Z x W: (z1 - z)(WI - w) 0.47 -0.05 0.20 -0.03 -0.08 0.04 1

 Mean 8.63 0.00 28.66 21.66 39.09 108.6 11.99
 Standard deviation 2.35 1.00 6.93 7.32 5.38 81.93 512.1
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 Fig. 1. Normal plot of ordered t-statistics Q5, tu*

 (QXZW = 2.56). They show up as larger deviations from the diagonal line in the
 normal plot, in the plot of the marginal Q,,tu terms against function (1) in Fig. 1.

 A possible explanation for the non-linear relationships between Y, Z and W is
 that the dependence of metabolic adjustment Y on social externality Z changes with
 the duration of the illness, i.e. that

 E(YIZ = z, W = w) = a + (f + yw)z + bw,

 whereas the small correlations among duration of illness and all other variables

 (Table 1) imply that there are no linear relationships to duration of illness.

 2.2. Example 2 (Effects of Parents' Child Rearing Styles)
 From research on effects of child rearing styles on the manifestation of anxiety

 in the child (Kohlmann etal., 1987), we analyse here observations for 246 children
 aged 10-14 years. One research hypothesis is that there is an effect of inconsistent
 behaviour of the mother, X, on the manifestation of anxiety in the child, Y,
 moderated by supportive behaviour of the father, V. The first part of this statement

 is reflected in a substantial marginal correlation between Y and X, ryx = 0.53; see
 Table 2. The second part appears to be refuted, at first sight, since the marginal

 correlations ry, = -0.12 and rx, = -0.06 point towards linear independence of V
 and Y, X. However, in the regression of Y on X, V, X x V the t-statistic for the
 product term is large, QYxv = - 3.15. The data summaries in Table 3 show that
 the effect of V is in the expected direction.

 By median dichotomizing on the variable V we compare children receiving little
 support from their fathers (n = 126) with children receiving much support
 (n = 120). The effect of inconsistent behaviour of the mother is considerably
 stronger in the former group: ryx = 0.64 versus ryx = 0.40 in the latter. An appro-
 priate test statistic corresponding to this observed difference depends on the
 distributional assumptions for the three variables (Lauritzen and Wermuth, 1989;
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 TABLE 2

 Observed marginal correlations (lower half) and observed partial correlations given all remaining
 variables (upper half), means and standard deviations for 246 pupils

 Variable Y X V X x V

 Y: anxiety, child 1 0.538 -0.108 -0.198
 X: inconsistency, mother 0.527 1 0.012 0.145
 V: support, father -0.117 -0.055 1 - 0.034

 X x V: (xI - x) (vI - v) -0.141 0.047 -0.015 1

 Mean 30.57 23.61 34.67 - 3.48

 Standard deviation 7.01 6.62 9.53 67.59

 TABLE 3

 Non-linear dependence of anxiety in the child Y on inconsistent behaviour of the
 mother X and supportive behaviour of the father V as reflected in the observed
 correlations between Yand Xfor two levels of V obtained by median dichotomizing

 Results for supportive behaviour of the father

 Low High

 y = 31.21 x = 23.89 y = 29.89 x= 23.32

 SY = 7.48 sx= 6.58 sy = 6.45 sx= 6.69
 ryx = 0.64 n =126 ryx =0.40 n =120

 Cox and Wermuth, 1992). For the purpose here it is enough to note the large
 t-statistic for the differences in the correlations: 2.65.

 The non-linear relationship between X, Y and V is also detected when all three

 variables are dichotomized at their medians and the resulting counts nijk in the
 2 x 2 x 2 contingency table are inspected; i corresponds to Y, j to X and k to V.
 If we denote a level with values below the median by 0 and the other by 1, we can
 list the counts as

 (n000, nl1o, n010, n11o, nol , n10l, n0o,, nlll) = (45, 13, 20, 48, 40, 25, 23, 32).

 The odds ratio computed for the first four values is, at 8.31, considerably larger
 than the odds ratio of the last four values, 2.23. Accordingly, the Studentized value
 of the three-factor interaction term is large, having a value of 2.37 on a log-linear
 scale and a value of 2.30 on a linear scale. This interaction is in line with the
 interpretation of the non-linear relationship derived via Table 3.

 3. Adequacy of Linear Scores for Ordinal Data

 We now sketch a special application of formal tests for non-linearity when we
 have a continuous response variable and a number of ordinal explanatory variables.
 The purpose is to decide whether scores on a linear scale or on some modified scale
 may be used for the ordinal variables. Similar arguments would apply to binary
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 responses or survival times as responses. The proposed procedure is likely to be most
 useful when there is a fairly large number of ordinal explanatory variables. In that
 case it may be cumbersome to apply methods in which effect scores for ordinal
 characteristics are determined from the data, like those related to Hirschfeld's (1935)
 work, and it would be inefficient to disregard the ordinal structure by treating the
 variables as qualitative, i.e. as nominally scaled. Significance testing and interpreta-
 tion by simple scores for two ordinal variables was suggested by Yates (1948); the
 relationship to common codings of nominally scaled variables was discussed by
 Wermuth and Cox (1992).

 The following is a readily implemented procedure. Score each ordinal variable
 on a linear scale, often but not necessarily with equally spaced values, i.e. with scales
 obtained via the first of the associated standard orthogonal polynomials. For
 example, a three-point scale could be scored as - 1, 0 or 1, a four-point scale as
 - 3, - 1, 1 or 3 and so on. Then, for each explanatory variable in turn, we examine
 non-linearity of regression by including its square, or, equivalently, the second
 orthogonal polynomial, as an explanatory variable. For an original scale with just
 three levels such a quadratic scheme is equivalent to treating the variable as
 nominally scaled. If we find evidence for a particular explanatory variable X that
 non-linearity is indicated there will be a qualitative interpretation. Thus, for
 example, if both linear and quadratic terms have the same sign, this implies that
 the relative scoring of the highest levels of X should be increased. The regression
 coefficients of the linear and the quadratic term may be used for rescoring of the
 levels if the interpretation implied is consistent with subject-matter knowledge.

 In particular we can conclude that

 (a) if a small non-significant quadratic contribution is obtained the data are
 consistent with a linear scoring scheme in the sense that a 'smooth' quadratic
 departure in the scores offers no better fit to the response variable and

 (b) if an appreciable quadratic component is obtained some modification of
 linear scoring is indicated.

 Our approach is to compute the fitted scores at the points on the original scale to
 suggest a simple modification.

 In the following example this leads to collapsing some of the original three-point
 scales into two-point scales; in other problems simple expansion or contraction of
 particular intervals between adjacent points on the scale may be indicated, e.g. by
 doubling or halving an interval.

 3.1. Example 3 (Chronification of Pain)
 In a study of patients treated in a pain clinic (Schmitt, 1990) 10 ordinal scales,

 each with values - 1, 0 or 1, were used to describe different aspects of patients with
 chronic pain and to construct a new variable, Y, a measure of the chronification
 of pain. We test here whether this measure is reproduced well by a linear regression
 on the 10 ordinal variables. These are called duration of pain attacks, X1,
 frequency of pain attacks, X2, changes in intensity of pain, X3, localization of
 pain, X4, treatments of drug addiction, X5, drug usage, X6, change of physician,
 X7, pain-induced rehabilitative treatment, X8, pain-induced stationary treatment,
 Xg and pain-induced surgery, X10. Observed marginal correlations and partial
 correlations between Y and each of the Xi are shown in Table 4.
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 TABLE 4

 Observed marginal correlations (upper row) and observed partial correlations given the 12 remaining
 variables (lower row) with the response Y: stage of chronic pain, for 149 patients

 X1 X2 X3 X4 X5 x6 X7 X8 X9 Xo X 6 Xg

 0.53 0.49 0.05 0.71 0.17 0.23 0.14 0.44 0.19 0.28 0.20 -0.09 -0.19

 - 0.33 0.21 0.91 0.25 - 0.56 0.51 - 0.28 0.25 - 0.55 -0.20

 The t-statistics of the quadratic terms of just three variables are large, when
 included after all linear terms, and also when included in addition to all linear and
 the two other quadratic terms: the latter are - 7.74 for X6, 2.97 for X1 and - 2.34

 for Xg. The regression coefficients are (0.577, -0.542) for (X6, Xi), (0.428,
 0.253) for (X1, X2) and (0.117, - 0.178) for (Xg, X92). Each of the remaining
 seven linear components contributes to predicting Y since the t-statistics are larger
 than two in the regression of Y on the 10 linear and the three quadratic terms.

 We chose scores - 1, 0 and 1 for each of the ordinal variables so that the fitted
 scores computed for X6 in this scale are obtained as

 0.5767 0 + ( -0.5419) 0 = ?

 I \1 0.0348/

 These fitted scores suggest that the interval between levels 2 and 3 is negligible
 compared with that between levels 1 and 2. The definition of the levels in the original
 scale is

 (a) - 1: irregular intake of pain relieving drugs,
 (b) 0: regular intake of at most two pain relieving drugs and
 (c) 1: regular intake of more than two pain relieving drugs.

 An interval near 0 between levels 2 and 3 implies therefore that only the distinction
 between irregular versus regular drug usage is informative for the response Y, or
 collapsing the levels 2 and 3 into a single level will not worsen prediction of Y for
 the patient population involved. In a similar way the fitted values for X1 imply
 with values (-0.1745, 0, 0.6812) that levels 1 and 2 (pain attacks of several hours
 and pain attacks for several days) may be collapsed and just contrasted with the
 third level, pain attacks lasting more than a week. Finally, the fitted scores for
 variable Xg imply with values ( - 0.2955, 0, - 0.0609) that the distinction between
 levels 2 (two or three pain-induced stationary treatments) and 3 (more than three
 pain-induced stationary treatments) is rather uninformative for linear prediction of
 the response.
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