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Judea Pearl and Nanny Wermuth

relations among the variables under study are of interest. These may be relevant not only for
continuous but also for ordinally scaled variables or for dichotomous variables. But, since this is
a fairly strong assumption in some applications, checks for nonlinearity or special linearisations
are needed, such as those discussed in [Cox-Wer 92a, Cox-Wer 92b] and in [Wermuth-Cox 92].

A covariance matrix with some zero off-diagonal entries can be represented by an undirected
graph with the corresponding edges missing [Cox-Wer 93] called covariance graph, abbreviated
by G,", here. Similarly, a concentration matrix with some zero entries can be represented by an
undirected graph with the corresponding edges missing [Kiiveri-Spe 82] called concentration
graph, abbreviated by G"on here.

A complete covariance or concentration graph has no missing edges, that is, it has exactly
one edge for each variable pur, If2 p (p - 1) in all. There can be a number of reasons for
considering special incomplete undirected graphs. For instance, it could be that

. the linear independencies expressed thereby are themselves of substantive interest,

. reduction of dimensionality is needed to keep a reasonable balance between the number
of parameters to be estimated and the number of available independent observations, or

r it is desired to decide whether the structure given by a covariance or concentration graph
could have been generated by some stepwise process of univariate recursive regressions.

We concentrate here on the last aspect. This implies in particular that we consider covariance and
concentrations graphs less as representing models of their own standing but, rather, a possible
reflection of some directed acyclic graph, abbreviated as dag, which represents a recursive
process for stepwise data generation. Such a process would admlt a causal interpretation if the
order of the variables involved in the process, especially their classification into response and
explanatory vaiables, is in agreement with subject-matter knowledge about the causal process

lCox 921.
Each dag can be thought of as specifying dependence relationships between an ordered set

of variables {Yr , ...,Yo} where j > i designates Y; as potentially explanatory for X; it becomes
actively explanatory in case an arrow is drawn from Yi to Y. A missing edge for variable
pair X, Y; has then the interpretation: response d is (linearly) independent of Y; given the
remaining potential explanatory variables of X, {}t*r . . . ,Yj-r,Yj*r,  . . . ,Yr}.The set of missing
edges defines the independence structure of the dag and permits3 the stronger statement that

X is conditionally independent of all variables in {X*r , ...,Yo} that are not linked to X, given
those that are linked to yr. Each dag implies a set of pairwise marginal (linear) independencie s.
i.e, a covariance graph, and a set of pairwise conditional (linear) independencies given aII p - 2
variables, i.e. a concentration graph. By "implied" we mean independencies that must hold in
every distribution that fulfills all the missing-link conditions shown in the dag. This excludes
independencies that are just introduced by accidental equalities among the numerical vaiues of
some parameters in the model. From a given dag, these implied independencies may be read otf
directly, using the graphical criterion of d-separation [Pearl 88, page I 17] and [Geiger etal 90].

For example the following Markov chain

Y L Y 2 Y s Y 4 n
o € - o r _ _ o F _ o 1 - - o

3Provided .9 is non-sinsular.
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is a dag which implies a complete covariance graph, i.e. no marginal independencies, and a chain-
like concentration graph, obtained by removing the arrow heads. If r, s, f , u denote conelations
between pairs (Yt,V),(Yr,,fr), (yr ,Yn),(Yn,Yu), then the correlation matrix implied by the
Markov chain has the form

I r  rs  rs t  rs tu
. l s s t s t u
o . L t t u
. . . \ u
.  i  .  .  1 ,

It can be used to explain why it may be difficult to decide on marginal linear independence merely
f romobservedmarg ina lco r re la t ions .  SuppoSer -  s  = t  =  u i f i d r  -  0 .3 thenr2  =  0 .0g . ,
13 = 0.027, 14 :0.0081 would be close to zero; even when r - 0.6, 14 -- 0.13 would st i l l  not
be far from zero. Thus, if we know that the data are generated by the above Markov chain we
can conclude that all marginal correlation are nonzero but a correlation is weaker the further
the variables are apart in the chain. However, if the process by which the data actually are
generated is not known, and we have to rely merely on data inspection or associated tests, we
may judge some of the smaller correlations to be zero apart from sample fluctuations i.e. we
come to erroneous conclusions about the covariance structure (represented by the covariance
graph) or the generating process. Similar arguments apply to the concentration graph.

Formal tests for agreement of an observed covariance matrix or concentration matrix with
a colresponding hypothesized association graph are available. An arbitrary pattern of zeros
in a covariance matrix is a spetial case of hypotheses linear in covariances [Anderson 73]
and an arbitrary pattern of zeros in a concentration matrix is a covariance selection model
[Dempster 72]. Maximum likelihood estimates and associated likelihood ratio tests are available
under the assumption of multivariate normality and may for instance be computed with the help
of LISREL [Jdreskog-Sor 78] for the former and with the help of MIM fEdwards 92] for the
latter. The same estimates are called quasi-likelihood estimates ifjust the assumption of linearity
is retained.

The probiem of finding a causal explanation for a general distribution was treated in [Pearl-Wer 9 I ]
and, in the case of normal distributions, might require the processing of an exponential number
of submatrices (i.e., all the majors of G"-). When an expiicit list of all conditional and marginal
independencies is available, the problem can be solved in time polynomial in the length of the
list [Verma-Pea 92a] [Dori-Tar 92]. Still, the length of this list can be very large indeed. The
current paper attempts to find a causal interpretation on the basis of a more limited information,
assuming that the only vanishing dependencies available to the analyst are those corresponding
to the zero entries of the covariance and concentration matrices.

To this end, we pose the following set of problems:
r Given a covariance graph, G,*, decide whether it could have been generated by a directed

acyclic graph
(i) with the same nodes and edges,
(ii) with the same nodes but fewer edges,
(fii) with some additional nodes (representing latent or hidden variables).
o Given a concentration graph, G.^, decide whether it could have been generated by a directed

acyclic graph
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(iu) with the same nodes and edges,
(o) with the same nodes but fewer edges,
(,r,'i) with additional (latent) nodes.
r Given a covariance and a concentration graphs, decide whether
(uii) both could have been generated by the same directed acyclic graph.
Theorems I through 7 of the next section present declarative and procedural solutions to these

seven problems, respectively. Proofs are omitted, and will be included in an expanded version
of this paper.

21.2 Main results

Definition I A directed acyclic graph D is said to imply an independence I tf I holds in ever.-

probability P that fulflls all the missing-link conditions of D, that is, choosing any variable

ordering consistent with the direction of arrows in D, P renders each variable \ independent

on its inactive explanatory variables (nonadjacent predecessors), given its active explanatory

variables (adjacent predecessors). If D fails to imply an independence for pair (i, j) we say

that D implies a dependence for that pair which, in turn, will induce an edge ij in Gr* or Gro^.

Lemma 1 D implies an independence I ifr I satisfies the d-separation criterion in D lPearl 881.

In particulaa D implies a marginal independency cij : 0 if every path between nodes i and j

in D traverses at least one pair of converging arrows (i.e., -----+ * <-). Likewise, D implies a

conditional independence given all remaining variables, oii - 0, if every path between nodes

i and j in D traverses at least one pair of non-converging anows (i.e., either ------+ * --+ or

+- *  -+).

DefinitionZ (generate and coincide) A dag D is said to (a) generate a covariance graph G"oo

if the set of marginal independencies impliedby D matches the set of missing edges of G,". and

(b) to coincide with G,", if D not only generates G.^, but also has the same edges as Gr*.

Similar definition s of generate and coincid,e apply to Gcon For example, the Markov chain

discussed in SectionZL.l represents a dag which coincides with its G.-. but not with its G"o,,

since some edges tn G,^, do not appear in the chain.

Definition 3 (V -conf guration) A triplet of nodes (o,b, c) in an undirected graph G is said to

be a V -configuration (pronounced as vee-configuration), if ab and bc are edges in G while ac is

not.

Definition 4 (sink orientation) Given an undirected graph G, the sink orientation of G results

from assigning arrows a + b +- c to each V -configuration (o,b, c) in G.

Note that a sink orientation may contain bi-directed edges, since two opposing arrows Inay

be assigned to the same edge. For example, the sink orientation of the 4-chain a-b--c-d is

given by o --+ b € c 1- d, since both (a,6,c) and (b.,",d) are V-configurations. We mark

that the sink orientation of a graph with n nodes can be formed in O(ns) steps.

Theorem I Thefollowing statements are equivalent. A covariance graph G"o" coincides with a

dag D if and only if (i) no edge in the sink orientation of G"o, is bi-directed; (ii) G.ou contains

no chordless 4-chain. Moreover if the sink orientation of G"^, contains no bi-directed edges,
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then every acyclic orientation of the remaining undirected edges constitutes a dag that coincides
with G"^,.

Example 1 Consider the graph

G  -  n -
cO\i 

-
- db -  c

\ /
\ /

b - c
\ /
\ /

\ /

The 4-chain a-*c-d is chordless, hence, there is no dag that coincides with G"o,. Indeed,
the V-orientation of G"o, is

a + + d

which renders the edee b +------+ c bi-directed.

Turning to problem (ii), we first define the notions of sink completion and exterior cliques.

Definition 5 (sink completion) A sink completion of an undirected graph G,o* is any dag
obtainedfrom G"oo as follows: a) the sink orientation of G,-, is formed, b) all bi-directed edges
are removed, c) the remaining undirected edges are oriented to form a dag.

Lemma 2 Every undirected graph has at least one sink completion.

This foilowsfromthe facts that (1) every sinkorientationis acyclic and (2) any acyclic partial
orientation of a graph can be completed to form a dag.

Definition 6 (exterior cliques) A clique in an undirected graph is said to be exterior if it contains
at least one node that is adjacent only to nodes in that clique. We call such a node " extremel" .

Note that finding an extremal node in a graph with n nodes and E edges takes at most nE2
steps; for each node i we test whether every two neighbors of i are adjacent to each other. The
same procedure can be used to enumerate all exterior cliques of a graph, since an extremal node
must reside in one and only one clique.

Theorem 2 Thefollowing statements are equivalent: (i) G"^, is generated by a directed acyclic
graph; (ii) a sink completion of G"oo implies all edges of G"ooi (iii) every edge of G"^, resides
in an exterior clique.

Example 2 Consider again the graph G"-, of Example 1. The sink completion of G"oo is given
b y t h e d a g D : a - - - - - ) b + - - e - - - - - - + c + - d w h i c h i m p l i e s a l l e d g e s o f G " o , .  I n p a r t i c u l a r ,
the edge *c, missing from D, is implied by the path b +- e ----* c, which does not contain
converging arrows (see Lemma 1.) Hence D generates G"-,. Indeed, following condition (iii),
the exterior cliques of G,o. are (a, b), (b, c, d) and (", d), which contain every edge of G"o,.



:  i0  Judea Pear l  and } ianny ' * 'ermuth

A simple example of a graph G"* that cannot be generated by a dag is the 4-chain a-*
c-d. The sink completion of G"o", is the disconnected dag a ----- b c +- d which does not
imply the edge b-c tn G"-,. Likewisa, G"* has only two exterior cliqueS, (o, b) and (c, d), thus
violating condition (iif ) relative to edge b--c.

Turning to Problem (iii), we have:

Theorem 3 Every covariance graph G"* can be generated by a directed acyclic graph with
additional nodes by replacing each edge ab of G,^, with a <-- (*) ---* b, where (*) represents
an unobserved variable.

Remark: To reduce the number of latent nodes, it is not necessary to replace each edge of
G"*, but only those which are not implied by the sink completions of G"o,. For example, the
4-chain a-b-c-d is generated by the dag a -r b +-(x)------+ c +-- d, where the replaced
edge 6c is the only one that is not implied by the sink completion of this chain (see Example 2).

We now turn to problems (ir) - (ui) where we seek a dag that agrees with the structure of a
given concentration matrix.

Theorem 4 A concentration graph G.on coincides with some dag D if and only if G." is a
chordal graph, i.e. it contains no chordless n-cycle, n > 3. (Effrctive tests for chordality are
well known in the literature [Tarjan-Yan 84].)

Theorem 5 AconcentrationgraphG"o canbegeneratedbysomedagif andonlyifthereexists
an ordering O such that the following procedure removes all edges of Gr-,:

I. Find an exterior clique, remove all its extremal nodes and their associated edges, mark
all remaining edges in that clique, and add them to a list L of marked edges, in some
order O.

2. Repeat the process on the reduced graph until either all nodes have been eliminated or
in case the subgraph contains no exterior clique, choose the first marked edge on L, and
remove it from the graph.

3. Repeat step I and2.

Example 3 To see how the marking procedure helps identify a generating dag, consider the
graph G"on below.

tx,\;7

A  
D '  

-  ?

l---l
D \ , /

The cliques are: ABC,ACD,BCE,CDE and DEF. Only DEF is exterior, with extremal
vertex F. Removing f' together with edges DF and FE,leaves a subgraph with no exterior
clique. However, edge D E is marked, so it can be removed, which creates new exterior cliques,
allowing the process to continue till all edges are removed. Indeed, directing:urows toward each
node removed in step 2, yields the dag D1 above, which generates G"on.
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Example 4 The follotving example (due to Verma) shows that the order of edge removals may be

crucial, that is, failure to eliminate all edges in one ordering does not imply that no elimination

ordering exists. Consider the following concentration graph:

I -  J

rl
C - D

, / \  r / \

r-"
K -  L

, / \  , / \
M - N -  O

The only extremal vertices are E , G, M, and O. If we remove these (in any order) it will result

rn a graph with no exterior cliques and with the following marked links: CF,DF,K/f, and

L l,l . If we first remove the marked edges F C and F D , the process wiil halt (because the cycle

A-B-C-  D-Acanno tbee l im ina ted . )However , i fwe f i r s t remove themarkededges . [N
and Klf, then we will find a good elimination orderitrSl ..., N, H, J, L, K, I, F, ....

The fact that it is impossible by local means to decide which of the marked edges should be

removed first renders the decision problem a difficult one. While in the example above it is clear

thar one should postpone the removal of F C and F D ,because it leads to an impasse (the cycle

A- B -  C -  D -  A) ,suchlocalc lues arenotavai lab le inthegeneralcase.  Indeed,Vermaand

Pearl have shown that the problem is NP-Complete [Verma-Pea92b]. Nevertheless, effective

necessary conditions are available, which makes the decision problem feasible when the number

of nodes is not too large.

Lemma 3 The following are necessary conditions for a concentration graph G"* to be gen-

erated by a dag. (l) every chordless n-cycle of Gron, n ) 3, must have at least one edge that

resides in some k-clique, k > 2 (2) G"r must have at least one exterior clique.

Example 5 The graph G.,- below shows that these two conditions are not sufficient; it satisfies

both, yet it cannot be generated by any dag.

o

/ \/ \
+  -  o  - ,c  - f l

I r/ |
I  l , /  |

f - h

The edge removal procedures of Theorem 5 can easily be converted into a backtrack algorithm

that guarantees finding a generating dag, if such a dag exists. Whenever the procedure reaches

an impasse, the algorithm backtracks to the state of last decision point, and selects another edge

for removal. The efficiency of this algorithm can be improved by insisting that at any decision

point we consider for removal only edges such that the reduced graph will satisfy the necessary

conditions of Lemma 3. In general, we should also try to remove marked edges that belong to

chordless n-cycles, n > 3, as early as possible, because we know that at least one such edge

must eventually be removed if the process is to come to a successful end.

A -  B

l l
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Theorem 6 A concentration graph G"on can be generoted by a dag with additional latent nodes
tf and onl,,- if it can be generated by a dag without latent nodes.

In orher words, latent variables do notimprove the power of dags to generate richer patterns of
vanishing concenrations. This is in sharp conrast to patterns of vanishing covariances (Theorem

3); every such panern can be generated by a dag with latent nodes.
Finally, urning to problem (uii) we have:

Theorem 7 A covariance graph G"o. and a concentration graph G"o cen both be generated
by the same dag only if the following three conditions lnld:

L G"o" and G,o must each be generated by a dag.

2. The set of nodes of every exterior clique of G"", must induce a subgraph of G"" that can
be generatedby adag.

3. Every edge of G"on that does not reside in a larger clique must also be an edge of G",,.

We are not sure at this point whether the conditions above are sufficient; so far we were
nor able to find a pair of undirected graphs that fulfill these three conditions and yet cannot be
generated by a dag.

21.3 Conclusions

This paper provides conditions and procedure s for deciding if patterns of independencies found
in covariance and concenradon matrices can be generated by a stepwise recursive process
represented by some directed acyclic graph. If such an agreement is found, we know that
one or several causal processes could be responsible for the observed independencies, and our
procedures could then be used to elucidate the graphical sfructure common to these processes,
so as to evaluate their compatibiiity against substantive knowledge of the domain.

If we {ind that the observed pattern of independencies does not agree with any stepwise
recursive process, then there are a number of different possibilities. For insnnce,
- some weak dependencies could have been misnken for independencies and led to the wrong
omission of edges from the covariance or concentration graphs.
- the sampiing procedure used in data collecdon was not properly randomized. Selection bias
tends to induce symmetricai dependencies that cannot be emulated by a recursive process

fPearl 88, page 130].
- the process responsible for the data is non-recursive, involving aggregated variables, simulta-
neous reciprocal interactions, or mixtures of several recursive processes.
- some of the observed linear dependencies reflect accidental cancellations or hide actual non-
linear relations.

In order to distinguish accidental from structural independencies it would be helpful to con-

duct several longitudinal studies under slightly varying conditions. These ffuctuating condidons
would tend to affect the numerical values of the covariances but not the basic structural prop-
erdes of the process underlying the data. Under such conditions, if the data were generated
by a recursive process represented by some directed acyclic graph, those independencies that
are "implied" by the dag (see Definition 1) would persist despite the fluctuating conditions,
while accidental independencies would be perturbed and hence discarded. We regard this as a
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possibility to pursue Cochran's suggestion [Cochran 65, page 252] that "when constructing a
causal hypothesis one should envisage as many different consequences of its truth as possible
and plan observational studies to discover whether each of these consequences is found to hold."
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