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SUMMARY

Possibilities for moderating effects of a subgrouping variable on strength or direction
of an association have been much discussed by social scientists but have not been given
satisfactory statistical formulations. The results concern directed measures of associations
in linear models containing just three variables.
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1. INTRODUCTION

Linear models are commonly used as a framework to estimate and test how a continuous
response variable depends on potential influencing variables. This paper is concerned
with the situation in which two influences are random variables as well, which may be
discrete or continuous. The continuous random variables are to stand for quantitative
properties of observational units, while the discrete variables either capture qualitative
properties or they represent subgroups of the population to which the observational units
belong.

To think of all variables as random variables is usually appropriate for data obtained
from observational studies, where one cannot control which levels or values of the
influencing variables are to be observed. The linear model permits an analysis conditional
on fixed levels and values of the influences. But frequently, the association structure
among the influences is, in social science applications, of interest itself and, as it will
turn out, it is important for a correct interpretation of how the response depends on the
influences.

Awareness of such problems in interpretation is widespread among social scientists as
is documented by extensive discussions of moderating effects; see, for example, Saunders
(1956), Zedeck (1971) and Baron & Kenny (1986). There, a variable is called a moderator
if its presence changes the strength or direction of an association. However, methods
recommended to social scientists for identifying moderating effects given in the above
literature or by Cohen & Cohen (1983, pp. 310-4) have been shown to be seriously
deficient (Wermuth, 1988). Thus, there is need for clarification. We treat the case of a
potential discrete moderator variable and call its categories or levels the subgroups in
the linear model.

A moderating effect is closely tied to the notion of consistent results on an association
(Wermuth, 1987). In the present context results are said to be weakly consistent if the
associations within subgroups coincide in direction and strongly consistent if the associ-
ations within subgroups coincide in direction and strength. This notion depends typically
on the chosen measure of association. In linear models we look at directed measures of
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82 NANNY WERMUTH

associations. These are regression coefficients if the influence is continuous, and they are
effect parameters if the influence is discrete.

A discrete variable has a moderating effect on a measure of association either if the
results are not strongly consistent within subgroups, or if the results are strongly consistent
but do not coincide with the overall results obtained after pooling over the subgroups.
Expressed in statistical terminology this says that a moderating effect is lacking if equal
partial associations coincide with a corresponding marginal association or, to put it
differently, if homogeneous associations at fixed levels of a third variable are collapsible
over this variable.

Extreme situations for noncollapsible associations, where, for instance, positive partial
associations coexist with a corresponding negative marginal association are known as
the Yule-Simpson paradox (Yule, 1900; Simpson, 1951) for only discrete variables, and
have been described for effect parameters in linear models, as well (Snedecor & Cochran,
1967, p. 472). Necessary and sufficient conditions for the lack of a moderating effect
have been given for different types of measure of association in the case of only continuous
variables with exclusively linear relations (Wermuth, 1989), and in the case of only
discrete variables for a symmetric measure of association (Whittemore, 1978), as well as
for a directed measure of association (Wermuth, 1987).

In §§ 2 and 3, conditions are derived for the lack of a moderating effect of a discrete
variable on directed measures of associations in linear models with a continuous response.
These are conditions on the association structure of the variables under study. Thus, this
paper is concerned with properties of the target population, not with properties of the
design or execution of a study, nor with properties of estimates. In § 4 the results are
applied to two sets of data from psychological research.

2. MODERATING EFFECTS ON A HOMOGENEOUS REGRESSION COEFFICIENT

Here we look at the linear dependence of a continuous response X, a continuous
influence Y and a potential discrete moderator A having levels i = 1 , . . . , / . We assume
a homogeneous linear dependence of X on Y in terms of regression coefficients and
constant residual variances (2-1), a possible dependence of the means of Y, but not of
the variances of Y on A (2-2) and for A a probability function, which is arbitrary except
for positive probabilities at all levels (2-3);

y, var (X\ Y = y, A = i) = Txj,y, (2-1)

var (Y\A = i) = ayy, (2-2)

pr (A = i) = IT, > 0. (2-3)

Equivalently to (2-1) and (2-2), we could have specified that the conditional mean and
variance of the random vector Z = [X Y~\ given A is

M \ (2-4)
LVyx <TyyJ

with

t*>x(i) = <XXy(i) + Pxytly(i), &xy = PxyPyy, °xx = T*x.y + P ly Vyy •

By adding the assumption of a normal distribution for X given Y and A equations
(2-1) define an analysis of covariance model, which is also known as a parallel regression
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Moderating effects of subgroups in linear models 83

model. If we assume, in addition, a normal distribution for Y given A, then (2-1) to
(2-3) give one parameterization of a saturated homogeneous CG-distribution for X, Y
and A; CG-distributions have been studied by Lauritzen & Wermuth (1989). They show,
for instance, that the density gAXv of a joint CG-distribution for X, Y and A can be
factorized into densities of distributions, which are all of the CG-type as

gAXY = gxY\AgA = gx\YAgY\AgA- (2"5)

One speaks of a CG-distribution, since the continuous variables have a conditional
Gaussian distribution given the discrete variables, and the distribution of the discrete
variables is taken to be arbitrary except for having positive probabilities everywhere. It
is called a homogeneous CG-distribution if only the means but not the covariance matrix
of the continuous variables may depend on the levels of A; compare (24). A CG-
distribution is saturated if constraints on its interaction terms just ensure uniqueness of
the interactions, but do not introduce restrictions on the specified distribution; see
Appendix 2.

Some of the conditions derived below for the lack of a moderating effect of A on pxy

may be restated in terms of conditional independencies if X, Y, A have a homogeneous
CG-distribution. In this case we know the following.

Facts 1.
(a) X is conditionally independent of Y given A, that is X JL Y | A, if and only if / ^ = 0;
(b) X is conditionally independent of A given Y, that is X JL. A \ Y, if and only if

0^,(0 = <**,,;
(c) Y is independent of A, that is YJL A, if and only if ny(i) = fiy.

The homogeneous regression coefficient fi^ in (2-1) is collapsible over A if it coincides
with the marginal regression coefficient fixy defined by

and in terms of the marginal covariance a^ and the marginal variance d^ as fi^ = cr^/o-yy.
By computing the marginal moments from the conditional ones in (2-4) one obtains, as
shown in Appendix 1, the quantification of the moderating effect of A on fi^ as

y y y y i ) - f l y } y a y y . (2-6)

This permits us to state the following as an immediate consequence.

PROPOSITION I. In a parallel regression model for X on Y and A given by (2-1) with
random influences characterized by (2-2) and (2-3):

(i) the homogeneous regression coefficient is collapsible over A, /S^ = f}^, if and only if

cov/4{ax>(i), fiy(i)} = 0;

(ii) variable A has no moderating effect on the linear dependence ofX on Y if the parallel
regressions are also coincident, a^ii) = a^, or if the means of the influence Y coincide
in the subgroups, fiy(i) = fiy.

Remark 1. The sufficient condition in Proposition l(ii) is also necessary if the discrete
variable A is dichotomous, 1 = 2.
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84 NANNY WERMUTH

Remark 2. If X, Y and A follow a homogeneous CG-distribution then the sufficient
condition in Proposition l(ii) can be restated in terms of independencies as X JLA| Y or
Y MA. This is a consequence of Facts 1. If only one of these independencies hold, then
the marginal joint distribution of X and Y is not Gaussian (Yakowitz & Spagins, 1968).
This just illustrates that parametric collapsibility does not imply collapsibility in distri-
bution.

Remark 3. If X, Y and A follow a nonhomogeneous CG-distribution, but the regression
lines of X on Y are, nevertheless, parallel in all subgroups, fixy(i) = pxy, then A still has
no moderating effect on the linear dependence of X on Y if XJL A\ Y or Y.1L A. The
reasons are that:

(i) for the nonhomogeneous CG-distribution we know X JL A \ Y if and only if
Txx.y(i) = Txx.y and fixyii) = flxy and a^ii) = a^, and Y JL A if and only if o^O) = o^
and /j,y(i) = fiy;

(ii) given YJLA or X JL A\ Y we get cov^{axy(i), /xy(i)} = 0;
(iii) this is sufficient for the collapsibility of fi^ over A, since (2-6) shows the relation

of fixy to /3xy even for a nonhomogeneous CG-distribution.

A stronger result can be stated if more is known about the association structure of X,
Y and A: if YJL/l|X. This means that the potential moderator is not needed to predict
values of the influence once knowledge about the response is available. Experience shows
that quite a few sets of observable variables satisfy this condition even when the moderator
and the influence are both important in predicting the response. The set of data in § 4-2
is one example.

PROPOSITION 2. In a parallel regression model for Y on X and A derived from a
homogeneous CG -distribution satisfying YlL A\X, the following statements are equivalent:

(i) the discrete variable A has no moderating effect on the linear dependence ofX on Y;
(ii) the response X is conditionally independent of the potential moderator A, that is

X JL A | Y, or of the influence Y, that is X JL Y | A;
(iii) the influence Y is independent of the potential moderator A, that is YJLA

Proof The independence YJLA|X implies coincident regression lines of Y on X in
all subgroups and, in particular, collapsible intercepts ayx(i) = d^. The relation of these
intercepts to means is ayx(i) = fi,y(i) — f3yxixx(i). Together with equal intercepts it leads to

fiy{i)-fiy = Pr{tLx{i)-fix}. (2-7)

The relation of 0^,(1) to means, (2-4), implies in general

which turns with (2-7) into

axy(i)-axy = (\-p2
xy){fix(i)-ilx}, (2-8)

where 0«£ ply = fl^fixy < 1. Equations (2-7) and (2-8) permit us to write

covA {aX),(i), fiy(i)} = PyX(l ~ply)

It follows from Proposition l(i), (2-8) and Facts 1 that (i) is equivalent to (ii), and the
equivalence of (ii) and (iii) is an immediate consequence of (2-7) and Facts 1. •

Since this proof does not depend on the distributional assumptions, Proposition 2
could have been stated in terms of conditions on parameters in (2-l)-(2-3), instead.
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Moderating effects of subgroups in linear models 85

However, the formulation in terms of independencies points at analogies to situations
in which the type of the involved variables is changed, as in § 3.

Remark 1. It is a direct consequence of Proposition 2 that for association structures
with yjLA|X, but not X JL Y\A, the conditions X JLA| Y and YUA are equivalent.

Remark 2. The results show that the conditional independence for pair (Y, A), which
is typically of little interest in a conditional analysis of X given Y and A, becomes
important for parametric collapsibility and moderating effects.

Remark 3. The assumptions for Proposition 2 may be tested in a stepwise manner
within the framework of CG-distributions, as illustrated with the first example in § 4.

3. MODERATING EFFECTS ON A MAIN EFFECT PARAMETER

Here we look at the dependence of a continuous response X on a discrete influence
B having levels j = 1 , . . . , J and a potential discrete moderator A having levels i = 1 , . . . , / .
We assume a homogeneous dependence of the mean of X on B in terms of effect
parameters and constant residual variances (3-1). For A and B a joint probability function
is taken to be arbitrary except for positive probabilities at all level combinations of A
and B (3-2)

var (X |A = i, B =j) = Txx, (3-1)

(3-2)

The terms in the linear expansion of fiy are called effect parameters after suitable
constraints, like symmetric ones, have been imposed to ensure uniqueness, 2,-yf = Ijjf =
0.

The main effects yf are the directed measures of partial associations for variable pair
(X, B). By adding the assumption of a normal distribution for X given A and B, equations
(3-1) define an analysis of variance model with only main effects yf and yf. By assuming,
in addition, a joint distribution for A and B, equations (3-1) and (3-2) give one paramet-
erization of a nonsaturated homogeneous CG-distribution for X, B and A with density

SXAB = 8X\AB 8AB>

having no linear three-factor interaction. This interaction, 7/yflX, discussed in Appendix
2, is zero, since it is a positive multiple of the two-factor interaction, y^B, in the
corresponding analysis of variance model and the latter is assumed to be zero with (3-1).

One consequence of having only main effects yf and yf in the conditional density
gx\AB is a simple link between the marginal association of pair (A, B) in gAB and the
partial association of pair (A, B) in gXAB as measured by the interaction parameters in
a CG-distribution. After denoting this marginal and partial interaction by XyB and AyB,
respectively, one obtains, as is shown in Appendix 2,

tfB = ^B+y?v?/T- (3-3)
Some of the conditions derived below for the lack of a moderating effect of A on yf

may be restated in terms of conditional independencies if X, B and A have a homogeneous
CG-distribution and the interactive effect of A and B on the conditional mean of X given
A and B is lacking. In this case we have the following.
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86 NANNY WERMUTH

Facts 2.
(a) X is conditionally independent of A given B, that is X JL A | B, if and only if yf = 0;
(b) A is conditionally independent of B given X, that is A JL B | X, if and only if A y fl = 0;
(c) A is independent of B, that is A JL B, if and only if lyB = 0.

The main effect yf in (31) is collapsible over A if it coincides with the marginal effect
yf defined by

E{X\B=j) = fLj = yo+yf, 27y/ = 0. (3-4)

By computing the marginal moments /Lj from the conditional ones in (3*1) one obtains,
as shown in Appendix 1, the following expression for the moderating effect of A on yf:

yf ~ yf = <L «i\jy?-I.j (I ,
This permits us to state as immediate consequence the following.

PROPOSITION 3. In an analysis of variance model for X on A and B given by (3-1) with
random influences characterized by (3-2):

(i) the main effect of B on X is collapsible over A, yf = yf, if and only if

(ii) variable A has no moderating effect on the dependence ofXonB if there is no main
effect of the potential moderator A, that is yf = 0, or if the conditional probabilities
for A given B do not depend on the levels of B, that is

Remark 1. The sufficient condition in Proposition 3(ii) is also necessary if variables
A and B are both dichotomous, 1-2 and J = 2.

Remark 2. If X, A and B follow a homogeneous CG-distribution, then the sufficient
condition in Proposition 3(ii) can be restated in terms of independencies as XJLA|B or
B JL A. This is a consequence of Facts 2.

Remark 3. If X, A and B follow a nonhomogeneous CG-distribution, but there is,
nevertheless, no interaction effect, yf* = 0, in the analysis of variance model, then A has
still no main effect on the dependence of the mean of X on B if X JL A | B or B JL A. The
reasons are that:

(a) for the nonhomogeneous CG-distribution we know that X JL A | B if and only if
Txx(i,j) = fxxij) a n d yf = 0, and that A JL B if and only if v^ = ire,

(b) given AJLB or A"JLA|B we get EA\Byf = 1}{EA\Byf]/J, and
(c) this is sufficient for the collapsibility of yf over A, since (3-5) shows the relation

of yf to yf even for a nonhomogeneous CG-distribution.

A result similar to Proposition 2 can be stated if more is known about the association
structure of X, B and A, if B JL A | X.

PROPOSITION 4. In an analysis of variance model for X and dichotomous A and B derived
from a homogeneous CG-distribution satisfying BJLA|X the following statements are
equivalent:

(i) the main effect of influence B on the response X is not moderated by the discrete
variable A;
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Moderating effects of subgroups in linear models 87

(ii) the response X is conditionally independent of the potential moderator A, that is
X JL A | B, or of the influence B, that is X JL B \ A;

(iii) the influence B is independent of the potential moderator A, that is B MA.

Proof. If X, B and A have a homogeneous CG-distribution satisfying B JL A \ X, then
there is no interaction effect of A and B on the conditional mean of X given A and B.
The equivalence of (ii) and (iii) follows then with (3-3) and Facts 2. The equivalence of
(i) and X JL .A | fl or B JL A results from Proposition 3 and Remarks 1
and 2. By using the equivalence of (ii) to (iii), X JLA\B or BJL/4 is seen to imply (ii).
Finally, (ii) implies (i) in the case of XMA\B with Proposition 3 and in the case
of X1LB\A since the independence of pair (X, B) is then not moderated by the
presence of A. To put it differently, X ±B\A and B±A\X imply flJL(A,X) and, in
particular, X JL B. D

Remark 1. It is a direct consequence of Proposition 4 that for association structures
with BJLA\X, but not XJLfl| Y, the conditions XJLA|B and BMA are equivalent.

Remark 2. Proposition 4 implies that the common practice of using samples of equal
size in two-way analysis of variance designs can be misleading, since taking equal numbers
of observations for all level combinations of variables A and B forces these variables to
behave like independent influences. More precisely, if the dichotomous influences and
the response follow a homogeneous CG-distribution with A JL B | X and strong associations
of both influences to X, then:

(a) \?jB = 7jyBX = 0, while the interactions T)?X and T)fY are far from zero;
(b) there are high main effects of both variables in the corresponding conditional

distribution of X given A and B, described with (3-1), since the main effects are
simple multiples of the interactions rjf* and T)fY, for which see Appendix 2;

(c) the influences are marginally associated, as can be seen from (3-3) with AyB = 0;
(d) each of the two main effects is moderated by the presence of the other variable.
It follows by Remark 1 that the important feature (b) of the target population cannot

be detected in an analysis of variance based on a balanced sampling scheme.

4. EXAMPLES

4-1. General
We apply the above results to analyses of data taken from a study on determinants of

cognitive development in young children, reported by R, Schumann in a dissertation of
Johannes Gutenberg-University, Mainz, and a study of personality dispositions in high-
school children (Kohlmann, Schumacher & Streit, 1987). We report only likelihood ratio
test results without Bartlett corrections. The latter would only have resulted in higher
p-values, implying an even better goodness-of-fit than we see already without this
correction. Similarly, since no different conclusions were reached after looking at F-tests,
we decided against reporting these. All the likelihood ratio test results and maximum
likelihood estimates were computed by using a program described by Edwards (1989)
for data from joint CG-distributions.

4-2. Example with two continuous and one discrete variable
Schumann was interested in how small children perform in tasks which require the

simultaneous storage and transformation of information. The chosen tasks for 55 children
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88 NANNY WERMUTH

in Kindergarten consisted of identifying among several alternatives the correct match to
a standard picture. The total number of correct matches in 17 such tasks was taken as a
quantitative measure of performance. It was considered to be the response variable, X,
to a quantitative as well as a qualitative influence. The number of times the child looked
from the standard to the alternatives or back, divided by 17, was taken as a quantitative
measure for information gathering behaviour, Y, which is one particular type of problem
solving strategy in these tasks. Furthermore, a qualitative variable with six categories was
used to capture certain levels of the child's information processing capacity, A This
variable was regarded as a potential influence to information gathering behaviour, as
well. Summary statistics are displayed in Table 1.

After assuming conditional normal distributions for X given A and Y and for Y given
A the likelihood ratio test results in Table 2 were obtained. They show that hypotheses
of constant residual variances, riX),(i) = r^y, of homogeneous regression coefficients of
X given Y and A, Pxy(i) = Pxy, a s well as constant residual variances of Y given A,
o-yy(i) = ayy, are well compatible with the observations. The estimates computed under
the combination of these three hypotheses show small deviations from the observed
summary statistics except in situations with rather low numbers of observations; see
Table 3. The linear dependence of X and Y can thus be taken as being equal for all
levels of A, the regression coefficients are estimated as Pxy(i) = 0-46 for all i. Nevertheless,
A has a moderating effect on this dependence; it cannot be correctly evaluated in the
marginal distribution of X and Y alone, where the regression coefficient is estimated as
jSjcy = 0-76 with a standard error of 0-15. This follows with Proposition 2, the good fit of
the data to Y _1L A \ X, that is to a^ (i) = a^, and with the poor fit of the data to X JL Y \ A,
that is to /9^ = 0, and to X JL A \ Y, that is to a^i) = axy.

To summarize: the variability of performance, cr^i), the variability of information
gathering behaviour, <rKy( i), and the increase in performance due to this particular problem

Table 1. Summary statistics for the performance data

Levels
of A

1
2
3
4
5
6

Nos. of
obs.

14
4
4
4
5

14

Means
X

5-86
9 1 4

11-75
7-75
7-20

13-00

Y

4-99
5-64
6-37
6-56
606
7-92

St.
X

2-21
2-25
1-50
2-63
3-56
2-04

dev.
Y

2-23
2-49
2-26
1-76
2-55
311

Corr. coefi.
for (X, Y)

0-57
0-45
0-56
0-60
0-53
0-54

Regr. lines:
Intercepts

3 0
6-9
9-4
1-9
2-7

10-2

X on Y
Slopes

0-56
0-40
0-37
0-89
0-74
0-36

A, information processing capacity; X, performance; Y, information gathering behaviour.

Table 2. Selected likelihood ratio test results for the data in Table 1

Hypothesis Degrees of Fractile or
Symbol Meaning x2 freedom p-value

Hx T ^ , ( I ) = T«.V 4-05 5 0-54

H2 PxXi)=Pxr given H, 1-81/ 5 0-88
H3 o-l,,(0 = o-vl. 3-58 5 0-61
H4 Y JL A | X given H,,H2,H3 4-23 5 0-52
Ht X±A\Y given HX,H2,HT, 45-92 5 <0-001
H6 XAV|A given HltH2,H3 16-27 1 <0001
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Moderating effects of subgroups in linear models 89

Table 3. Estimated parameters after assuming hypotheses Hx, H2 and H3 defined in
Table 2 to be satisfied

vels
)f A

1
2
3
4
5
6

Nos. per
cell i

14
14
4
4
5

14

Means
X

5-86
914

11-75
7-75
7-20

13-00

Y

4-99
5-64
6-37
6-56
6-06
7-92

St dev.
X Y

2-20 2-44

Corr. coefi.
of (X, Y)

0-506

Regr. lines:
Intercepts

3-6
6-6
8-9
4-8
4-4
9-4

X on Y
Slopes

0-457

solving strategy, B^ii), can be taken to be the same whatever the level, i, of the child's
information processing capacity. This constant impact of information gathering behaviour
on performance is strong, p< 0-001 for X JL Y\A, and the average level of performance
corrected for this impact, a^i), depends strongly on the levels of information processing
capacity, with p<0-001 for XMA\Y. However, this capacity, A, has no, or at least a
negligible, moderating effect on predicting information gathering behaviour, Y, from
known values for performance, X, since p = 0-52 for Y JL A \ X. This last result is directly
relevant for understanding the type of dependence of X on Y and A Since each of the
influences (Y, A) provides a substantial contribution to predicting performance in addi-
tion to the other variable, it follows with Y JL A \ X that they are marginally associated
influences and that each of them, alone, is also an important explanatory variable. As a
consequence, no further tests are needed to decide via Proposition 2 that information
processing capacity moderates the constant linear dependence of performance on informa-
tion gathering behaviour. Thus, the study has established the relevance of this capacity
of the memory as a background variable when studying effects of the chosen particular
problem solving strategy on performance of preschool children.

4-3. Example with one continuous and two discrete variables
For the second set of data, the interplay of effects of two qualitative variables on a

quantitative response is of main interest, but one wants to decide first whether estimates
for this dependence can be obtained with or without pooling over the levels of a
background variable. To decide on this we treat the two discrete influences as a single
one, B.

The data are taken from research on effects of childrearing styles on the manifestation
of anxiety as disposition in the child. Quantitative measures for anxiety and different
educational styles were obtained as sum scores from questionnaires containing 20 items
for the former (Spielberger, Gorsuch & Lushene, 1970) and 15 items for each of the
different educational styles (Krohne, Kohlmann & Leidig, 1986). Anxiety is considered
as a response to inconsistent behaviour of the parents. Data are available for 59 girls
and 62 boys aged from 10 to 14 years, who all conceived of both parents as behaving
not very supportively. The analysis is for our purposes restricted to this particular
homogeneous subgroup of children, since effects of inconsistency on anxiety were
expected to be similar and strongest under this condition.

In Table 4 summary statistics are reported for anxiety, X, as it was observed under
four conditions describing distinct patterns of inconsistent behaviour of the parents, B,
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90 NANNY WERMUTH

Table 4. Summary statistics for the anxiety data; A, sex of child; B, inconsistent behaviour
of parents; n{j, number of observations; X, anxiety in child

Estimated effects

A

Female

Male

B
Inconsistency
mother father

low

high

low

high

low
high

low
high

low
high

low
high

"u
26
3

8
22

23
7

8
24

X
Mean

27-04
29-33

3413
36-14

2613
28-71

30-88
32-50

St. dev

4-46
4-93

11-52
8-23

5-81
8-06

608
6-47

name

yo
y?

vf
yf

yf
yt?

Tl3

from obs.
values

given A

30-61
105

- 4 0 2
-1-59

1-90
-0-60

-0-74
-0-57

under
H2, H3

30-76
113

-4-22
-1-41

1-74
0

0
0

from obs.
values

collapsed
over A

30-56

-3-95
-1-66

1-94

—

Table 5. Selected likelihood ratio results for the data in Table 4

Symbol
Hypothesis

Meaning

= 0 given

1-80
16-92
1-23

Degrees of
freedom

3
7
3

Fractile or
p-value

0-62
0-02
0-75

for girls and boys, A, separately. The data indicate that inconsistency aflects not only
the level but also the variability of anxiety: the assumption of homogeneous residual
variances of a normally distributed X given A and B is not well supported by the
observations; see Table 5. We proceed, nevertheless, to estimate effects by assuming equal
residual variances for the following reasons. First, we do not know, at present, how to
obtain estimates of additive effects on the means if the residual variances are not taken
to be constant; secondly, this assumption causes the maximum likelihood estimates of
canonical parameters, but not of the means, to deviate from the observed ones; and
thirdly, computation of marginal means from conditional ones does not involve variances;
see Appendix 1.

Psychological theory did not predict an interactive effect of sex and inconsistency nor
different probabilities for inconsistent behaviour of the parents for girls and boys. The
observations are also far from indicating such effects; see Table 4. Consequently, one
does, with Proposition 3, expect no moderating effect of sex on yf, the effects of parental
inconsistency on anxiety in the child. One may therefore proceed by pooling the two
samples of boys and girls to estimate the effects of parental behaviour on anxiety as
disposition in the child; see Table 4.

5. CONCLUSIONS

Understanding conditions for the lack of a moderating effect is important for drawing
conclusions from data. The above conditions help researchers to use their theoretical
subject-matter expectations and knowledge from previous empirical investigations to
make well-founded choices on such issues as the following.
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Which variables need to be explicitly included into an analysis?
Can estimates of the directed measures of association be computed after pooling

subgroups?
Are results of two studies, which differ by reporting one discrete influence consistent

with each other?
Can the results of an empirical investigation give valid estimates of dependencies in

the target population?
Clearly these questions are also of importance in more general settings than the ones
discussed on this paper, like linear models with joint responses and several influences,
response models with qualitative responses as logistic regressions or multinomial logit
models or in situations with a potential quantitative moderator variable. Accordingly,
more general results are needed.
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APPENDIX 1

Relating marginal to conditional moments

The essential step in quantifying moderating effects, in (2-6) and (3-5) consists of nothing but
computing marginal moments from conditional ones (Rao, 1973, p. 97) as

E(Z) = ETEz\T{Z\t), var(Z) = ET{varZ|T(Z\/)} + varT {EZ[T{Z\t)}.

Starting from a slightly more general version of (2-4) by permitting the covariance matrix to
depend on the levels of A, we have that the marginal moments are

With homogeneous regression coefficients for X on Y and A, that is B^i) = Bxy, one gets from
oixyii) = Mx(0-PxyHy(i) and axy = liTrfiixy(i) that

Oxyii) - OXy = { liX(i) - PLX) - PXy{ fly(i) - fly}.

Together with <rxy(i) = PxyUyyii) this permits us to write

Z TTiiaxyiO -axy){ny(i) -iiy}

and (2-6) follows with 0^ = 5^1 &yy.
Starting from a slightly more general version of (31) and (3-2) by permitting means (fi,j) and

residual variances, r^ij), to depend on the level combinations of A and B, we obtain the means
after marginalizing over A as E(X\B =j) = flj = 1,17,^^^, with ir,\j = pr (A = i\B =j).

With only main effects of A and B on X, that is /xy = yo+ yf+yf, this implies that

and with the marginal effects defined by -y;
s = / I J - S 7 / I / / / equation (3-5) follows.
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APPENDIX 2

Relating marginal to conditional interactions of discrete variables

Given that X, A and B follow a homogeneous CG-distribution we can write for the joint density
gABX

where the A's, 77's and tfi are called the discrete, linear and quadratic interactions, satisfying
symmetric constraints to insure uniqueness. They relate to the parameters in (3-1) and (3-2) via

Discrete marginal interactions are the usual log linear interaction parameters for TJV,-. In
particular, the marginal two-factor interaction Ayfl is known to be denned as

X£B = log nu - (X, log vv)/I - (£j log nv)/J + ( I y log irv)/(IJ).

Direct computation gives the result in (3-3).
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