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Introduction

The usefulness of any graphical representation depends on the ease
with which its implications can be deduccd and on whether it has an
unambiguous interpretation or not.

Graphical chain representations were suggested (Lauritzen and
Wermuth, 1989) to represent complex association structures among
variables which may be qualitative or quantitative. Thc word
'association'is used broadly to include both symmetric associations
for variables treated on an equal footing and directed relations
concerned with the dependence of a response on explanatory
variables, sometimes called influences. Symmetric associations
occur not only when there are no response variables at all, but also
when some variables are joint responses or joint influences, or when
they are joint intermediate variables in the sense of being responses
to one set of variables and influences on another.

Figure 9.1 shows as an example one possible graphical chain
representalion for six variables. Variable,4 is a direct response to
variabfes B, X and C and an indirect response to D, Y; variables B
and Xare joint intermediate variables; and C, Yand D are regarded
only as influences on X, B, as well as on A via X, B.

The purpose of this chapter is to il lustrate some of the essential
features of graphical chain representations, and to relate them to
more traditional formulations of models as well as to familiar tasks
in analysing data. To this end we define chain graphs and mention
some related distributional assumptions. We discuss differences
between using a chain graph to characterize a statistical model or a
substantive research hypothesis. We present reasons for analysing
the associations among influences in addition to the type of
dependence of responses on the explanatory variables. We explain
why interaction effects known from analyses of variance models or,
more generally, for regression models are not reflected in graphical
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Figure 9.1 Example of a graphical chain representation. A
discrete variable A depends directly on the continuous variable
X and on two discrete variables B, C and only indirectly on
variablesY andD. The variablesXandB are intermediate in
the sense of being influences on variable A and joint responses
to variables C,D andY, while C, D andY are regarded only
as influences, that is explanatory variables

chain representations. We illustrate the different types of analyses
and chain graphs that can correspond to the familiar research
question of whether a further explanatory variable wil l improve the
prediction of a response. Finally, we discuss some relations of
graphical chain models to linear structural relation models.

In this chapter the emphasis is on examples with few variables,
but the theory has been developed for many variables. One of the
main advantages of graphical chain representations is that problems
with many variables which appear complex at first sight might be
split up into a sequence of analyses, most of which involve far fewer
variables.

Definition of Chain Graphs and Distributional
Assumptions

The statistical models for the association structures that we consider
consist of distributional assumptions and an independence struc-
ture, that is a set of independencies represented by a chain graph.

Chain Graphs
The chain graphs consist of points for variables, and of at most one
line or one arrow as the connection of a variable pair, and can be
arranged to form a chain of boxes. The chain structure has to be
supplied from subject-matter knowledge about responses and
potential influences. A chain graph drawn with boxes is viewed as a
substantive research hypothesis (Wermuth and Lauritzen, 1990)
about direct and indirect relations among variables and not only as a
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statistical model. In a graph of a statistical model, that is one drawn
without boxes, a connected variable pair just means an unrestricted
association, while in a graph of a substantive research hypothesis it
stands for a non-vanishing association.

Points represent two types of property of observational units:
variables with a nominal scale, called categorical or qualitative
(drawn as dots); and variables for which numerical measurements
are obtained, called quantitative (drawn as circles). There are two
types of associations: the directed associations (drawn as arrows) for
variable pairs, where one variable is regarded as a response and the
other as an explanatory or influencing variable; and the symmetric
associations (drawn as lines without arrowheads), where no direc-
tion of dependence has been specified.

If instead the graph just represents a statistical model, that is it is
drawn without boxes, then such a model is defined for sets of
discrete (dots) and continuous (circles) random variables in terms of
specific distributional assumptions and a set of conditional indepen-
dence restrictions. The graph depicts the independencies, since the
set of missing direct connections for variable pairs corresponds to a
specific conditional independence structure.

The convention adopted for the chain models of Lauritzen and
Wermuth (1989) to ensure an unambiguous interpretation of each
pairwise relation is that the conditioning variables of each pair are
the remaining 'concurrent variables'. In graphs with dashed lines
and arrows of multivariate regression chains (Wermuth and Cox,
I992a) - not discussed here - a different convention is used. The set
of concurrent variables is obtained for a given pair (U,V) by
ignoring all variables, to which U and V are potential influences,
that is it is found by deleting from the picture all those boxes to
which arrows from both U and V could point. In Figure 9.L, for
example, the concurrent variables to (A, Y) are all six variables; to
(X, n are all variables except A; and to (C, D) are C, D and Y.

Thus the missing link between C and D means conditional
independence of C and D given Y (C L D I f ; the missing arrow
between B and C says that (8, C) is conditionally independent given
X, D, Y (B I C | (X, D, ).)); the arrow from Y to B means a
dependence of B on Y given X, C, D; the line between X and B
represents a symmetric association between (X, B) given C, Y, D;
and the single response A is conditionally independent of the
indirect influenceS D, Y given the directly related explanatory
variables B, X and C, that is A L(D, n | @, X, C).

This last independence statement is derived from the pair-
wise independencies and is one application of a result for general
chain graphs by which one can read off the graph all implied
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independencies (Frydenberg, 1990). Though this result is most
important for understanding and interpreting complex structures, it
is less needed for the structures with few variables considered in this
chapter.

D istrib utional As s ump tio ns
The joint density fv in a graphical chain model can be expressed in
terms of densities for the different sets of the concurrent variables.
for instance for Figure 9.1 as

fv : f"lu, foi f" (e.1)
where a-{A}, b:{X,B}, c:{C,Y,D} are called the elements of the
dependence chain C : (o,b,c), and with three sets of concurrent
var iab les aUbUc,  bUc and c.  In  pr inc ip le a large number of
different distributions corresponding to different special assump-
tions about the factors determining fv can belong to a chain graph;
however, algorithms for estimating associations and for testing
independencies are at present not available for many.

In the examples discussed here we assume conditional Gaussian
(CG) distribution and regressions (Lauritzen and Wermuth, 1989).
Special cases are as follows. For a single continuous response a CG
regression can be a linear regression, an analysis of variance, or an
analysis of covariance; for a single discrete response it is a linear or a
quadratic logistic regression. A CG distribution takes the con-
tinuous variable to have a joint normal distribution conditional in
each cell defined by the level combinations of the discrete variables;
it leads to log-linear models if there are no continuous variables and
to a joint normal distribution if there are no discrete variables.

other distributional assumptions are possible. Some results of
how such different assumptions will affect estimation and test
results are available (Cox and Wermuth,l992a).

Substantive Research Hypotheses versus Statistical
Models

It can be helpful to distinguish between a statistical model repre-
sented by a chain graph drawn without boxes and a substantive
research hypothesis represented by a chain graph drawn with boxes.
A substantive research hypothesis depends strongly on subject-
matter knowledge. Such knowledge typically involves not only
indirect relations (modelled in connection with chain graphs via
missing direct links which mean independencies) but also the
relative strength and the type of associations among variables. In
fact, the aim of much substantive research is to establish evidence
for relations which are rather strong as compared to weak and
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Figure 9.2 Example for a simple substantive hypothesis: there
is a non-vanishing dependence of systolic blood pressure X on
weight Y and of weight Y on age Z; X is conditionally
independent of Z given Y (X f Z I Y), that is systolic blood
pressure X depends only indirectly on age Z since it is
independent of age given information on weight Y.

negligible ones. This is reflected in the graphical representation,
that is connections in chain graphs drawn with boxes mean non-
vanishing associations.

In contrast a statistical model for associations can be defined and
studied without connection to any specific substantive issues. In it a
relation between a variable pair is either restricted by an indepen-
dence statement and gives a missing direct link in the chain graph,
or regarded as unrestricted, that is permitted to vary freely within
the limits specified by distributional assumptions.

For instance, for patients with hypertension, strong positive
linear dependencies of systolic blood pressure X on both degree of
overweight y and age Z are expected, and a plausible hypothesis is
that the dependence on age becomes rather unimportant given the
information on degree of overweight. This substantive research
hypothesis is expressed with the graph in Figure 9.2. lt says that
there is a non-negligible correlation between overweight and age
(pr,), and between systolic blood pressure and overweight (p,r), but
that knowing the age of a patient does not improve prediction of the
degree of hypertension provided the information on degree of
overweight is available (p,,., - 0). This research hypothesis implies
in particular that the simple correlation p' of blood pressure and
age is non-zero but is less strong than the smaller of py, afid pry,
since prz.y : 0 implies p*, : pyrp*y and correlations are smaller than
one.

In contrast to the research hypothesis, the statistical model
underlying Figure 9.2, which could have been specified as a
trivariate normal distribution with p*,.y :0, does not imply a non-
zero marginal associatiot p,r. In fact, it is consistent with either or
both of py, and p,, being zero, in which case pjz would also be zero.
All that can be derived from the statistical model is that p,, : 0 is
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Figure 9.3 Two distinct research hypotheses which correspond
to the same statistical model; the missing edge (X,Z) means
X IZ | (Y,U) in the left graph and X LZI tJ in the right
graph; the missing edge between X and Y means X I Y (Z,lJ),
in both graphs. A compact description of the set of
independencies is X I (Y,Z) | V in both graphs

not implied, that is marginal independence of X and Z is not
implied. This is a much weaker implication than the one derived
from the research hypothesis.

It may also happen that several research hypotheses are compat-
ible with the same statistical model. one example is given in Figure
9.3. In the left graph Z and U are potential joint influences on the
joint responses x and Y, while in the right graph X is regarded as a
potential influence on Y as well. Consequently, the meaning of
pairwise relations can differ: for instance, the arrow from Uto Xis a
dependence given Yand Zinthe left graph, while it is a dependence
given Z in the right graph.

To understand the meaning of a research hypothesis, it is crucial
to know the dependence chain, since it assigns a specific meaning to
each pairwise relation. This is not the case for the corresponding
conditional independence structure since it depends only on the
underlying chain graph (Frydenberg, 1990). A chain graph used to
characterize a statistical model can be obtained from a graph
characterizing a research hypothesis by deleting the boxes, that is by
ignoring the specific ordering of the variables given in terms of a
dependence chain.

The data in Table 9.1 for 98 healthy male adults (Hodapp et ar.,
1988) show that the research hypothesis of Figure 9.2 is also
compatible with observations for persons not suffering from hyper-
tension. The observed partial correlatiofr r,,.u is almost zero and the
marginal correlations are all positive, though the strength of the
correlations for this collective of healthy persons is smaller than
expected for a collective of hypertensive patients.

No statistical test could have rejected the hypothesis pr, : 0,
since the observed correlation is rather small (rrr:0.139). How-
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Table 9.1 Risk factors for cardiovascular diseases: observed
marginal correlations (lower half), observed partial correlations
(upper half) and further data summaries, n:98

Variable

X Y
Systolic

blood pressure Weight Age

X Systolic blood pressure
Y Weight relative to height
Z Age

1
0.371
0.139

0.348 -0.007
1 0.369
0.390 1

Mean

Standard deviation
128.31
13.47

0.42
0.04

32.74
11.67

ever, it would be unwise to use
present context: it would mean
matter knowledge, in particular
hypothesis in Figure 9.2.

such a test and its result in the
to ignore the available subject-
the implication of the research

Reasons for Analysing Relations among Explanatory
Variables

If observations become available from a particular study, there will
be expectations on the part of the investigator regarding strength,
direction or lack of associations not only for the response variables
but also for the potential explanatory variables. This alone is an
important reason to investigate relations among explanatory vari-
ables.

If unexpected findings are encountered there may be systematic
errors in the data or there may be selection effects. For instance, in
a study of effects of different pre-operative sedative treatments an
unexpected strong association between vigilance, a strategy to cope
with anxiety and stress, and gender of patients was observed. The
reason for this turned out to be a selection strategy: the anaesthetist
had allocated to the control group, that is to no pre-operative
treatment at all, only those patients who appeared to be least
excited. As a consequence, patients in the control group had
characteristics quite distinct from patients in treated groups.

Another important reason for analysing relations among explana-
tory variables is to investigate whether moderation in the confound-
ing sense (Breslow and Day, 1980; Wermuth, 1992a) can be a
feature of the investigated relations. This means that an association
which coincides in several subgroups is qualitatively different
overall, that is without a split into subgroups. In the literature on
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A = 0 A = 1 Overall

f = 2 0 + ( x - 5 ) y = 1 6 + ( x - 1 1 ) f  =  18  -0 .5  ( x -  8 )

Figure 9.4 Example for moderation in the confounding sense
with: p,,(0) - 20, p*(0):5, an(0) - 11, a**(0): I ,  o*"(0): I ;
py(I) -  16, p*( l)  -  1i, ,  or(1) ' :  I l ,  o**(1): I ,  o*r( l) :  I ;
and Pr(A - 0) : Pr(A : I) : 0.5

contingency tables, such situations have been called the Yule-
Simpson paradox (Simpson, 1951; Wermuth, 1989). A particularly
striking version of it is shown for parallel linear regressions in Figure
9.4.

Moderation in the confounding sense is further illustrated with
fictitious data for a contingency table in Table 9.2. A reversal in the
direction of dependence after marginalizing over one of the expla-
natory variables cannot occur with independent explanatory vari-
ables; it is more likely the stronger the explanatory variables are
associated. It is most important to be aware of moderation in the
confounding sense if results from two studies are to be compared;
confounding can be the explanation for results which appear
contradictory at first sight.

Chain Graphs and Interactions

A missing link in a chain graph means a conditional independence,
and a direct connection between a variable pair means a particular -
not further specified - conditional association. For purposes of
interpretation it is important to understand how these concepts
relate to more traditional definitions of interactions.

Fisher (for example, 1956: Chapter 42) had introduced interac-
tion in a two-way analysis of variance context to mean a different
dependence of the response on one explanatory variable for
different levels of the second variable, that is as a two-factor
interaction in a model for dependence of a quantitative response X
on two qualitative explanatory variables A and B. X had a normal
distribution given ̂ A and B, possibly differing in means but not in

P x y (  ) =  0 ' 3 0 2

Pxy(0) = 0-302
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Table 9.2 Examples with strongly consistent results within sites
in terms of relative risks, which have value 1.5 at each site, and
appear reversed overall in case (a) but are replicated in case (b)

(a) Yule-Simpson paradox (moderation in the confounding sense)

Clinic X:
treatment

Outcome A B

Clinic O:
treatment

A B A

Overall:
treatment

600
(30%)
1400

40
(20%)

160

300
(7s%)

100

2040
(s0%)
2000

900 2040
(38%) (4e%)
1500 2160

Sum

(b) Relative risk is collapsible since explanatory variables are independent

2000 200
Tf.IIAX
- - -F - :  |  \
l t l lBX

400 4000
Tll ,qO _ 1 s
l t l lBO

2400 4200

ffi:o-,r

Clinic X:
treatment

Clinic O:
treatment

Overal i :

treatment

Outcome

60
(30%)

140

400
(20%)
1600

300
(7s%)

100

2000
(s0%)
2000

360 2400
(60%) (40%)

240 3600

Sum

variance. Conditional independence of X of A given B can in this

model be expressed as g:l it : SIt]u, and implGs that there is no

main ef fect  of  A and no two-factoi  interact ion of  A,B on X.

These notions have been extended to other dependence models.

For instance, for a l inear regression of X on a quantitative influence

Y and a qualitative influence A, a two-factor interaction of A, Y on

X means changing slopes of the l inear regressions of X on Y at the

different levels of A; that is, the lack of a two-factor interaction

implies parallel regressions. Conditional independence of the re-

sponse X of.,4 requires in addition that the main effect is missing.

More precisely , X L A I Y implies that the parallel regression l ines

coincide, that is have equal intercepts of all levels of A.

The same interpretation applies to other CG regressions, that is

logistic regressions with qualitative .explanatory variables 8ft)! '  or

with mixed explanatory variables gfi ' f^, and also to corresponding

probit regressions.

200 2000
lTI IAX

- t \

T I : B X  
-  '  ' J

400 4000
l r l l A o
l r l lBo

600 6000

ffi:tt
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Bartlett (1935) had given a definition of a three-factor interaction
in a three-dimensional contingency table: changing odds ratios of
two variables for different levels of the third variable. Though this
definition for log-linear models appears to be quite similar to
Fisher's definition, there is the important distinction in that it
concerns interaction in a joint distribution, that is in a model for
symmetric associations, and not the more commonly considered
interaction in models for dependencies (Cox, 1984).

Conditional independence of A of B given C in a long-linear
model can be 

"*prlrr" 
d as fif' : gi,'{*' I gf and it im[lies in

particular that there is no log-linear two-factor interaction of A, B
and no three-factor interaction. Since Ffrf, 

: 
4f, l.Sfo, :-gfl,

there is a correspondence between misSing one'- and two-facior
interactions (8, BC) in a regression of A on B, C and missing two-
and three-factor interactions (AB, ABC) in a joint distribution: they
are equivalent formulations for conditional independence of (A,B)
given C.

Bartlett's notion of interaction in a joint distribution and its
relation to interactions in corresponding regression models has been
extended to other than log-linear models wittr CC distributions and
corresponding CG regressions. In any CG distribution a variable
pair is conditionally independent given all of the remaining vari-
ables if and only if the two-factor interaction and all higher-order
interactions of this pair vanish. Furthermore, vanishing of two- and
higher-order interactions in the joint distribution implies the vanish-
ing of a main effect and higher-order interactions in a corresponding
CG regression which has one variable of the pair as a univariate
response. This gives the precise meaning of a missing line and of a
missing arrow in a chain graph in terms of interactions.

Similarly, an arrow in a chain graph means the presence of a main
effect or of a two-factor or of a higher-order interaction in a
regression, and a line means the presence of a two-factor or of a
higher-order interaction in a joint distribution. This explains why a
graphical chain representation completely describes independencies
but only incompletely specifies the type of associations which are
present. To give an example we take the symmetric association
structure for three symptoms of EPH gestosis (Wermuth and
Koller, 1976), an illness occurring during pregnancy, and symptoms
after LSD intake (Lienert, 1970). The symptoms for the gestosis
data are,4 yedema, B proteinuria and C hypertension, and for the
LSD data they are distortions in: A thinking, B consciousness and C
affective behaviour (Table 9.3).

In both cases the graphical chain representation is a complete
graph with lines connecting all three symptom pairs. However, the
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Table 9.3 Counts for combinations of three symptoms of
EPH gestosis and after LSD intake

Data set Symptom Levels and counts

LSD intake'
EPH gestosis

1 t
45

I One observation has been added to each cell.

association structures are quite different in the two situations. There
is no log-linear three-factor interaction for the gestosis data but a
strong log-linear three-factor interaction for the LSD data. All two-
way margins show strong associations for the EPH data, but rather
weak associations for the LSD data. These differences are not
captured in the graph. The graphs just reflect the conditioning sets
for each substantial dependence or association and the conditional
independencies if there are any. Thus they show, for large sets of
variables, to which sequences of smaller problems the analysis may
be simplified.

Prediction of a Response: Is It Improved by an
Additional Explanatory Variable?

In many research situations in which past research has established
the depenqeTlqg of ?^ response variable X on a single explanatory
variable Y \hi,r' * ni), a natural next question is whether prediction
of the response might be further improved by another variable Z.If
this is nof the case *e have X L Z l- f or hf,:t - hIJ' , and hence,
the type of dependence of X on Y is not mbderated'-at all by Z. If ,
however, the response is dependent on the additional explanatory
variables, it becomes necessary to describe the type of dependence;
in particular, it can be an issue whether there is moderation in the
interactional or in the confounding sense (Wermuth, L992a). In the
case of moderation in the confounding sense the direction of a
dependence can appear reversed after a second variable is included
in the regression. In the case of moderation in the interactional
sense the dependence of the response on an explanatory variable
differs with different levels of the other explanatory variable.

Quite different types of analyses are needed in such situations
depending on whether the involved variables are qualitative or
quantitative. We give three examples in Figure 9.5. In the first

A
B
C

0 1
l 0
t 1

4 2
9 3 6

0
0
1

1 0 1 0
1 1 0 0
0 0 0 0

5 1 6 1 3 1
26 44 609 2342

21
1 4
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Figure 9.5 Three regression chain graphs corresponding to the
same type of research hypothesis: of two associated explanatory
variables, only one is needed to predict the response.
(a) Logistic regression chain with two qualitative explanatory
variables; (b) linear regression chain with mixed explanatory
variables; (c) logistic regression chain with mixed explanatory
variables

example (Figure 9.5a) observations on n : 25,77-l women (National
Institutes of Health, 1972) are available for three qualitative
variables A, B, C defined as follows:

A perinatal death (i - 1 yes; i - 2 no)
B survival state of last prior child (i : I l iving; j : 2 child death;

j : 3 foetal death ; j - 4 neonatal death; j : 5 unknown)
C sk in  co lou r  o f  woman (k :  l  l i gh t ;  k :2  dark ) .

The counts and the observed risks (in percentage rates) for perinatal
mortality ,4 at each of the level combinations of the potential
influences B, C are given in Table 9.4. The research hypothesis is
that prediction of the risk of perinatal mortality is not improved by
the information on the skin colour of the mother provided a good
indicator for the medical and socioeconomic situation of the mother
is available. The test results in Table 9.5 and the mortality rates
estimated under this hypothesis (Table 9.4) show how well the
hypothesis is compatible with the observations. As a final summary
the estimated relative risks for perinatal mortality are displayed in
Table 9.4.The increase in risk for perinatal mortality as compared
with the best condition (the last child prior to the present is alive) is
substantial. The relative risk of 4.2, for instance, says that the risk
for perinatal mortality is four times higher under the worst con-
dition (survival status of last child unknown) as compared with the
best condition. This risk increase due to poor socioeconomic
conditions of the mother is higher than most risk increases owing to
medical factors reported in National Institutes of Health (1972).

In the second example (Figure 9.5b) there are observations for
n:40 patients prior to an operation on the jaw (Krohne et al.,
1989). None of the patients have been treated with sedative drugs,

(c)(b)(a)



1 1
2 1
1 2
2 2
1 3
2 3
1 4
2 4
1 5
2 5

Association Structures with Few Variables I93

Tabte 9.4 Counts and other data summaries for perinatal
deaths (A), survival status of last prior child (B), and skin
colour of wornan (C)

Levefs Estimates under rli*: Tili
Observed Observed

A B C count "h rate Count "/" tate Relative risk

270 0.28 297.5 0.32
9,148 9,120.5

3 0.27 3.4 0.31 1
108 107.6
r34 0.74 132.8 0.73 2.3

1 ,678 7,679.2
r7 0.90 19.3 1.02 3.2

173 170.7
56 1.26 59.3 1.33 4.2

385.7

1 1 2 37r 0.34 343.5 0.32
2 1 2 1 0 , 5 0 2  1 0 , 5 2 9 . 5
|  2 2 5 0.34 4.6 0.31 1
2 2 2  1 4 4  1 4 4 . 4
1 3 2 154 0]2 155.2 0.73 2.3
2 3 2 1,963 1,961.8
| 4 2 37 1.08 34.7 r.02 3.2
2 4 2 305 307.3
1 5 2 46 1.44 42.7 1.33 4.2
2 5 2 274 277.3

Source: National Institutes of Health. 1972: 187

Table 9.5 Tests for conditional independencies, Table 9.4 data

Concurrent Values of chi- Degrees of Corresponding
Pair variables square statistic freedom fractile or p-value

(A,B\ ABC 279j2 8 <0.001
(A,C) ABC 6.03 5 0.302
(B,C) BC 68.81 4 <0.001

and - owing to a selection strategy of the anaesthetist - all have in

common that they are non-vigilant, that is they do not use vigilant

behaviour as a strategy in copying with stress. The variables are as

follows:

X level of free fatty acids measured in the blood just before the

operation
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Tablc 9.6 Elfects of pre-operative atuiety Y on lree fotty ucids X

Mean
Standard deviat ion

Correlat ion
Number of patienls

Y level of anxiety measured with a state aoxiety questionnaire on
the morning of the day of the operation

,4 coping strategy 'cognitive avoidancc' (1 = not employed;
2 = employed; categories were obtained by median dichoto-
mizing the corresponding questionnaire scores L).

The research hypotheses arc that either the coping strategy does not
modify the dependence of free fatty acids on anxiety (as displayed in
Figure 9.5b) or, if it does, a stronger dependence of physiological
reaction on anxiety is expectcd if the patients do not use a strategy
to cope with anxiety than if they do. When such a change in
association is expected, any analysis based only on simple and
partial corrclations of the variables X, Y and U would not be
suitable.

Table 9.6 gives the basic data summaries and Figure 9.6 shows the
scatter plots between X and Y for A:1 and A=2, to ascertain that
the observed changes in association between X and y are not due to
outliers or other irregularities of the data.'l 'hus the data lead to a
rejection of the hypothesis that information on the coping stratcgy is
not needed to predict the level of frec fatty acids from the levcl of
anxiety. Instead the data support the described expectations regard-
ing changes in associations, thal is there is the expectcd interaction
effect of Y and ,4 on X.

In thc third example (Figurc 9.5c) the response variablc is aguin
qualitative, it is known to depend on a quantitative explanatory
variable, and a potenlial qualitativc modcrator variablc is con-
sidered. The observed variables for n:149 patients (Schmitt, 1990)
are as follows:

success of treatment (0 : no; 1 : ycs) obtained from dichoto-
mizing a more detailed scorc
stagc of chronic pain, a constructcd indicator with possiblc
values from 4 to 12
gen0er.

In this contcxt the hypothesis in Figurc 9.5c says that thc dcpen-

390.11 41.',7
1 5 6 . 6  1 r . 2

0.38
40

,134.1J 44.0 316.1 39.5
165.9  12 .3  136.8  9 .8

0.54 0.06
20 20
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Anxiety y

Figure 9.6 Dependence of free fatty acids X on anxiety Y if
the coping strategy of cognitive avoidance is (a) not employed
(A:l) and (b) employed (A: 2)
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Stage of chronic pain X

Figure 9.7 Observed frequencies for success of treatment A as
it depends on stage of chronic pain X and probabilities
estimated by (a) linear logistic regression and (b) quadratic
logistic regression. Solid line is smoothed observed values,
broken lines are predictions

dence of success of treatment on the stage of chronic pain is the
same for males and females.

These data for a logistic regression provide one of the many
examples in which an automatic search procedure leads to mislead-
ing results because the distributional assumptions in the research
procedure amount to an overspecification; that is, if in this case the
stepwise logistic regression of BMDP is used, which is a model
search based only on global test statistics in l inear logistic regres-
sion. More precisely, if one starts by assuming a l inear logistic
regression for X on Y it appears as if gender has no moderating
effect on the dependence of success of treatment on stage of chronic
pain. The computed goodness-of-fit statistics do not point to a bad
fit of the models. This poor fit is, however, easily discovered frorn
plotting fitted against observed probabil it ies of success as shown in
Figure 9.7a"

{
@
a
o
o
C)
@

o
E

t-



1 . 0(b)

Association Strttctures with Few Variables '197

Stage of chronic pain X

Figure 9.7 continued

If instead of assuming linear logistic regression we permit a
quadratic dependence, that is we use the assumption of a non-
homogeneous CG regression chain, then not only do we obtain a
good fit overall as shown in Figure 9.7b, but gender emerges as an
important moderator in the interactional sense. Observed and
estimated success rates are displayed in Table 9.7 and in Figure 9.8.
In this case the estimation results point to an unexpected interaction
effect. It turns out that the patients with low success rates of
treatment in spite of low scores for the stage of chronic pain are
female headache patients. Further observations wil l be needed to
judge the relevance of the result.

Relations to Other Models

Linear regressions and probit regressions are also assumptions used
for models of l inear structural relations (Joreskog, 1977; Muth6n,
1984). However, graphical representations of the latter cannot in
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Table 9.7 Scores for stage of chronic pain (X),
probabilities of success of treatment when leaving
n : 149 patients given gender (B) and stage (X)

counts, and estimated
the clinic (A) for

Stage of
chronic
pain

x

Number of
Total count successes

Females Males Females Males

f , . l t  n . z t  f l l l t  n l z t

Probabilit ies estimated bY:

observedrelative quadraticlogistic

frequencies regression

Females Males Females Males

n l  I  t x  n l  l z x

4
5
6
n

8
9

1 0
1 1

1
2
5

t 2
36
20
1 4
1

0
I
1
I

t 6
l 0
2
0

;
9

l 5
l 4
r0
2

5
6
6
J

0

general be interpreted as chain graphs. One exception is when they
correspond to systems of univariate recursive equations (see Wold,
1954; Wermuth and Lauritzen, 1983). Such graphs have been called
univariate recursive (Wermuth and Lauritzen, 1990) or directed
acyclic graphs (Pearl, 1988). Another exception is if they corres-
pond to a multivariate regression or to a block-regression model
(Wermuth, 1992b).

Models defined for univariate recursive systems within either
framework, that is as a structural relation model or as a CG
regression chain model, can be identical, similar or rather different.
They are identical if all responses are continuous variables. They
are rather similar if they only differ in probit versus logistic
regression, since linear logistic regressions are virtually indis-
tinguishable from linear probit regressions (Cox, 1966; Cox and
Snell, 1989). They differ substantially if a quadratic logistic regres-
sion appears in the CG regression chain model but only a linear
probit regression in the corresponding structural relation model.

There exist conditional independence structures which can be
tested directly within the framework of graphical chain models but
not within the framework of linear structural relations, and vice
versa. A simple example of the former is displayed in Figure 9.9 and
Table 9.8. An example for the latter is XI U I Z and Y L Z I U,
which can be interpreted as a hypothesis in a multivariate regression
of X and Y on U and Z (see Cox and Wermuth, 1993).

0.00
0.50
o.20
0.58
0.44
0.50
0 . 1 4
0.00

0.06
0 . 2 1

0.88 0.39 0.80
0.56 0.50 0.63
0.40 0.50 0.47
0.43 0.39 0.34
0.30 0.20 0.27
0.00 0.06 0.24
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Figure 9.8 Observed frequencies for success of treatment A and
probabilities estirnated by quadratic logistic regression given stage of
chronic pain X and gender B for (a) females and (b) males. Solid line is

smoothed observed values, broken lines are predictions

Q . 4

{
.t)
U'
o
o
f
U)

o)
E
G
c)
L

F



200 Population Health Research

2 =  {X ,YI b= l z ,u l

Figure 9.9 A chain graph with a nondecomposable
hypothesis; X I U | (Y,Z) and Y rZ | (X,U)

The main disadvantages of l inear structural equation models are:

The interpretation of each model, that is the meaning of
parameters and of missing direct connections, has to be derived
from scratch in most situations, since no general results are
available to deduce them.
The meaning of equation parameters in linear structural rela-
tions is not t ied to the notion of independence. It may, in
particular, occur that by imposing one more zero restriction in a
model, one suddenly has a situation in which some parameters
are unidentifiable.

Table 9.8 Observed marginal correlations (lower half) and
observed partial correlations given all remaining variables
(upper half), and further data summaries, n:684

Variable
X Y

State anxiety State anger
Z U

Trait anxiety Trait anger

X State anxiety
Y State anger
Z Trait anxiety
U Trait anger

1
0 .61
0.62
0 .39

0.45
1
0.47
0.s0

0.47
0.03
1
0.49

-  0.04
0.32
0.32
4

I

Mean

Standard deviation

18 .87
6 . 1 0

15.23
6.70

21.20
5.68

23.42
6.57

Source:  C.D. Spielberger,  personal  communicat ion of  data on anger,  anxiety

(1e83).
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3 A discrete variable enters as a response variable only by
assuming an underlying normal variate which has been parti-
tioned to give the categorized variable. This excludes nominal
scaled variables and models for symmetric associations with
three-factor interactions, that is explanations for data like those
reported by Lienert (Table 9.3).

These disadvantages are not shared by graphical chain models.
Their main disadvantages are of a different kind:

1 No programmed algorithms are widely available yet which
permit the computation of estimates for each model in this class;
such a development is likely to build on work by Frydenberg and
Edwards (1989), Cox and Wermuth (1990; 1991) and Jensen
et  a l .  (1991) .

2 The statistical theory for models with latent variables which is
needed in many applications is not yet well developed.

3 More examples of good analyses with many variables would be
helpful.

Though a considerable amount of new work on different special
aspects of models for multivariate dependencies and associations
has been published, for instance Cox and Wermuth (L992a;1992b;
1992c; 1993) and Wermuth and Cox (I992a; 1992b; L992c) much
more needs to be done.
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