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Abstract
The role of graphical representations is described in distinguishing various special
forms of independency structure that can arise with multivariate data, especially
in observational studies in the social sciences. Conventions for constructing the
graphs and strategies for analysing three sets of data are surrunarized. Finally some
directions for desirable future work are outlined.

1. Introduction

In many fields of work, especially but not exclusively in observational studies in the
social sciences, data are obtained on a considerable number of variables for each
individual under investigation. The isolation of the dependencies and associations
between these variables, which are typically of substantive interest, ffi&y sometimes
be possible by relatively simple and direct methods of analysis but in many situa-
tions, especially where the relations are relatively subtle, there is a need for genuinely
multivariate methods of statistical analysis into which subject-matter knowledge is
to be integrated in an appropriate way.

The need to discuss special structures specified in terms of marginal independence
and conditional independence arises partly bec.ause these independencies may be
of substantive interest themselves but partly because they offer the possibil i ty of
simplifying potentially complex problems of analysing relations among component
variables by splitting into a sequence of smaller analyses each involving possibly only
few variables; thereby a superabundance of parameters is also avoided.

Already with four component variables there is a quite rich and potentially con-
fusing variety of special structures to be considered and graphical representation can
help to clarify the various possibilities. We use the graphical chain representations
for dependencies and associations as they have been introduced by Lauritzen and
Wermuth (1989),  Wermuth and Lauri tzen (1990) and Cox and Werrnuth (1992a).
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These graphs consist mainll' of nodes for variables with circles for continuous vari-

ables and with dots for discrete variables, of at most one edge for the considered

relation of each pair and of lwo kinds of edge to indicate different types of conditional

analyses. As described below in detail, these graphs permit a precise identification

of the meaning of each edge be it present or missing in the graph.

A systematic account of graphical methods by Whittaker (1990) emphasizes undi-

rected graphs with all edges being undirected full lines, i.e. systems in which all

variables a,re treated on an equal footing. Here we use largely directed graphs with

edges being arrows in order to ernphas\ze relations of response and dependence while

undirected lines rnainly indicate joint dependence of responses. We sornetimes also

use graphs with dashed instead of full edges: the dashed edges are to denote a

smaller conditioning set for a relation than full edges.
There are strong connections with, in particular, the long history of work on path

analysis in genetics (Wright, 1921, 1923), on simulta,neous equations in econornet-

rics (Goldberger, 1964) and on linear structural models in psychometrics (.Ioreskog,

1973). But, simultaneous or structural equations do not, in general, permit a graph-

ical chain representation as it is discussed here, The reason is that zero coefficients

in a structural equation need not correspond to a rela,tion of conditional indepen-

dence. Exceptions are models which belong to the subclass of systems of univariate

recursive regressions or which are multivariate legression equations.

Our use of graphical representations is intended to aid interpretation in situations

with moderate numbers of variables) sa)' four to ten, and it is to be contrasted wittr

the use in connection with decision analysis via expert systems where very large

numbers of variables may be involved (Lauritzen and Spiegelhalter,, 1988; Pearl,

1988;  Smi th ,  1988) .
In this paper we shall give in Section 2 the conventions that are used to construct

a chain graph which allow the precise interpretation of the independencies implied.

In Section 3 we provide for three different sets of data of six to eight variables

background information and outline general strategies that may be used to incorpo-

rate some of this substance matter knowledge into a model formulation. The paper

concludes with a discussion of desirable future developments.

2. Conventions for constructing chain graphs

We distinguish between the response variables of primary interest, one or more levels
of intermediate response variables and explanatory variables, all in general with
several component variables. The distinction between variable types is typic.ally
introduced by a priori subject matter considerations although rve do not exclude it
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being introduced in the light of initial data analysis.
The following conventions are used in constructing the chain graphs in this paper:

a) each continuous variable is denoted by u node which is a circle and each dis-
crete variable by a node which is a dot:

b) there is at most one connecting line between each pair of nodes, an edge;
c) variables are graphed in boxes so that variables in one box are considered

conditionally on all boxes to the right (in line with the notation P(A I B) for the
probability of A given B);

d) if full lines are used as edges, each variable is considered conditionally on
other variables in the same box (as well as those to the right), whereas if dashed
lines are used variables are considered ignoring other variables in the same box, i.e.
marginally with respect to box variables of the remaining responses;

e) the absence of an edge means that the corresponding variable pair is condi-
tionally independent, the conditioning set being as specified in d);

f) variables in the sarpe box are to be regarded in a symmetrical way, e.g. as
both response variables, and connected by undirected edges (lines without arrow-
heads, for symmetric associations), whereas relations between variables in different
boxes are shown by directed edges (arrows, for directed associations) such that an
arrow points from the explanatory variable to the response;

g) graphs drawn with boxes represent substantive research hypotheses in which
the presence of an edge means that the corresponding partial association is large
enough to be of substantive importance, corresponding to the notion that the model
being represented is in some reasonable sense the simplest appropriate; graphs ob-
tained by removing the boxes represent statistical models in which a connecting
edge places no constraint on the association;

h) u row of unstacked boxes implies an ordered sequence of (joint) responses
and (joint) intermediate responses, each together with their explanatory variables.
Boxes are stacked if no order is to be implied, i.e. to indicate independence of several
(joint) variables conditionally on all boxes to the right;

i) if a right-hand box has two lines around it, then the relations among variables
in this box are regarded as fixed at their observed levels; this is to indicate a condi-
tional (regression) model instead of a regression chain model, the latter containing
parameters also for those components which are exclusively explanatory.

Some additional restrictions are needed to obtain well-defined statistical models
corresponding to such graphs. These are at present (i) that each set of responses
connected by full edges has only full arrows pointing to it, each set of responses con-
nected by dashed edges has only dashed edges pointing to it and only arrows of the
same kind point to each set of unconnected responses; (ii) that graphs with dashed
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edges have no discrete response variables. We expect that some further mixtures

of both types of edges are permissible, i.e. would for instance lead to Barndorff-

Nielsen's (1978, p.122) mixed parametrisation of an exponential family; similarly,

we expect that the models of Liang et al. (1991) have a graphical representation

with dashed edges for discrete response variables, but more work is needed to obtain

the precise details.
A large variety of traditional models is implied by special cases of the above graphs

together with special distributional assumptions, for instance multiple l inear regres-

sion, analysis of variance and covariance, multivariate regression, logistic regression,
probit regression and log-linear models, but also more recent models such as seem-

ingly unrelated regressions (Zellner, 1962), covariance selection (Dempster, 1972),
independence hypotheses with l inear structure in covariances (Anderson, 1973) or
block regression (Werrnuth, 1992).

The essential feature one needs to know for a chain graph represerrtation is how
conditional or marginal independences are reflected in the parametrisation. For
instance, for the mixed case of both discrete and continuous variables this was
derived for the Conditional Gaussian (CG) distribution and regressions by LauriLzen
and Wermuth (1989) or if just l inearity of regressions is assumed independence means
just l inear independence but not probabil istic independence.

Figure 1 shows the graphs of two mutually exc.lusive independence structures
expressed with graphs for a special multivariate regression (dashed edges) and a
special block regression (full edges). Independencies are expressed in the notation
by Dawid (1979), for instance conditional independence of variables Y and V given
Z is written as l' ll V I Z .

In general ,  sequences of boxes give a (part ia l ly)  ordered part i t ioning of  {1, . . . , r }
and determines those sets of variables which are to be analysed simultaneously,
called sometimes concurrent uariables, i.e. all variables in the same box and in the
boxes to the right and concurrent erplanatory uariables, r.e. all variables in boxes
to the right of the considered set of responses. For a general chain C - (Ct,. . . ,Ct)
the  concu r ren t  va r i ab les  a re  g i ven  by  ( { l )  :  C ,  U . . .  UCt  fo r  j _  1 , . . . , , /  wh i l e
the concurrent explanatory variables for the responses in gb) are given by (0+r7

except for C(J), where it is the empty set. For instance, for the dependence chain
C - (o,b,c) coresponding to the (vector)  var iablesYo,Yu,Y" the chain elements c '  b,
and c define three sets of concurrent variables with: aU bU c, bt ) c, and c and three
sets of concurrent explanatory variables with: bl) c, c, and 0, ,.". the empty set.

This provides the definitions needed to interpret edges in chain graphs be they
present or missing:
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(a) (b)

F i g u r e l :  t h e l e f t g r a p h ( a )  s p e c i f i e s Y  l l  V I Z  a n d t /  l l  Z I V  a n d a n d t h e r i g h t g r a p h ( b ) :
Y  l lV  l (Z ,U)  and  Z  l l  U  l (Y ,V) .  Under  norma l  theory  max imum l i ke l ihood  es t imates  fo r
hypothesis (a) on a mult ivariate regression of ( l ' ,  U) on (V, Z) can be direct ly obtained
with an estimating algori thm for l inear structural equations such as in LISREL (Joreskog
and Sorbom, 1984)  but  not  wi th  an a lgor i thm for  undi rected graphica l  associat ion models
such as in  MI I {  (Edwards,  lgg0,  1991)  whi le  thosefor  hypothesis  (b)  on a b lock regress ion
can be d i rect ly  obta ined f rom MII {  but  nob f rom LISREL

o a full edge denotes a partial association given all the remaining concurrent
variables.

. a dashed edge denotes a partial association given all the remaining concurrent
explanatory variables of the set of responses considered.

a missing full edge means conditional independence given all the remaining
concurrent variables.

o a missing clashed edge means conditional independence given all the remaining
concurrent explanatory variables of the set of responses considered.

The graphs cannot reflect how a particular substantial conditional dependence
looks like, i.e. for any edge present in the graph the type of the nonvanishing
conditional relation needs further description.

Graphs with in our notation full edges have an elegant connection with the theory
of Markov random fields which allow general properties to be deduced; for instance
it is possible to read directly off the graphs all implied independencies and to decide
from the graphs of two distinct models whether they are equivalent (Frydenberg,
1990). Graphs with dashed edges, or possibly graphs with mixtures of dashed and
full edges do not have the same genelal features and it is an open question as to
what exactly can be said about them in generality.
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3. Outline of strategies for analysing three sets of data

We discuss in turn strategies that may be used in analysing the following three sets
of data without giving details of analyses which have been or will be reported else-

where. The first example has six binary variables with the probabilities of interest
all not extreme so that linear in probability regressions can be used as an approxi-
mation to logistic regressions (Cox, 1966; Cox and Wermuth, 1992c, d). The second
example is a mixture of six continuous and two discrete variables in which some of
the dependencies are of a nonlinear kind. The third example with eight continuous
variables contains six responses measuring different aspects of brain activity from
which new responses can be derived as linear combinations which display special
relations of independence to the explanatory variables (Cox and Wermuth, 1992b,
Wermuth and Cox, 1992).

Erample /; From a cohort study of students who completed their first 13 years of
formal schooling in the years 1973 to 1976 in Germany (Giesen et al., 1981) an anal-
ysis is reported by Weck (1991) for six binary variables observed for 2026 students.
The variables are A, change of field of study (y"r, I9%; no); B, change of high school
(y"t, 20%; to); C, integration into the high school class (poor, L0%; good)i D, a high
school class repeated (yes, 3a%; no); E, change of primary school (y"r, Z0%; no);
F, education of the father (at least 13 years of formal schooling, 43%; less than 13
years of formal schooling). Figure 2 shows the first classification into the response

d

E, change
of primary
school

F,
education
of lather

Figure 2: A first ordering of the variables in Example 1 with A as response variable of
primary interest

variable of primary interest A, depending potentially on all other variables, into the
intermediate response B to C,D,E,F, into the intermediate joint responses C,D

B, change
ol high
school

A, change
of field of
study

c,
integration
into high
school class

D, high
school
class
repeated
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Figure 3:  Two distr ibut ional ly equivalent models implying C l l  (E,F) lD and D l l  FIE

to E,F, and into the joint explanatory variables E,F. The strategy we use for the
analysis consists of several steps:

(i) for each giverr response we check whether one of the potential explana-
tory variables brings no additional predictive effect in addition to all of the re-
maining concurrent var iables. This means that we test  e.g.  A l l  Dl(8,C, E,,F) or
D l l  E l (c,  F);

(ii) whenever several variables appear to have no such additional predictive ef-

fect, we check whether thel' may be jointly removed. Thus, we test for instance
A l l  8, , ,  l (C,E,F).  I f  there appears to be a good f i t  ( in such a test  wi th typical ly
many degrees of freedonr) we take the c.orresponding model as a basis and check
in turn whether the main effect of each variable removed does still not lead to an
improvement in prediction; this is to reassure us that we have not overlooked a sub-
stantial relation as hidden in an overall test;

(iii) we check whether the test results for independence of any set of joint re-
sponses suggests any simplifications. Figure 3 shows such a result for variables C,, D:
the structure with C,,D as joint responses to the joint explanatory variables 8,fl is

distributionally equivalent to the displayed special univariate recursive system.
(iv) the results of these checks are summarized in a chain graph, as in Figure 4.
(v) we check whether any logistic regression can be well approximated in terms

of a linear in probability regression because the predicted probabilities for a response

are not too extrerne, i.e. they are all between . 10 and .90; the ob ject being to present

the results in a way which is most directly interpretable. For the dependencies in

Figure 4 this is possible for all responses, and, in addition, there are exclusively

main effect,s. For instance we can write (Cox and Wermuth, 1992c)

frlt'fo:,1,3'f'' : frft'f,',jf - :zb +.05k. + .02nt* +.02n*,

where e.g.  k* -  +1 i f  k -  1 (poor integrat ion into high school c lass) and k*:-1
if fr - C This representation permits to read off directly that the probability to

change the field of study is estimated as highest (3a%) for a student., who integrated
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Figure 4: Chain graph of the simplest model well compatible with the data of Example
l: a special system of univariate recursive logistic regressions

poorly into his high sclrool class, who had changed primary school, and whose father
had reached a higher educational level; i t is estimated as lowest (16 %) for a student
who integrated well into his high school class, who did not change primary school,
and whose father had less than 13 years of formal schooling.

Erample 2: For 68 diabetic patients we have data from an investigation of deter-
rninants of blood glucose r:ontrol (Kohlmann et al., 1991). The r,ariables considered
are l ' ,  a particular metabolic parameter, the glycosylated haernoglobin GHb; X,,
a score for particular knowledge about the i l lness; three different att itrrdes of the
patient measured with sum scores of questionnaires which are to capture how the
patient attributes what is happening in relation to his i l lness: Z. social erternatity
(powerful others are responsible); t/ fatalistic externalit l '  (mere chance cietermines
what occurs); V , internality (the patient sees himself as mainlv responsible): W ,,
duration of i l lness in morrths; and two intrinsic characteristics of the patient: A,,
level  of  educat ion ( less than 13 years,56%; at  least 13 years) and B. gender (rnales,
5I%; females).

For an analysis we proceed similarly as in Example 1. but take into account some
of the special features of the present data. Figure 5 shows a first ordering of the
variables into the response of primary interest, 1", into two sets of intermedia,te
responses, X and Z,U,V, and into a set of purely explanatory variables W, A, B.

With a total of only 68 observations we cannot expect to get useful estimates of
the relations in all four cells defined by the two dichotomous variables A, B, thus
we collapse over any discrete explanatory 'u'ariable whenever it has little predictive
effect on the variable of primary interest. This is possible for gender, but not for the
level of education. We further delete any continuous variable with no direct relation



three types of
attribution:

Z, social
extemality

U, fatalistic
extemality

V, intemality

Figure 5: A f irst classif icat ion of the variables in Example 2
of primary interest

to the responses of rnain interest, i .e. to either l" or X t

graph shown in Figure 6 just shows explanatory variables
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W, duration
of illness

A, kind of
education

B, gender

with Y as response variable

so ttrat the indr:pendence
important for l' or .Y. To

Figure 6: Chain graph for a a subset of variablts of Example 2 of the simplest rnodel well
compatible with the data

describe the effects of a discrete explanatory variable seperate independence graphs
for the different levels of the discrete variable may sometimes be shown (Hojsgaard
and Skj oth, 1992) or further detailed descriptions may be given.

From the data of Example 2 we can conclude that for all patients the metabolic
adjustment is better (low levels of GHb) the better the knowledge (X) about the
il lness. The variables level of education (A) and fatalistic externality (t i) have an

X,
knowledge
about the
illness
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additive effect on knowledge about the i l lness (X): knowleclge is higherr the lower
the fatalistic att itude and it is higher the higher the eduational level. But, there is
a signif icant interactive effect of level of eclucation (A) and duration of i l lnesr (W')
on metabolic adjustrnent (Y), i ,e. there are different deterrninants for patients with
lower (A:1) and with a higher educat ional  level  (A -  2).  Note that i t  is  i rnpossible
to juclge from the graph alone whether the effect of two explanatory on a response
is additive or interactive. 'Ihe interactive effect of A and W on l" is revealed by
analyzing the data for levels A : I and ,4 - 2 separately: for ttre patients with a
lower educational level the metabolic acljnstment is rather poor for short durations
of i l lness but quite good for long durations of i l lness. One tentative interpreta,tion is
that poor adjustment in the early years of the i l lness bec.omes continuously better
the longer the patir:nt has had experience with the i l lness. By contrast, for patients
with a higher educational level the rnetabolic adjustrnent is rather goocl in the early
years of the i l lnerss' but poorer for long durations of i l lness. Possibly these patients
use their experienc.e with the i l lness to take nrore calculated risks the longerr the
i l lness lasts.

There is of course a danger of overinterpreting the associations of iust a single
sample: the observed relations could instead be the consequence of some unknown
selection effects. A decision on this wil l  be possible once changes in rnetabolic
adjustmerrt of individual patients have been documentecl over time.

Erarnple 3: For 72 students. who participated in an experiment designed to ob-
serve the effects of stress inducing conditions (Ild,nsel, Lggz) *" obtained six mea-
surements of brain activity (CNV: Contingent negative variation), i .". CNV mea-
sured at three locations (frontal, central and parietal) and under two experimental
conditions, one in whictr the participant has to prepare for a motor activity at a
stimulus four seconds after a signal has forwarned him (g: the 'go'-situation) and
another in which he is not to react (n, the 'nogo'-situation). This clefines six re-
sponses y ' ( f  ,n ) ,Y(c ,n) ,1 ' (p , r r ) ,  y ' (  f  ,S) ,1 ' ( r ,g ) ,1 ' (p ,g)  a l l  rn€ 'asured dur ing a  f ixed
first part of an early interval after the stimulus (Glanzmann and Frohlic,h, 1986). In
addition, w€ have observations for two potential explanatory variables: X1, the per-
sonality characteristic anxiety measured as sum score with Spielberger's Trait-State
inventor5,'and X2, attention or arousal measured as the difference in eye movements
under the two experimental conditions (EOG, g-tr! Electrooculogram, clifference
between 'go'- and 'nogo'-situation). Flxtreme values in EOG are taken as an in-
dication that no unconfounded measurement of brain activit ies is possible, hence
persons with such values are excluded. No simplyfied structure could be deduced
from the observed correlations between the eight variables.

In this example we proceed quite differently than before since we have a set of
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that they are

a

Y(f,n), brain activity, frontal
no-go signal

Y(c,n), brain activity, central
no{o signal

Y(p,n), brain activity, parietal
no€o signal

Y(f ,g), brain activity, frontal,
go-signal

Y(c,g), brain aclivity, csntral,
go-signal

Y(p,g), brain activity, parietal,
go-signal

b

X1, trait
anxiety

X2, attention,
difference in
electrooculogram
(go-no) signal

F'igure 7: Responses Y' and explanatory variables X in Example 3

m€rasured in the sarne way and the,v are thought of as capturing different aspects

of some underlying phenomenon. This means that we have a situation in which

we can expect that new responses might lead to simplified interpretations if they
are derived as linear cornbinations of the original response variables in such a way

that each new response li. has linear conditional independence of all explanatory

variables except one (Cox and Wermuth, 1992b).

Wit,hout going into much of the detail reported in Wermuth and Cox (1992) we

note that the derived responses were calculated for three corresponding sets of four

va r iab le r  [ y ( f  , r r ) ,Y ( f  , 9 ) ,X r ,X r ) ,  [ ] ' (  c ,n ) ,1 ' ( " , g ) ,X t ,Xz ) ,  and  lY (p ,n ) ,Y (p , ,g ) ,
Xt, Xr), in which we ha,ve the same explanatory variables and the type of responses

under the two exprerimental condit,ions; only the location of the measurement is dif-

ferent for the three variable sets. The squared canonical correlations are (.02, .24),
(.10, .23)., and (.07, .2'2), respectivelv, and the calculated transformation matrices
( (1 ,  . 54 )  6 ,  (1 ,  - . 65 ) ;  (1 ,  . 78 )  &  (1  - . 91 ) ;  (1 ,  . 21 )  &  (1  - . 71 ) )  sugges t  t ha t  f c r r  a l l  t h ree

locations of measurement, we can take as derived responses the differences and the

surrrs of the measurements under the two experimental conditions. This leads to

the association st,ructure displayed in Figure 8 as well compa,tible with the observa-

tions. Thc standardized regression coefficients in the two correponding multivariate

regression ana,lyses are the following sets of simple correlations (.15, .33, .34) for the

dependence of the first set of derived responses on trait anxiety and (-.48' -.48, -.40)
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Figure E:  Chain gr i iph showing separate dependence of  der ived responses on just  one of

the explanotory var iab les of  Example 3

for the dependence of the second set on attention. They indicate a certain replica-

tion of the results at the diffelent sites since the correlations differing between sites

show the same direction of dependence just different strengths.

4.  D iscuss ion

There are a number of open probiems for future research connected with the issues

discussed in this paper. For instance, techniques for relatively routine fitt ing of data

to complex models including the calculation of standard errors are needed, possibly

ut i l iz ing previous work by Frydenberg and Edwards (1989) Cox and Wermuth, (1990,

1991)and Jensen et al .  (1991).  The lole of  latent var iables needs more study, both
in connection with errols in measurement and with the incorporation of hidden
variables. Properties of graphs with what we have termed dashed edges need further

study. Models with discrete variables and with mixtures of discrete and continuous

variables corresponding to graphs with dashed edges wil l  have to be developed.
While our account here emphasized the intelpretation of models and strategies

of analysis, formal statistical problems of estimation and testing of model adequacy

have been addressed eisewhere.

Y(f,g)-Y(f n)-,(}-

Y(c,g)-Y(c,n) Q!-  -  +.- '' . .  
I
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