
Methodika
1992,Yo| .  VI ,  pp.76-85

On the Relation Between
with Alternative Codinqs

Author's address: Prof.
Mainz, Saarstr.2l,  Bau

@ Hogrefe . Verlag liir Psychologie

lnteractions Obtained
of Discrete Variables

Nanny Wermuth, Ph.D., Psychologisches Institut, Universitdt
413, D-6500 Mainz 1, Germany.

Nanny Wermuth, and D. R. Cox

University ol Mainz and Nuffield College, Oxford

Abstract; The definition of an interaction parameter in a statistical model depends on the
chosen coding for the discrete variables, i.e. on the design matrix. A design matrix can be
built up as Kronecker product of small matrices containing codes for an overall eflect and
for main effects. As a consequence the relations between dilferent sets of interactlon terms
can be understood by relatingjust main effect definitions under different codings. An appli-
cation is described in which the excellent fit of a model defined with orthogonal polynomial
effects can be deduced directly lrom estimation results in terms of eflect coding, but not in
terms of indicator coding.
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1. Introduction

In statistical models containing discrete variables or factors, suitable con-
straints are needed to obtain unique definitions of effect parameters. Ex-
amples are exponential family models (Barndorff-Nielsen, 1978) linear in
moment parameters, like a two-way analysis of variance model for a nor-
mally distributed response:

E(Y, ) :  i l  t  a i  - r  0 i  t  t , i ,

or linear in canonical parameters like a log-linear model, i.e. a linear model
in the logarithm of probabilities 2,,>0 of a two-way table:

l ogz , , : u+a ,+B , l y ; 1 (2)

In both situations the levels of the discrete variables A and B are denoted
by  0 ,1 , . . . , ( I -  1 )  and 0 ,1 , . . . , (J -7 \ ,  where  1  and J  a re  the  number  o f
categories of A and of B, respectively. There are I . J independent parame-
ters in (l), I ."I - 1 independent parameters in (2) since in the latter case
|iinii:1. A common treatment of the two models is possible by writing
h,, for the observed counterparts of the lefthand sides of (1) and (2). We

( 1 )
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assume for (2) that there are no empty cells in the contingency table. The
models can be regarded as special cases of generalized linear models
(McCullagh & Nelder, 1989) and as building blocks of special graphical
chain models (Wermuth & Lauritzen, 1990).

TWo types of constraints on d,, f ;and"li;&re in common use: symmetric
and baseline constraints. The symmetric constraints are

0  :  I  r ,  :  
\  

p ,  :  
l - , , i i  

:  2  ) . i i .

and the baseline constraints with levels zero as base are

0 : 1 0  :  f r o : 7 o o :  ? o r  :  ) r o .

Other constraints, e.g. ones involving weighted sums, are possible but
will not be considered here. We denote interaction parameters resulting
from symmetric constraints by l,'s, those from baseline constraints by 6's.
We derive their relations to each other and to coding in terms of orthog-
onal polynomials denoted by q's. In particular, we show that symmetric
constraints correspond to effect coding and baseline constraints to indica-
tor or dummy coding in the sense used in the statistical literature for social
scientists (Kerlinger & Pedhazur, 1973).

For many purposes the individual interaction terms, i.e. components of
an interaction, are not of direct interest. Usually, appreciable interaction
will imply that summarization via main effects is inadequate and will lead
to abandoning representations like (1) and(2) as a base for interpretation.
Nevertheless, for some specific purposes it is desirable to know simple ex-
plicit expressions relating different sets of interactions: one might want

to relate estimation results from one computer program like BMDP,
employing symmetric constraints, i.e. effect coding, to those of another
like GLIM, employing baseline constraints, i.e. indicator coding;

- to relate estimation results from different studies on the same set of vari-
ables, each reported for different coding systems;

- to decide whether a reduced model defined by zero restrictions on a sub-
set of interaction terms in one coding system is equivalent to a compara-
ble reduced model defined in terms of another coding system;

- to use results of a given computer program to obtain point and interval
estimates of interactions defined in another coding system appropriate
for a particular subject matter purpose.
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2.The Relation of Common Constraint and Coding Systems
for Binary Variables

Under the saturated model for two binary variables A and B estimated
interactions ls and 8s are obtained after one-to-one transformations on
h i i :

i_  :E
^ 6  :  h o . -  h . .

i 3  :E .o -8 . .
i t | :Eoo-Eo . - l i . o+F

o -  :  h o o .

6 i  : h 1 s - h s s ,

6 i  : h o t - h o o ,

6 i i : h r r - h r o - h o r + h o o .

Written in matrix notation with e.g.

hr  :  (hoo,hro ,hor ,h r r ) ,  F  :  t i - , i t , IE , i t i l ,

the relation between .f,'s
6 : T i - r  h  a s

where

:  ( hoo  +  hLo  +  ho ,  +  h r r ) f 4 ,

:  ( / r o o  -  h r o  I  h o t  -  h t t l l 4 .
: ( h o o  * h r o - h o t - h t ) 1 4 .  

( r '

:  ( / roo -  hro -  ho,  + hrr )14,

and 6's can be expressed from ,[: T" I h and

6: Ti-17"I  (5)

?)

(4)

,  T , :

are design matrices resulting from gffect coding and from indicator coding.
It may be checked directly that T" and T, have as inverses the matrices
implicitly defined by (3) and (4). Similarly, the upper triangular form of
T"T,-'can be deduced from the proportionality of T"to an orthogonal
matrix and the particular triangular form of the given d. However, it is
instructive and generalizes more easily to exploit properties of Kronecker
products for this purpose. It follows from

(l ;tl)' (tl-l 1)

,: (i -i)'(1 -1)' ': (1 ?), (i
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and from the inverse of a Kronecker product of matrices being the Kron-
ecker product of the inverses that

?)
This matrix formulation of the Yates algorithm (Yates, 1937) was given by
Good (1958).

Furthermore, since the product of two matrices defined by Kronecker
products is the Kronecker product of the matrix products, we have

which is - as a Kronecker product of upper triangular matrices - of upper
triangular form.

This result extends directly to all2k designs and implies the equivalence
of reduced models defined by successively setting single interaction terms
to zero starting in either of the two systems from the highest-order inter-
action term. This property is in general not retained for nonbinary data
nor does it hold for nonhierarchical models. Recall that in a hierarchical
model any zero main effect or any zero interaction implies the vanishing
of all higher order interactions containing it.

For instance, the following vector of counts nrt, in a 23 table can be
concisely described by a nonhierarchical model in effect coding but not in
indicator coding. The counts were obtained after median dichotomizing
500 values of three variables simulated from a standardized trivariate
normal distribution with two variable pairs having 0.8 and one pair having
- 0.4 as correlation coefficient

nr t ,  :  n  ( r t ,  o  o  o ,  r t  r  o  o ,  r t  o  t  o ,  r t  1  1  s ,  r t  s  s  1 ,  r t  rc  r ,  r t  o  r  t ,  r t  r  t  t )
:  (87, 3,18,82,82,78,3, 87) .

These counts follow a nonhierarchical model in effect coding with restric-
tions

o: )"1 : ^i : )f : )"1:o, ,
but with two-factor interactions nonzero. To put it differently. the counts
are reproduced by i-:3.582, tdd:0.8543. i65:o.aze3, I i i :- l. jggj.
The unusual structure with main effects zero but two-factor interactions
nonzero is a consequence of dichotomizing at the median and the partic-
ular correlation structure having two positive and one negative correla-
tion.

,;':+(: -1) '+(1 -1), '-': (-l ?) '(-l

ri'r":t(-l ?)(l -i)l ,[(-l ?)(l _l)]
:(;_1)'(;_1)
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This model does not imply

o: 6! : 6? : 6,u : 6I:o' ,
i.e. these two nonhierarchical models defined in terms of ,t's and 6's are dis-
tinct.

3. Main Effects Under Different Codings for Few Variables

Many applications of statistical models with discrete variables concern
mixed factorial systems and involve a small number of variables each
having a small number of categories but they are not all binary. In these
situations the design matrices may be built up in a way similar to that used
in section 2.The needed building blocks are design matrices containing for
each variable with K categories one column vector of ones and K - 1
column vectors, corresponding to one of the available K - 1 degrees of
freedom associated with this variable. Equivalently, there is the K by K
inverse design matrix defining the overall and main effects under the
chosen coding system. In this section we present such matrices for effect,
indicator and orthogonal polynomial coding for up to four variables.

Under efJbct coding the design matrices for variables with two, three and
four levels denoted b! Lr. ,Lr,Lo, are

and their inverses, which define

L;:+(1 _1) , "':t(_i

,,:(:-1)''.:(i ?) '-(li ;l)
overall and main effects are

1  1 \  /  
I  1 t ' \

i ,), ,r,:r( _i -l _l _l )2 -1 /  
\ - t - t  3 - t /

,,:(i ?) ,.: (i : il ,.: (1 I : i)
Under indicator coding

design matrices, denoted
with levels zero as baseline the corresponding

by  Dr ,D. ,Do are
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and their inverses are

,,':(_1 ?)

8 1

l)"':(-i ;) ":(-l

,:(t-l) -:(:t-i) ":(l-l-l i)
,,':+(-11),"-' :r(i ;i),,^':"( ;-i _i i)

00
10
01
00

Under coding in terms of orthogonal polynomials the corresponding
design matrices denoted here by P2,P3, Po can be obtained from published
tables (Fisher & Yates, 1963; Snedecor & Cochran, 1967), as

with inverses which may be obtained after transposing and applying suit-
able factors to columns:

While the form of the relevant matrices for variables with more than four
categories under effect and indicator coding can be directly derived from
extending the given examples, the codes of orthogonal polynomials based
on equally spaced levels may be obtained by successive orthogonalization
as suggested by Dempster (1969, p.218) and as described, for the sake of
completeness, in an example in the Appendix.

By using again properties of Kronecker products of matrices the rela-
tions among interactions for a 4x3 x 2 contingency table are

6 :  T,- t  T"I ,  6 :  Ti- t  T"A, L: T" t  T,Q,

where

T , - t  T " :  D ; t  L 2 @  D ; r  L r @  D 4 r  L +

100
-1  1  0
- r  0  1
-2  - r  -1

:(; -;) '(l _i )'(i
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T,  'To :  D; 'Pz .q ] -  Dr rP. i l j_  Dnt  Po

- 1

1

2

_  ( l-  
\o t))'(i.  / 1-i)* ( .

\o

l):(; -?) ,(i ; ),(|

- 3  1
a a
L  _ L

4 -2
60

T" t To: LzL Pz I L:tPr @ L1t Pa

00
- J  I

- 1 ,  - 1

r -1,

Several conclusions may be drawn.

The matrices resulting from these Kronecker products are all upper
block-triangular, because of the special form of the first column of all
matrices in the product. As a consequence any two interaction models
are equivalent which are defined by setting all interaction terms within
a block successively to zero, i.e. by starting from the highest-order inter-
action.

- Effect coding relates in a simpler way to orthogonal polynomials than
indicator coding since dehnitions of the overall terms coincide for the
former (i :g-), but not for the latter.
In 3k-tables the relation between interactions obtained with effect and
orthogonal polynomial coding is particularly simple, since then T;1T,
is of upper triangular - not just block-triangular - form.

One application is to interrelations of two ordinal scales with just three
values: the plausibility of the hypothesis that their pairwise associations
are just linear may be checked directly from studentized interactions under
effect coding, i.e. from interaction terms with symmetric constraints di-
vided by their standard error.

To see this note first that for counts ordered so that the index of the first
variable changes fastest a lexicographical ordering of the interaction terms
is produced. In a 3z-table we get the following correspondences in the
orderins-  

r t r : ( f6o , r t ,1s , r t2s , r t ,61 , r t11 , r t ,21 , r ts2 , r t r r , r t r r ) ,

F : (i _, 16, il, tr|, It|, Il3, i"r, \ur, //.ur),
d' : (d-, ai, at, a?, alu, at", a"r, alnu, atil.

Then, the upper triangular form of the matrix relating g to A implies that
the hypothesis

s: eku : aF: pff : stf
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is equivalent to the hypothesis

o:  ̂ i3:  ̂ i :  ^ t i :  ^ i i .
By a symmetry argument note further that given 0:1f3: lff the hypoth-
esis 0:,tf is equivalent to 0:at. Thus, if standard computer output for
interactions with symmetric constraints like BMDP shows studentized
interactions of il, ^1, )"13, f6?,lii under the saturated model to be all
small, one can conclude that the hypotheses of just linear interrelations
among the two ordinal scales and of no quadratic main effects are well
compatible with the observations. If desired, approximate maximum-
likelihood estimates under this model may then be obtained as described
by Cox and Wermuth (1990). The variance of @ under the saturated model
needed for these computations is readily computed from e.g. the given
variance matrix of .f, since A: Ai implies var (Q): Avar (fi Ar.

4. An Example with a 32-Table

In a study on patients from a pain clinic (Schmitt, 1990) several ordinal
scales are reported having three values which describe different aspects of
chronic pain. Increasing duration and intensity of treatment are reflected
in the three ordered values of the variables;

1 : pain induced rehabilitative treatments,
3: pain induced stationary treatments.

Table 1: Counts and other data summaries for variabl.r 7 : pain induced rehabil-
itative treatments and 3:pain induced stationary treatments (n:149)

83

Levels
of

Studentized interactions from codine with

orth. polyn.

count type value type

indicators

value type value

0 0 5 1
1 0 2 1
2 0 6
0  1  1 8
|  1  1 5
2 1 8
0 2 6
1 2 6
2 2 1 2

a-
ai -3.02
6l -  0.01
ar -3.4e
Qiu 4.47
6!,8 0.83
ax -0.32
i lB  0  06s  t 4

6l: 0.7 6

t -

it 2:e
ii o.o1
i3  3 .18
i.63 3.es
iii o.4s
F, 0.32
i"ti -0.34
iii 0.76

,t-
56
6i
t3
i A Bv o o

iAB
u l o

6",
CABu o t

iAB
" 1 1

-9 .23
-3.91
- 5.25
-4 .26

1.89
2.38

- 5.25
1 . 5 8
4.47
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These two variables are considered to be on an equal footing, i.e. none
is regarded as response to the other; rather, they are both potential ex-
planatory variables for the stage of chronic pain a patient has reached or
for success of pain treatment. Although the three ordered values of A and
B are not on an interval scale, it is a convenient help for subsequent
analysis and interpretation to score them linearly, like - 1, 0, 1, in the hope
that the association between A and B is essentially linear, i.e. captured in
the linear x linear term.

A likelihood ratio chi-square test clearly rejects independence of the two
scales with a value of 51.88 on 4 degrees of freedom. Nevertheless, the anti-
cipated simplified description of the observations can be given: the counts
are well described by just linear main effects and a linear by linear interac-
tion, i.e. by a model on 5 degrees of freedom. Table 1 shows that this result
obtained by using orthogonal polynomial coding could have been deduced
from the studentized interactions computed in terms of effect coding but
not from those computed in terms of indicator coding. The structure is an
example of a model being hierarchical in one coding system, i.e. for coding
in orthogonal polynomials, but being nonhierarchical in the other two
coding systems.

Appendix

For a variable with K categories the design matrix for main effects can be
computed by successively orthogonalising the columns in the following
matrix

I

I

I

1 3  1 ( K -  1 )

23 26-r)

3 3  3 ( K - 1 )

K .  . .  K ( K - 1 )

For example with K:3 this means to replace the matrix with three
column vectors (a,b,c) by orthogonal column vectors (a',b',c') defined as

e'  :  a,  b '  :  b -  Foo,o' ,  c '  :  c -  Fro,a'  -  \ r t ,b ' ,

where 8,, denotes a simple linear regression coefficient obtained by re-
gressing u on u. This gives

1 1 2

2 2 2

J 5 -

: :
K K 2

':(i) ':( ?) 0'(i)
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a- 1

In books on linear algebra this procedure can be found under the name of
Gram-Schmidt-orthogonalisation and can be applied directly to deal with
unequally spaced levels.
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