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 SUMMARY

 Graphs consisting of points, and lines or arrows as connections between selected pairs of
 points, are used to formulate hypotheses about relations between variables. Points stand for
 variables, connections represent associations. When a missing connection is interpreted as
 a conditional independence, the graph characterizes a conditional independence structure as
 well. Statistical models, called graphical chain models, correspond to special types of graphs
 which are interpreted in this fashion. Examples are used to illustrate how conditional
 independences are reflected in summary statistics derived from the models and how the
 graphs help to identify analogies and equivalences between different models. Graphical
 chain models are shown to provide a unifying concept for many statistical techniques that
 in the past have proven to be useful in analyses of data. They also provide tools for new types
 of analysis.

 Keywords: ANALYSIS OF VARIANCE; ASSOCIATION STRUCTURE; CONDITIONAL GAUSSIAN
 DISTRIBUTION; CONDITIONAL GAUSSIAN REGRESSION; COVARIANCE SELECTION;
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 1. INTRODUCTION

 Much research in the social sciences concerns determinants of the development
 and changes in human behaviour and reactions. Typically, cross-sectional studies are
 used to obtain empirical evidence on variables capturing characteristics, behaviour,
 abilities, attitudes of people or historical and environmental conditions. These vari-
 ables are properties of observational units.

 The primary objective of such studies is to improve knowledge about the associ-
 ation structure in a given set of such variables, in a so-called system of variables.
 Associations are relations between pairs of variables, and an association structure is
 a description of relations in a system such that all associations can be deduced.

 Subject matter knowledge and theories lead to expectations regarding the type,
 strength or possibly the sign of some of the associations and to hypotheses about
 relations which are only indirect. Such expectations and hypotheses picturing actual
 properties of observational units are called substantive research hypotheses or simply
 research hypotheses. They contrast with hypotheses formulated with the sole purpose
 of falsifying them by actual observations.
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 of Germany.

 ( 1990 Royal Statistical Society 0035-9246/90/52021 $2.00

This content downloaded from 134.93.37.2 on Fri, 21 Sep 2018 09:01:16 UTC
All use subject to https://about.jstor.org/terms
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 Direct and only indirect relations are key notions in studying association structures.
 One hopes that an understanding of the structure is enhanced if it can be well
 described in terms of a few direct relations, i.e. with a few strong associations, which
 account for the indirect relations in the system. To say that a relation between a pair
 of variables is indirect means that they have a substantial association given the
 information on one subset of variables, but not given the information on another
 subset of variables in the system. This implies, in particular, that when hypotheses
 about indirect relations are contemplated the system will typically not contain any
 subsets of variables which are completely unrelated.

 Graphs may be used to formulate research hypotheses about indirect relations in
 an association structure. These graphs consist of points for variables, and of lines or
 arrows for each pair of variables having a direct relation. Such a hypothesis has two
 main components which specify

 (a) that the direct relations are sufficient to understand all associations in the
 system and

 (b) that the set of direct relations cannot be further reduced without destroying
 such an understanding.

 The second aspect is essential for the distinction between a graph characterizing the
 research hypothesis about an association structure and the same graph identifying a
 corresponding statistical model for associations.

 An example of a graph with both interpretations is given in Fig. 1. If viewed as a
 substantive research hypothesis it contains two types of properties of observational
 units: variables with a nominal scale, called categorical or qualitative, and variables
 for which numerical measurements are obtained, called quantitative. There are two
 types of direct associations, those called directional associations for variable pairs
 where one is regarded as a response variable and the other as an explanatory or
 influencing variable, and those called symmetric associations where no direction of
 dependence has been specified for the relation. Symmetric associations are used for
 variables considered to be on an equal footing: they are either all response variables
 only, like those in subset a of Fig. 1, or they are all just influences, like those in subset
 c, or they are intermediate variables in the sense of being both responses and influ-
 ences, like the variables in subset b.

 If, instead, the graph is viewed as characterizing a statistical model, then the
 model could be a graphical chain model as introduced by Lauritzen and Wermuth

 a={A,X,Y) b={B,Z} c={C,U,D)

 Age when entering
 Anxiety, respondent college, respondent Gnrrsoe

 x - C
 Anger ~~Z Socioeco-

 Y rsodn nomic status,
 ~~~~~Brespondent rsod

 Smoking habits, Smoking habits, res- Country of study
 respondent pondenrs parents

 Fig. 1. Example of a research hypothesis about indirect relations among four qualitative variables
 (A, B, C, D) and four quantitative variables (X, Y, Z, U)
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 (1984, 1989). These models are defined for sets of both discrete and continuous
 random variables in terms of specific distributional assumptions and a set of con-
 ditional independence restrictions. The graph in Fig. 1 depicts the second aspect, in
 the sense that each missing direct connection for a variable pair corresponds to a
 specific conditional independence statement while the set of all independence restric-
 tions represents a conditional independence structure. In contrast with the research
 hypothesis, the statistical model permits a variable pair to have no association, even
 if it is directly connected in the graph.

 Graphical chain models tie up with the early proposal for path analysis by Wright
 (1921, 1923, 1934). He had suggested the use of graphs with arrows and lines to
 characterize a correlation structure of interval-scaled variables and to use linear
 equations, which are in one-to-one correspondence with the graph, to formulate a
 statistical model. In path analysis an indirect relation means that the simple corre-
 lation coefficient of the variable pair can be expressed, and therefore explained,
 in terms of the remaining simple correlations of those pairs which have direct
 connections in the graph. Graphical chain models can be viewed as extending this
 proposal in four directions:

 (a) there may be more than one response variable to each set of influences;
 (b) in addition to correlated quantitative variables the system can contain quali-

 tative influences and qualitative responses;
 (c) each indirect relation corresponds to a conditional independence statement;
 (d) some of the variables may be latent, which means that information on

 them is obtained only indirectly with the help of other, directly observable
 variables.

 Only the first and last of these properties are shared by a different extension of path
 analysis, by linear structural equations (Goldberger, 1964; Joreskog, 1977). Dis-
 cussion of the relations between the two approaches and of ambiguities associated
 with some specifications on linear structural equations have been given by Wermuth
 (1988). The second and the last property, but not the other two, apply to the extension
 of linear models to generalized linear models as discussed by McCullagh and Nelder
 (1983).

 The primary objective of this paper is to enhance an understanding of the type of
 substantive research hypotheses which may be analysed with the help of graphical
 chain models. It is explained in Section 2 how the same type of graph may be derived
 either from subject matter considerations about properties of observational units or
 from conditional independence restrictions for random variables satisfying specific
 distributional assumptions. In Section 3 several examples of association structures
 illustrate how different the parametric consequences may be for the same type of
 conditional independence structure. Problems in evaluating a substantive research
 hypothesis in term of likelihood ratio tests and Studentized interaction parameters are
 discussed in Section 4. In Section 5 simple criteria are described to identify equivalent
 statistical models from graphs. Such knowledge is important, since it is not possible
 to discriminate between alternative substantive research hypotheses whenever
 they correspond to equivalent statistical models. Finally, in Section 6 standard
 statistical models which are either elements or special cases of graphical chain models
 are listed.
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 2. THREE DISTINCT MEANINGS OF THE SAME GRAPH

 Graphs like Fig. 1 or similar ones can be used to formulate substantive research
 hypotheses, to study conditional independence structures or to characterize statistical
 models. In each of these situations the derivation or justification of the graph, its
 precise meaning and the associated main question differ. This is illustrated in the
 following.

 2.1. Substantive Research Hypotheses
 2.1.1. Example of derivation of a research hypothesis

 Subject matter considerations about the variables in Fig. 1 are as follows. It is
 established knowledge in psychology that there are personality differences between
 occasional smokers, regular smokers, ex-smokers and people who have never smoked
 cigarettes. Therefore these classifications are treated as categories of a qualitative
 variable named smoking habits (A).

 Such personality differences show up, for instance, in the emotions anxiety (X) and
 anger (Y). These emotions are viewed as dispositions, also called traits of a person.
 Questionnaires have been developed by Spielberger et al. (1970, 1983b) to obtain
 quantitative measurements of these variables.

 The two traits are expected to correlate positively. Decisions on the direction of
 influence between emotions and smoking habits cannot be based on psychological
 theory: it is just as conceivable that smoking habits are influenced by personality
 characteristics as it is that personality characteristics are influenced by smoking
 habits. Consequently, the three variables are regarded as being on an equal footing.
 They are combined in one set a = {A, X, Y}. Within this set symmetric associations
 are of interest.

 Smoking habits and emotions constitute the main set of multiple responses, with all
 the remaining variables in the system as potential influences. Therefore directional
 associations are wanted for all pairs in which one variable is one of the multiple
 responses (A, X, Y) and the second is one of the remaining variables (B, C, D, Z, U).

 This latter set of potential influencing variables may be further subdivided into one
 containing background variables and another one regarded as potential responses to
 these background variables. The background variables are gender (C), socioeconomic
 status of respondent (U) and the country in which the study is conducted (D). They
 are seen as having been determined in the more distant past compared with the
 intermediate variables which are smoking habits of the respondent's parents (B) and
 the age of the respondent when entering college (Z). Of interest are again symmetric
 associations within the sets of responses and influences but directional associations
 between the two sets: b = {B, Z} and c = {C, U, D}.

 These arguments lead to a division of the system into three subsets indicated by
 boxes in the graph. Within boxes lines represent symmetric associations, between
 boxes arrows point from the potential influences to the responses. The three boxes in
 Fig. 1 are said to define a dependence chain with three sets of concurrent variables.
 Concurrent variables are those which are to be considered simultaneously for a
 precise description of the type of each partial association. The sets of concurrent
 variables are obtained by stepwise deletion of response sets from the dependence
 chain. In Fig. 1, the three sets of concurrent variables are a u b u c, b u c and c.
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 The convention adopted for graphs with dependence chains is that each pairwise
 relation is a partial association given information on all the remaining concurrent
 variables. In Fig. 1, for instance, the direct relation between smoking habits (A) and
 anger (Y) means that there is a partial symmetric association given information on
 (Z, B, C, U, D) and on anxiety (X). The direct relation between smoking habits of
 the respondent (A) and of the parents (B) implies a partial directional association
 given information on the remaining potential influences (C, D, Z, U) and on the
 emotions (X, Y). The indirect relation between parents' smoking habits (B) and
 gender of respondent (C) means

 (a) that there is no partial directional association given information on age (Z),
 socioeconomic status of respondent (U) and the country of study (D) and

 (b) that its marginal association can be deduced from the direct relations in their
 set of concurrent variables, i.e. from the associations for pairs (C, U), (U, D),
 (Z, C), (Z, D) and (B, D).

 The indirect relation between gender (C) and country of study (D) implies no partial
 symmetric association for this variable pair at fixed levels of socioeconomic status (U)
 and that its marginal association can be deduced from the two direct relations of
 socioeconomic status to gender and to country of study.

 2.1.2. Examples of indirect relations not expressible with chain graphs
 Neither arbitrary graphs for variables and associations nor arbitrary sets of indirect

 relations lead to graphs, like Fig. 1, which are called chain graphs.
 Let us consider a graph with points representing variables and with variable pairs

 having at most one connection, either a line or an arrow. Such a graph is a chain graph
 if a dependence chain can be attached to it. This means that the set of all variables
 can be partitioned into subsets such that we obtain-after rearranging the variables
 -a graph displaying

 (a) the subsets ordered in a horizontal row,
 (b) as connections only arrows pointing in one direction between subsets and
 (c) only lines within subsets, i.e. a chain of boxes.

 Simple examples of incomplete graphs which are not chain graphs are shown in
 Fig. 2. Even though such association structures may be of subject matter interest it
 is not clear how to define corresponding appropriate statistical models such that an
 empirical evaluation becomes possible.

 To give examples of hypotheses about indirect relations, which do not lead to chain
 graphs, assume that linear dependences among four quantitative variables (X, Y, Z,
 U) are of interest, i.e. correlation coefficients are appropriate measures of association.
 Assume further that four variable pairs have direct relations: the pairs (X, Y), (Y, Z),

 Y z z

 x u x O - u x? ' U

 Fig. 2. Examples of association structures which do not correspond to chain graphs since the vertices
 cannot be arranged in a horizontal row of boxes containing lines within and arrows between boxes
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 (Z, U) and (U, X). Then the hypothesis p, =Pyu = 0 cannot be formulated with a
 chain graph. It is an example of 'linear structure in the covariance matrix' (Anderson,
 1973). If, instead, the association structure is supported to have p,-.u = pyu.z = 0 then
 it cannot be described with the help of a chain graph either. It is a hypothesis in a
 multivariate regression model which may be evaluated by using a program for fitting
 linear structural equations (Joreskog, 1977).

 2.1.3. Key questions associated with research hypotheses
 Empirical evidence on research hypotheses about indirect relations between vari-

 ables is obtained with the help of statistical models. Such statistical models lead to
 particular measures of associations, the values of which may be derived from known
 values of the parameters in the model. For an empirical evaluation of the hypotheses
 the questions of primary concern are as follows.

 (a) How is the notion of an indirect relation implemented in the statistical model?
 (b) Which implications does a given research hypothesis have for estimates of

 parameters or of measures of association?
 (c) How do the estimates help to discriminate between two alternative hypotheses

 for a given system, i.e. for the same set of variables?
 (d) Which effects on the estimates can be expected when there are changes in the

 system?
 (e) How much will an evaluation of the research hypothesis be affected when the

 statistical model for a given system is modified?

 In this paper only the first three questions are partially answered: for statistical
 models which are conditional Gaussian (CG) chain models, i.e. for chain models in
 which distributions are of the conditional Gaussian type. Effects of measurement
 error, of transformations on variables or of changes in distributional assumptions
 have not yet been systematically treated. Effects of deleting variables from the system
 have been discussed in special situations as 'parametric collapsibility' or 'moderating
 effects' (Bishop, 1971; Whittemore, 1978; Wermuth, 1987, 1989a, b).

 2.2. Conditional Independence Structures
 The graph in Fig. 1 may be viewed as characterizing a conditional independence

 structure. In that case it is a mathematical object and may be appropriately described
 in terms of graph theoretic language: points are vertices, connections are edges, lines
 are undirected edges and arrows are directed edges. Vertices represent random variables
 and edges associations between these variables. The graph is marked since there are
 two types of vertices, circles for continuous and dots for discrete random variables.
 If the graph has an edge between all pairs of vertices, the graph is complete. Complete
 graphs do not imply any conditional independence restrictions.

 The set V of all vertices may contain a subset A of discrete and a subset F of
 continuous variables, V = A u F. To keep the notation simple, the variables are
 named by capital letters such as A = {A, B, C, D} and F = {X, Y, Z, U}. The
 graph is specified in terms of its set of vertices and its set of edges. It may have at most
 one edge for each pair of distinct vertices.

 Such a graph is called a chain graph if a dependence chain can be attached to it in
 the way described in Section 2.1.2. A dependence chain is an ordered partitioning
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 of the vertex set V into chain elements such that edges within chain elements are
 undirected and edges between chain elements are directed edges all pointing in the
 same direction. In Fig. 1 the dependence chain is W = (a, b, c). It partitions the vertex
 set V = a u b u c. In graph theoretic language a chain graph is characterized as a
 graph in which 'no subset of vertices induces a directed cycle' (Frydenberg, 1986). An
 induced graph is formed by a subset of vertices by keeping the given edges within the
 subset. In each of the three graphs in Fig. 2 a directed cycle is induced by three
 vertices.

 In a chain graph a dependence chain determines

 (a) response sets,
 (b) sets of concurrent variables and
 (c) the meaning of each missing edge.

 Definitions of responses and of concurrent variables agree with those given in
 Section 2.1. A response set is a chain element to which directed edges can point, and
 a set of concurrent variables is the union of a chain element with chain elements from
 which directed edges could be pointing to it. In Fig. 1 the response sets are a and b,
 and the three sets of concurrent variables are a u b u c, b u c and c. A missing edge
 means that the variable pair is conditionally independent given all its remaining
 concurrent variables.

 In Fig. 1 this gives, for instance, for the following selected pairs

 (A, X): A 1 XI(a u b u c\{A, X}),

 (A, D): A H D l(a u b u c\{A, DI),
 (B, C): B IL Cl(b u c\{B, C}),

 (C, D): C 11 DI(c\{C, D}),

 where we have adapted the notation introduced by Dawid (1979).
 Different dependence chains may be compatible with the same conditional indepen-

 dence structure in the sense of having the same underlying chain graph, i.e. the same
 vertices and edges between all pairs. An example is the structure displayed in Fig. 3
 as a directed chain graph without and with two compatible dependence chains.

 To understand the meaning of a research hypothesis, it is crucial to know the
 dependence chain since it assigns a specific meaning to each missing edge. This is not
 the case for the corresponding conditional independence structure since it depends
 only on the underlying chain graph (Frydenberg, 1986, 1989).

 The proof of this important fact is based on the following. All compatible depen-
 dence chains are derivable from a unique partitioning of the vertex set called the

 O~~~~z~

 x u X x
 Fig. 3. Chain graph without and with two distinct compatible dependence chains, i.e. without and with
 specific meanings attached to each missing edge: the missing edge (X, Z) means XII Zj(Y, U) in the
 graph in the centre and X II ZJU in the graph on the right-hand side; a compact description of all
 independences is X2I (Y, Z)IU
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 minimal chain components of the chain graph. They are obtained from any given
 dependence chain by subdividing each chain element into connected components, i.e.
 into subsets which have no direct relations in the subgraph induced by their chain
 element. For instance in Fig. 1 the minimal chain components are the elements of
 {{A, X, Y}, {B}, {Z}, {C, U, D}}. The three dependence chains compatible with the
 underlying chain graph in Fig. 1 are W = (a, b, c), W' = (a, {B}, {Z}, c) and
 l = (a, {Z}, {B}, c).

 To distinguish between a conditional independence structure and the graph which
 corresponds to a compatible substantive research hypothesis we speak of a recursive
 conditional independence graph or, in short, of a conditional independence graph
 whenever a chain graph has a specific dependence chain attached to it. The recursive
 conditional independence graph is specified in terms of its dependence chain, its set
 of vertices and its set of edges.

 Three classes of conditional independence graphs will be important in the follow-
 ing: those with exclusively symmetric associations, those with only single responses
 and those with multiple responses in the system. To distinguish between the different
 situations we denote a general recursive conditional independence graph by G and
 speak of

 (a) a multiple-response graph (G"r) if at least one response set contains more than
 one variable,

 (b) a single-response graph (GS') if all response sets contain one variable and
 (c) a symmetric association graph (Ga) if there are no response sets.

 Examples of the three types of graph are given in Figs 1, 4 and 5 respectively.
 The main question for conditional independence structures is: what are the

 independences implied by the graph, i.e. what are its Markov properties? This has, for
 example, been addressed by Darroch et al. (1980), Kiiveri (1983), Kiiveri et al. (1984),
 Lauritzen and Wermuth (1984, 1989), Pearl (1986), Verma (1988), Geiger and Pearl
 (1988), Lauritzen et al. (1989) and Frydenberg (1989). It is not discussed in this paper.

 2.3. Graphical Conditional Gaussian Chain Models
 A graph such as Fig. 1 corresponds to a graphical chain model if the joint distri-

 bution is specified in terms of distributions involving the different sets of concurrent
 variables and a chain graph represents the conditional independence restrictions on
 the joint distribution.

 2.3.1. Joint distribution in chain model
 As for the definition of a conditional independence graph we assume that a given

 set V of random variables may contain a subset A of discrete and a subset F of

 a={X) b=(A) c={Y) d={B,C,Z)

 Fig. 4. Example of a graph with only single responses GS", having dependence chain W = (a, b, c, d)
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 a=(A,B,C,D,X,Yl

 Fig. 5. Example of a symmetric association graph G', having dependence chain W = (a)

 continuous variables V = A u F. They are to model qualitative and quantitative
 variables respectively. To repeat, in Fig. 1 the two sets of variables are A = {A, B,
 C, D} and F = {X, Y, Z, U}, the dependence chain is W = (a, b, c), the three sets
 of concurrent variables are a u b u c, b u c and c, and the response sets are a
 and b.

 A dependence chain plays two different roles in the statistical model: it determines
 a way of obtaining the joint density of all variables in the system and it defines a
 specific conditional independence restriction for each variable pair having a missing
 edge in the graph.

 If the dependence chain contains Telements then a factorization of the joint density
 fv of all variables in the system is given as a product of T - 1 conditional densities
 and one marginal density. For example, in Fig. 1 we have

 fv = falbcfblcfc.

 Here, falbc denotes the conditional density of responses in set a given all variables in

 b u c,fbIl the conditional density of those in b given c andf. denotes the marginal
 density of the variables in c. With a dependence chain having T elements, T distri-
 butions have to be specified corresponding to T simultaneous recursive analyses of the
 sets of concurrent variables.

 In principle, different types of distribution may be appropriate for each set of
 concurrent variables. However, in CG chain models all T - 1 conditional densities
 as well as the marginal density are of the CG type, i.e. of the CG type described in
 more detail in the next subsection.

 We reserve the symbol g for densities of the CG type so that for instance in Fig. 1
 the joint distribution of a CG chain model is understood to be

 fv = galbcgblfcgc

 Given any recursive conditional independence graph and distributional assump-
 tions of this specific type the graph can be viewed as characterizing a graphical CG
 chain model. Such a model is called saturated if it is given by a complete graph and
 non-saturated if it is given by an incomplete graph. A saturated model is a statistical
 model defined just by the distributional assumptions, while a non-saturated model is
 obtained from a saturated model by imposing restrictions on some of its parameters.

 2.3.2. Conditional Gaussian distribution
 Here, we define a density of the CG type for a symmetric association model, i.e. a

 CG density corresponding to an undirected graph or to a dependence chain having
 one element.

 Suppose that the set of all variables (V = F u A) contains q continuous variables.
 A CG distribution for V is defined by a conditional joint Gaussian distribution of
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 the continuous variables given the discrete variables and by positive probabilities for
 each level combination of the discrete variables. The joint density of all variables can
 be expressed with the help of moment characteristics. These are the probabilities 7I1,
 the means p, and the conditional covariance matrices 1,, where I = 1, . . . , L
 denote the level combinations of the discrete variables. When the conditional covari-
 ance matrix does not depend on the level combinations of the discrete variables, i.e.
 when Z1 = Z, the CG distribution is said to be homogeneous. The joint density is a

 product of conditional Gaussian densities gflA, and of the marginal probability
 function gi, = 7rl

 9v = gFjAgA = Z,11 exp {-2(x I ) (xI -u)}] 7T,,

 where x contains the realizations of the continuous variables. Occasionally, K, = Z7'
 is referred to as a concentration matrix having concentrations as off-diagonal
 elements and precisions along the diagonal.

 Equivalently, the logarithm of the density may be written in terms of canonical
 characteristics as

 log gv = d, + h X- xT K, x,

 where the discrete, linear and quadratic canonical characteristics are denoted by dl,
 hT and K, respectively.

 The relations between the two sets of characteristics (d,, h,, K1) and (it1, jIl, ,) are

 d, = log 7t1 - 2{q log(27) + log I 11 f 1},

 hi = - 1 , K1 = -1.

 Some of the properties of CG distributions are summarized from Lauritzen and
 Wermuth (1989) as follows. Symmetric association models based on these distri-
 butions lead to exponential families. The sufficient statistics are all functions of
 familiar data summaries: of counts, means and covariance matrices. The conditional
 independence restrictions determine for which level combination of the discrete
 variables these data summaries are to be computed, or, to put it differently, which
 statistics form the minimal set of sufficient statistics.

 If a conditional density is computed from gab, i.e. from a joint CG density for
 variables in a u b, it stays in the family of CG distributions. However, a marginal

 distribution obtained from gab may or may not be a CG distribution. An illustration
 of this last fact is already possible with a mixed bivariate density for the variables X

 and A, which we write as gAX*

 9AX gXlAgA = gAfXfX.
 The marginal distribution X is a mixture of two univariate normal or Gaussian
 distributions. Such a mixture is typically not a CG distribution. This illustrates in
 which sense the multivariate family of CG distributions is more complex than the
 family of Gaussian distributions. The latter is closed under conditioning as well as
 marginalizing (see, for example, Anderson (1958)).

 2.3.3. Interactions of conditional Gaussian distributions
 An important feature of a CG distribution for evaluating research hypotheses

 about indirect relations is its parameterization with interactions. It has been proved
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 (Lauritzen and Wermuth (1989), proposition 3.1) that in CG distributions a variable
 pair is conditionally independent given the remaining variables if and only if all
 interaction terms containing this variable pair are zero. Thus, formulating a hypoth-
 esis with missing edges in a symmetric association graph G' is equivalent to specifying
 a particular set of interactions to be zero. Whenever such a research hypothesis is
 correct, this will be reflected in estimates of the interaction parameters: estimates of
 all interactions corresponding to missing edges will be close to zero. The notion of
 interaction in a CG distribution is related to, but distinct from, the notion of
 interaction used in the context of analysis of variance models (Cox, 1984).

 The parameterization of a CG distribution with interactions is illustrated here for
 V = {A, B, X, Y} and W = (V), more precisely for A = {A, B} with A, B having
 categories i = 1, . .. , I and j = 1, . .. , J respectively and F = {X, Y} having
 realizations (x, y). In this case the CG density can be written in terms of canonical
 characteristics as

 log g(i, j, x, y) = dij + hi'jx + hlj,y - Ik;x2 -x -k j"xy (1)
 and in terms of interactions as

 log g(i, j, x, y) = i + (<A + jB + 2AB) ? (5X + 1AX + cBX + ABX)X

 Y AY qBY ABY) + (11 Y + qA + BY+ qABY y

 - l(fX + ?AX +iBX + ABX)X2

 - 1(~Y + dAY + BY + /ABY)y2

 - (XY + qAXY + BXY + qABXY)xy

 Constraints, such as symmetric constraints, have to be adopted to assure uniqueness
 of the interaction terms. These give for example 0 = Ei7A = ZI,,ABX = ZlfBY

 To relate this interaction representation to more familiar ones, we may further
 specialize it. For only two discrete variables, we obtain the log-linear representation
 (Birch, 1963) of probabilities in a two-way contingency table. For only two continuous
 variables, we obtain the exponential family representation of a bivariate normal
 distribution (Dempster, 1972). Mixed interactions involving both discrete and con-
 tinuous variables, such as QA, I1Y, do not seem to have appeared explicitly in other
 statistical models. In a homogeneous CG distribution the mixed / interactions are all
 equal to zero.

 Because of their importance for the interpretation of models we emphasize the
 following results from Lauritzen and Wermuth (1989).

 Fact 1. For each pair from a set of variables A u F, in a symmetric association
 graph Ga', the following statements are equivalent:

 (a) the variable pair is conditionally independent given all the remaining
 variables;

 (b) all interactions involving the variable pair are equal to zero in the interaction
 parameterization of the CG distribution;

 (c) the edge of the variable pair is missing in the symmetric association graph.

 The two graphs in Table 1 provide an illustration.
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 TABLE 1

 Examples to illustrate fact I

 Case Symmetric association graph Equivalent Equivalent sets of zero
 independences interactions

 A X AII XI(B, Y) S , , 1A,}
 |B Y |o U x Jrx

 {lfAXY frB'{oA ABXY

 2 A X A X(B, Y) SI Iu{VJXY, fBXY}
 and

 | B ) Y | x H YI(A, B)

 2.3.4. Conditional Gaussian regression
 Conditional densities in a CG chain model are all CG regressions. A CG regression

 is a conditional distribution which looks just as if the joint distribution of the variables
 in its response and influence set would follow a joint CG distribution (Lauritzen and
 Wermuth (1989), proposition 2.4). The density of this conditional distribution is of
 the CG type since it may be expressed in terms of discrete, linear and quadratic
 canonical characteristics, just as for a CG distribution. The difference is that the
 parameters of a CG regression may depend on the values of the influencing variables.

 We speak of multiple-response or of block regressions and of univariate regressions,
 depending on whether the response set contains several variables or only a single
 variable. A univariate CG regression is a linear regression if the response is continuous
 and a logistic regression with linear and quadratic dependence on the influencing
 variables if the response is discrete. A homogeneous CG regression is derived from a
 homogeneous CG distribution. In this case the linear regressions are parallel and the
 logistic regressions depend linearly on the influencing variables.

 For example from equation (1) the linear regression of Ygiven A, B and Xis given
 by

 E(Yjx) = aj + /3jx, var(Ylx) = l/k1j, cV = h;j'lkj, Wij = -ky7'/kbj.

 The logistic regression of A given B, X and Y for a binary response is

 log (m1JJ.Y1,/m2]J,,q) = dlj - d2j + (hx - h2x)x + (hi - h& )y - {(k1 k2-)x

 - 4(k-' - k2j)y2 - (hj' - h2 ' )xy.

 For the CG regression having density galb we can speak of an attached joint CG
 distribution for the variables in a u b. The reason is that each CG regression can be
 viewed as being derived from a joint CG distribution. The attached CG distribution
 is not unique unless the parameters in the marginal distribution of the influences are
 specified. For instance, in Fig. I the CG regression with density galbc is a conditional
 distribution of a = {A, X, Y} given all the remaining variables just as if
 {X, Y, Z, U} had a Gaussian distribution given {A, B, C, D}. The CG regression
 with density gbl( is a conditional distribution of b = {B, Z } given c = {C, U, D } just
 as if {Z, U} had a Gaussian distribution given {B, C, D}.
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 2.3.5. Joint distribution in a conditional Gaussian chain model
 In a CG chain model it is assumed that

 (a) the T - 1 conditional densities in the joint distribution are all CG regressions
 and

 (b) the marginal distribution of the set of variables containing no responses is a
 CG distribution.

 A CG chain model with exclusively single responses is said to be a univariate recursive
 regression model given by the graph G , while a model with multiple responses is
 called a block recursive regression model given by Gmr.

 Although all distributions of a CG chain model are based on CG distributions the
 joint distribution of it need not be a CG distribution itself. The simplest example is
 a mixed bivariate density for the variables X and A defined for the dependence chain
 6 = ({A}, {X}). The joint density is

 fAX = gAlXgX,

 which is typically not of the CG type.
 Two graphical chain models are equivalent if they have the same joint distribution

 and the same conditional independence structure. As was shown by Frydenberg
 (1986) not only the conditional independence structure but also the joint distribution
 of a CG chain model is completely determined by the underlying chain graph.

 In general, complete graphs with different dependence chains define different
 saturated models for the same collection of variables since they may have different
 distributional implications. Two such saturated models or complete systems are
 equivalent if their joint distributions coincide. Fig. 6 shows chain graphs for saturated
 models which are not equivalent.

 In the special case where all variables in a given system are of the same type, i.e.
 either discrete or continuous, all possible saturated models are equivalent. The
 reasons are that, as mentioned before, the family of Gaussian distributions is closed
 under conditioning and marginalizing and that probability functions with positive cell
 probabilities stay positive after conditioning or marginalizing.

 As we shall see next, each graphical chain model can be interpreted with the help
 of T symmetric association graphs: with those implicitly attached to each given
 dependence chain. We recall from the previous section that each CG regression has
 an implicitly attached CG distribution. For a CG regression in a graphical chain
 model we can, similarly, speak of an attached symmetric association graph of the

 A@z A @< A x
 gABX gAjeX gBX gABIX gX

 9AXY 9AIXYgXY 9AYIX gX

 Fig. 6. Two sets of three complete chain graphs which have the same vertices but a different joint
 distribution
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 a X Z
 G attached to
 the concurrent

 variables of y
 set a={A,X,Y)
 of Figure1 1

 a

 G attached to Z C
 the concurrent
 variables of set

 b=(B,Z) of

 Figure 1 B D

 G attached to C
 the concurrent

 variables of U
 set c={C,U,D}
 of Figure 1

 Fig. 7. Symmetric association graphs attached to the three sets of concurrent variables in Fig. 1, i.e.
 to a u b u c, b u c and c

 concurrent variables. Such an attached graph is obtained from the subgraph induced
 by a given set of concurrent variables by changing each arrow to a line and by adding
 a line between all pairs of influencing variables that were not yet connected. Thus,
 there can be edges missing for pairs involving variables in the response set but not
 within the set of influencing variables. Fig. 7 displays the three symmetric association
 graphs attached to the graph in Fig. 1. These considerations permit the following
 results which are analogous to fact 1.

 Fact 2. For each pair from a set of variables A u Fin a general recursive conditional
 independence graph G, the following statements are equivalent:

 (a) the variable pair is conditionally independent given all its remaining con-
 current variables;

 (b) the variable pair is conditionally independent in any joint CG distribution
 attached to its concurrent variables;

 (c) all interaction terms involving the variable pair are equal to zero in the
 interaction parameterization of any attached CG distribution;

 (d) the edge of the variable pair is missing in the attached symmetric association
 graph Ga of its concurrent variables;

 (e) the edge of the variable pair is missing in the chain graph G.

 The implications from (a) to (e)-in that order-and from (e) to (a) follow from
 the definitions, and for (b) to (e) from fact 1.

 2.3.6. Likelihood estimation and tests in conditional Gaussian chain models
 Key issues associated with CG chain models are the investigation of distributional

 assumptions and the fitting of models. These will not be discussed at any length in the
 present paper.

 However, it should be noted that each of the CG regressions and the marginal
 CG distribution involved in the model specification can be investigated and fitted
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 separately (Lauritzen and Wermuth, 1989). In many situations the tasks will reduce
 to familiar problems as pointed out in Section 6.

 In some situations the CG regression can be fitted by deriving estimates from the
 fitted values in the attached joint CG distribution (Lauritzen, 1989). This follows from
 results by Frydenberg and Lauritzen (1989), based on the notion of a decomposition
 of a marked graph (Leimer, 1989). Techniques from logistic regression models (Cox,
 1970; McCullagh and Nelder, 1983) may be used whenever the CG regression cannot
 be fitted directly with the help of the attached joint CG distribution. Many models
 with multiple response may be fitted by properly exploiting equivalences of models
 such as those reported in Section 5.

 A suitable algorithm for maximum likelihood estimation in a general graphical CG
 chain model is not available at present. Algorithms developed in Frydenberg and
 Edwards (1989) and implemented in a program by Edwards (1987) may be used if it
 is appropriate to fit the attached joint CG distribution.

 A discussion of factorizations of likelihood ratio tests in symmetric association
 models has been given by Goodman (1971), Haberman (1974), Andersen (1974),
 Sundberg (1975), Wermuth (1976a, b), Porteous (1985a, b) and Frydenberg and
 Lauritzen (1989).

 3. TWO DISTINCT TYPES OF VARIABLES IN THE SAME CONDITIONAL
 INDEPENDENCE STRUCTURE

 In this section we look more closely at one particular conditional independence
 structure. It corresponds to symmetric association graphs which differ in the number
 or position of discrete and continuous variables. The purpose is twofold: to illustrate
 that a given set of conditional independence statements may correspond to quite
 different graphical chain models and that not all parameterizations of a given model
 are equally well suited to disclose the independences of the association structure.

 Our selected structure has four vertices with three lines, all touching one of the
 vertices. Its interpretation is that three variables are mutually conditionally indepen-
 dent given the fourth variable. The fourth variable is called the conditioning variable.
 The four graphs in Fig. 8 differ, however, in the way that the vertices are marked and
 therefore with respect to the type of variables involved.

 Graph I Graph 11 .A 0 1 | X
 Graph III Graph IV

 |A \X i) y A SB t

 Fig. 8. Examples of distinct symmetric association graphs each with four variables having the same
 type of independence structure: three variables are mutually conditionally independent given the fourth
 variable
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 TABLE 2

 Numerical example of an association structure for graph I in Fig. 8

 Levels of Moment Conditional risks with level 2 as basis for Interactions Conditional
 ABCD characteristics A = I B = 1 C = 1 D = I at level I for odds ratios

 (ijkl) (20007ijk,) each variable Pair Value
 Type Value

 1111 216 0.3 0.9 0.8 0.86 - 3.66
 2111 504 0.9 0.8 0.99 A 0.34
 1211 24 0.3 0.8 0.14 B 0.20
 2211 56 0.8 0.78 AB 0 (A, B) 1.00
 1121 54 0.3 0.9 0.27 C 0.00
 2121 126 0.9 0.89 AC 0 (A, C) 1.00
 1221 6 0.3 0.01 BC 0 (B, C) 1.00
 2221 14 0.18 ABC 0
 1112 36 0.9 0.2 0.2 D 0.07
 2112 4 0.2 0.2 AD - 0.76 (A, D) 0.05
 1212 144 0.9 0.2 BD 0.90 (B, D) 36.00
 2212 16 0.2 ABD 0
 1122 144 0.9 0.2 CD 0.69 (C, D) 16.00
 2122 16 0.2 ACD 0
 1222 576 0.9 BCD 0

 2222 64 ABCD 0

 Since the graphs are to represent graphical CG chain models it is implicitly

 understood that the distributions are an arbitrary probability function (1Tijkl > 0) for
 graph I, a four-dimensional Gaussian distribution for graph II, and mixed CG
 distributions for graphs III and IV having two discrete and two continuous variables
 each. The conditioning variable is discrete in graph III but continuous in graph IV.

 3.1. Discrete Variables Only
 Table 2 shows an association structure of discrete variables with conditional

 independences given by graph I in Fig. 8.
 Neither the moment characteristics, which are mean counts, nor the canonical

 characteristics, which are logarithms of probabilities, are helpful in recognizing the
 indirect and direct relations in the structure. Instead, these essential features of the
 association structure are reflected in measures of associations such as interactions
 involving more than one variable, in conditional relative risks or in conditional odds
 ratios. A variable pair is conditionally independent given all the remaining variables
 if all interactions involving this pair are zero, if the conditional odds ratios of this pair
 are all equal to unity or if the conditional relative risks of this pair are all equal to
 unity.

 In Table 2 all interactions involving pairs (A, B), (A, C) and (B, C) are zero. In a
 structure with four variables this implies that all higher order interactions are zero as
 well. The two-factor interactions corresponding to edges in the graph are all sub-
 stantial. The conditional odds ratios are constant at fixed levels of the remaining
 variables since all interactions of third and higher order are zero. For instance, for
 levels (1, 1) and (2, 1) of (A, B) the odds ratios of pair (C, D) are

 ?t191 1122 _ 216 x 144 16
 21 n112 54 x 36
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 TABLE 3

 Numerical example of an association structure for graph II in Fig. 8

 Variable Moment characteristics: Z Variable Canonical characteristics: E-
 Variables Variables

 x y z U x y z U

 X 0.50 0.12 0.16 0.20 X 2.381 0 0 -0.952
 Y 0.50 0.24 0.30 Y 3.125 0 - 1.875
 Z 0.50 0.40 Z 5.556 - 4.444
 U 0.50 U 7.062

 and

 7t2111 72122 504 x 16 16
 2t2121 T2112 126 x 4

 respectively, indicating a strong partial association. Relative risks are ratios of risks,
 which, in turn, are conditional probabilities. For instance, the conditional risk for
 A = 1 given levels (1, 1, 1) of (B, C, D) and the relative risk for A = 1 comparing
 levels 1 and 2 of B given levels (1, 1) of (C, D) are

 ABCD _ 1 _ 216 0 3
 2t 11 + 7E21 11 216 + 504

 and

 71 ABCD / 7, ABCD 0 .3/0.3= 1.
 11ill / 11j21 - 1

 The meaning of values different from unity is more easily interpretable for relative
 risks than for odds ratios.

 3.2. Continuous Variables Only
 Table 3 shows an association structure of continuous variables with conditional

 independences given by graph II in Fig. 8. As had been the case for only discrete
 variables, the moment characteristics are not well suited to recognize the indepen-
 dences of the association structure. Instead the interactions in the CG distribution
 are appropriate. The moment characteristics for continuous variables are means,
 variances and covariances. The two-factor interactions are concentrations; their
 standardized counterparts are partial correlation coefficients. Gaussian distributions
 have, by definition, only two-factor interactions.

 In Table 3, for instance, the partial correlation coefficient

 pCU.VX = =zu 4.444 = 0.71
 =UU 1/(5.556 x 7.062)

 indicates a strong partial association for pair (Z, U), while p,,.,u = 0 informs about
 the conditional independence of (X, Y) given the remaining variables.

 3.3. Continuous and Discrete Variables
 Tables 4 and 5 show association structures of mixed variables. Displayed in the

 tables are moment and canonical characteristics. As we shall see, with a discrete
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 TABLE 4

 Numerical example of an association structure for graph III in Fig. 8

 Moment characteristics Canonical characteristics
 Variables and levels Variables and levels

 ni B = 1 B = 2 dj B = I B-=2

 A = 1 100 40 A = I -16.43 -19.51
 A = 2 40 80 A = 2 -17.35 -18.81

 Mij B= 1 B= 2 hi, B= l B-2
 x y x Y x Y X Y

 A = 1 6 10 10 5 A = 1 1.20 1.67 2.50 0.63
 A = 2 6 10 10 5 A = 2 1.20 1.67 2.50 0.63

 B I B =2 B I B =2
 X Y X Y X Y X Y

 A =1 X 5 0 4 0 A 1 0.20 0 0.25 0
 Y 6 8 0.17 0.13

 A =2 X 5 0 4 0 A =2 0.20 0 0.25 0
 Y 6 8 0.17 0.13

 TABLE 5

 Numerical example of an association structure for graph IV in Fig. 8

 Moment characteristics Canonical characteristics
 Variables and levels Variables and levels

 ni B = I B = 2 dij B =1 B=2
 A = 1 520 5 A = 1 -146.71 -84.86
 A = 2 195 280 A = 2 -94.53 -32.67

 Pj1 B = I B = 2 hi, B =I B 2
 K Y K Y K Y K Y

 A = 1 31.08 33.60 20.77 20.72 A = 1 12.47 -3.00 10.39 -3.00
 A = 2 34.24 37.55 15.15 13.69 A = 2 8.53 -3.00 6.46 -3.00

 Xii B=1I B = 2 8i B1 =B 2
 K Y K Y K Y K Y

 A = I X 3.57 4.46 3.13 3.91 A = 1 1.17 -0.71 1.21 -0.71
 Y 7.32 6.64 0.57 0.57

 A = 2 X 7.16 8.94 5.58 6.98 A = 2 1.03 -0.71 1.07 -0.71
 Y 12.93 10.47 0.57 0.57

 conditioning variable, as in graph III, the independences of the association structure
 can be read off the values of both sets of characteristics. With a continuous con-
 ditioning variable, as in graph IV, the moment characteristics disclose none of the
 independences, the canonical characteristics reveal parts and only the values of
 interactions disclose all independences.

 For an understanding of the parametric implications it is helpful to decompose
 independences. The mutual conditional independence (A 11 X IL Y)IB given by
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 TABLE 6

 Interactions for Tables 4 and 5, displayed at levels ] only

 Type of Structure with (A II X I I Y)JB Structure with (A II B I I Y)IX
 interaction Involved discrete variables Involved discrete variables

 None A B AB None A B AB

 - 18.02 0.06 1.14 0.40 -80.69 -26.09 -30.93 0
 qx 1.85 0 - 0.65 0 9.46 1.97 1.04 0
 cy 1.15 0 0.52 0 -3.00 0 0 0

 ox 0.23 0 - 0.03 0 1.12 0.07 - 0.02 0
 y F o0.15 0 0.02 0 0.57 0 0 0
 fXY 0 0 0 0 - 0.71 0 0 0

 graph III may be expressed in terms of X 11 YI(A, B), X 11 AIB and Y II AIB. The
 first implies zero covariances and zero concentrations at all level combinations of A

 and B, while Y II A IB and X II A IB imply the same means and variances for both Y
 and X at fixed levels of B but changing levels of A.

 Similarly, the mutual conditional independence (A II B H Y)IX given by graph IV
 may be split up as Yll AI(B, X), YlI BIX and A II BIX, or, more compactly, as
 Y II (A, B)IX and A II BIX. The first part implies that regression equations of Y on
 X are identical if computed at fixed level combination of A, B. In Table 5 the intercepts
 and regression coefficients are for all i, j

 hx. 3.00 _ kT_0.714
 OKYX(i, j) = k'' = o30.571 - 5.25, fl1x(i,j) - __'3 = 0.571 = 1.25.

 The independence A II BlXdescribes a fairly complicated relationship, the simplest
 type of a non-decomposable mixed association model. This means that the model
 cannot be completely decomposed into simple components for which we know how
 to obtain direct, non-iterative maximum likelihood estimates. This independence
 cannot be directly identified from values of canonical characteristics.

 In both cases interactions reflect the independences in appropriate zero patterns.
 Interactions corresponding to the canonical characteristics in Tables 4 and 5 are
 shown in Table 6.

 4. SPECIAL ASPECTS OF EVALUATING RESEARCH HYPOTHESES ABOUT
 INDIRECT RELATIONS

 Complete graphs do not imply hypotheses about indirect relations in the associ-
 ation structure. In that case the primary purpose of an empirical investigation is to
 estimate the associations. A research hypothesis about indirect relations is evaluated
 by comparing at least two types of estimates, for instance by comparing associations
 estimated under the non-saturated chain model and estimated under the correspond-
 ing saturated model. The complete graph of the latter is obtained from the incomplete
 graph of the former by adding lines within boxes and arrows between boxes. Some
 aspects of such an evaluation are described in this section.

 The hypothesis specified with the graph in Fig. 9 concerns the joint dependence of
 qualitative and quantitative variables on an influence. Even though such a hypothesis

This content downloaded from 134.93.37.2 on Fri, 21 Sep 2018 09:01:16 UTC
All use subject to https://about.jstor.org/terms



 40 WERMUTH AND LAURITZEN [No. 1,

 a=(A,X,Y) b={B}

 Anxiety, respondent

 X Smoking
 Anger, habits,
 respon- respondents
 dent y parents

 AAf
 Smoking habits, B
 respondent

 Fig. 9. Research hypothesis about indirect relations among variables with data summaries displayed
 in Table 7

 is familiar in social science theory, no statistical models had been developed, so far,
 to permit proper empirical investigations. These are partially feasible with graphical
 chain models, but the models do not directly disclose which measures of conditional
 and marginal associations permit simple interpretations. Further research is needed
 here.

 The hypothesis in Fig. 9 is regarded as a subhypothesis of the hypothesis in Fig. I
 since

 (a) it concerns a new system which is a subset of variables in the larger system,
 (b) the graph of the new system coincides with the subgraph induced by the new

 system in the larger graph and
 (c) the remaining variables in the larger system, which have direct relations to a

 variable in the new system, either have fixed values or are assumed to have no
 substantial variation for the observational units of the new system.

 We report data summaries obtained by personal communication from C. Spiel-
 berger. The data are for 384 female students in Florida having no older siblings
 who smoke. This subgroup of respondents, which is homogeneous with respect
 to role models that older siblings provide, was chosen to avoid possible confound-
 ing effects. The reasons are as follows. It is known from previous studies and analyses
 (Spielberger et al., 1983a; Wermuth, 1987) that the risk of smoking is increased
 if a student has older siblings who smoke. Consequently, it is expected that the
 variable 'role model of older siblings' may moderate the association structure in an
 unknown way, i.e. neglecting this variable in an analysis could produce confounding
 effects.

 The two qualitative variables are student's smoking status (A) having categories
 smoker, quit smoking, never smoked and parents' smoking habits (B) with categories
 neither parent smoked, one parent smoked, both parents smoked. The two quanti-
 tative variables are trait anxiety (X) and trait anger (Y).

 The sufficient statistics of the saturated symmetric association model correspond-
 ing to Fig. 9 are displayed in Table 7. The reported tests are asymptotic likelihood
 ratio tests (Wilks, 1938). The global test statistic for all independences formulated
 with the research hypothesis in Fig. 9 indicates a reasonable fit: the value of 40.46 for
 a chi-squared statistic on 36 degrees of freedom corresponds to a p value of 0.28.
 However, a more detailed analysis reveals that this judgment is not justifiable, that the
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 a=(A,X,Y) b=(B)

 Anxiety, respondent Smoking
 X habits,

 Anger, respondents
 respon- pars pents
 den L~ B

 A

 Smoking habits,
 respondent

 Fig. 10. Modified hypothesis as a result of an analysis

 TABLE 7

 Sufficient statistics of the saturated symmetric association model in Fig. 9

 Sufficient Variables and levels
 statisticKs Student's smoking Parents' smoking habits

 status Neither snmoked One smoked Both smoked

 Counts Smoker 11 20 60
 Quit smoking 12 21 43
 Never smoked 47 91 79

 Anxiety, Anger Anxieti' Anger Anxiety Anger

 Means Smoker 19.45 25.27 23.05 24.60 22.00 25.80
 Quit smoking 19.17 23.58 22.05 25.33 22.26 25.74
 Never smoked 17.81 19.53 19.56 20.69 19.86 21.48

 Covariance Smoker 46.61 20.94 32.40 10.95 29.10 21.35
 matrices 48.58 28.53 46.55

 Quit smoking 10.16 15.18 34.06 28.88 35.99 21.43
 32.89 61.72 39.26

 Never smoked 19.82 9.85 28.52 13.53 27.32 11.11
 26.46 30.35 31.30

 hypothesis has to be modified such as shown in Fig. 10. This just illustrates a
 frequently encountered phenomenon with high degrees of freedom tests.

 One way to detect a hidden poor fit of a hypothesis about several indirect relations
 is to split the global test statistic into sequences of tests for pairwise independences
 and to look at studentized interactions which are estimates of interactions divided by
 their asymptotic standard deviations. The use of studentized interactions had been
 suggested in the context of contingency table analyses by Goodman (1970) and was
 further discussed by Haberman (1978), Section 4. Studentized interactions in CG
 chain models can be computed after exploiting results by Dempster (1973) for the
 multinomial logit model. Details will be discussed elsewhere. For our data in Table
 7 the largest studentized interactions are

 xY = 4 43 13BX = 2.7, VIsfX = -2.4, Cf1l = 2 .4.

 They indicate a poor fit of the observations to the hypotheses of only indirect relations
 between pairs (X, Y), (A, B), (A, X) and (B, X).
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 5. EQUIVALENCE OF MODELS

 As mentioned previously, distinct research hypotheses defined in terms of two
 different conditional independence graphs may correspond to equivalent statistical
 models. Here we state some results on how to read off such equivalences from the
 graphs

 (a) to deal with uncertainty in specifying the dependence chain and
 (b) to derive an alternative interpretation of the association structure.

 5.1. Reading Equivalences from Graphs
 Two graphical chain models for the same set of variables are equivalent if their

 distributional specifications as well as their conditional independences coincide.
 Consequences of such an equivalence are that the parameters of two CG chain models
 as well as their maximum likelihood estimates are related by one-to-one transfor-
 mations, and that corresponding research hypotheses cannot be distinguished by an
 analysis of data.

 Conditions for the equivalence of CG chain models have been studied by several
 researchers. Situations may be distinguished as comparisons of a single-response
 graph with a symmetric association graph (Wermuth, 1980; Lauritzen, 1982; Asmussen
 and Edwards, 1983; Wermuth and Lauritzen, 1983; Kiiveri, 1983; Porteous, 1985b),
 as comparisons of a single- with a single- or with a multiple-response graph (Lauritzen
 and Wermuth, 1989; Frydenberg, 1989) and as comparisons of two multiple-response
 graphs (Frydenberg, 1990). The three situations described here correspond to
 propositions 8.1 and 8.2 of Lauritzen and Wermuth (1989).

 Two CG chain models given by the chain graphs G, and G2 cannot be equivalent
 if one of the following conditions holds.

 Condition 1.

 (a) The variables in the graphs do not coincide.

 (b) The two sets of missing edges in GI and G2 are not identical.
 (c) The distributional implications do not agree since in one but not in both

 graphs there is a continuous influence having either a discrete response or a
 continuous response which is connected to a discrete variable within the same
 response set.

 Condition l(c) does not depend on the dependence chain, since the statement
 variables connected within the same response set' just means that their edges are
 lines. The condition implies that the joint distribution of some concurrent variables
 differ in the two models. Fig. 6 in Section 2, and Figs 11 and 12 illustrate condition
 1(c).

 We are now ready to turn to comparisons of special graphical CG chain models.
 Situation 1. Comparing a symmetric association model given by the graph G' and a

 univariate recursive regression model given by the graph GSr. Suppose that none of
 conditions 1(a)- 1(c) applies to the two graphs. Then, the models are equivalent if and
 only if no response in GS' depends directly on two influences without direct relation,
 i.e. no induced subgraph in Gs' forms a three-vertex chain with arrows meeting head
 to head (i.e. can be arranged like (x -+ x -- x) where x denotes a variable of either
 type). Thus, the three models in Fig. 13 are equivalent.
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 A X y A X Y A X y

 A X Y z A X a z * ~~~~ ~~~ p l
 Fig. 11. Examples of sets of incomplete chain graphs in which the graphs imply the same independences
 but different joint distributions

 A B x y A B X Y
 -,~~-o- 0-----O * 0

 A B X A B x A>~~~~~1 Adi B otz*

 Fig. 12. Examples of pairs of incomplete chain graphs in which the two graphs imply different
 independences and different joint distributions as well

 Fig. 13. Examples of conditional independence graphs which imply the equivalence of two distinct
 univariate recursive regression models to a symmetric association model

 Situation 2. Comparing a symmetric association model given by the graph Ga and a
 block recursive regression model given by the graph Gmr. Suppose that none of
 conditions 1(a)-I (c) applies to the two graphs. Then, the models are equivalent if and
 only if no single response nor any two responses connected in the same response set
 depend directly on two influences without direct relation, i.e. no induced subgraph in
 Gmr forms a directed chain starting at both sides with arrow ends (i.e. can be arranged
 like (x-+ x x) or (x -x-x --x) or (x- x . . . x -x)). Thus, the models
 shown in Fig. 14 are equivalent while those in Fig. 15 are not.

 We report a further result only for comparably arranged graphs meaning that
 no direction of influence, i.e. no arrow, in one graph appears reversed in the
 other.

 Situation 3: Comparing a block recursive regression model given by the graph Gmr and
 a univariate recursive regression model given by the comparably arranged graph
 GSr. Suppose that none of conditions 1(a)-1(c) applies to the two graphs. Suppose
 further that any discrete variable with a continuous influence in Gs' has no other
 influences in Gsr that are variables in its own response set in Gmr. Then, the two models
 are equivalent if any two not directly related influences in Gsr are also influencing
 variables in Gm', i.e. both arrows of an induced three-vertex chain in G" are arrows
 in Gmr as well.

 We believe that this condition is also necessary. The graphs in Fig. 16 provide an
 illustration.

 Further equivalences are possible for two block recursive regression models given
 by comparably arranged graphs Gmr and Gm 'such as in Fig. 17 or given by two general
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 Fig. 14. Examples of conditional independence graphs with equivalence of block recursive regression
 models to a symmetric association model

 Y A Y 6 A

 x z Lii z
 Fig. 15. Examples of conditional independence graphs where the block recursive regression model is
 not equivalent to the corresponding symmetric association model

 y U

 Fig. 16. Examples of conditional independence graphs where the block recursive regression model is
 equivalent to one but not to the other corresponding univariate recursive regression model

 x

 Fig. 17. Example of two comparably arranged conditional independence graphs with equivalence of
 the block recursive regression models

 Fig. 18. Example of two conditional independence graphs with equivalence of block recursive regres-
 sion models which have reversals in the directions of influence

 chain graphs such as in Fig. 18. Frydenberg (1989) has given the necessary and
 sufficient condition for the corresponding conditional independence structures to be
 identical, but the general condition for equivalence of CG chain models still waits to
 be formulated and proven.

 5.2. Applications of Equivalences
 The following examples show how equivalences can be exploited in the interpret-

 ation of association structures.
 A path analysis of five macroeconomic variables has been published by von der

 Lippe (1977). The variables are employment (X), investment (Y), capital gains (Z),
 consumption (U) and exports (V). With a univariate recursive regression model a
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 Fig. 19. Example of a path analysis model in which an equivalence shows that the recursive ordering
 of the responses is not relevant for the evaluation of the research hypothesis

 Fig. 20. Example of a path analysis model in which an equivalence leads to a more condensed
 description of the association structure

 dependence chain is implicitly defined as (6 = ({X}, {U}, {Z}, {U, V}). In general
 this specification is problematic as it permits, for instance, capital gains to be a
 potential influence for investment but not capital gains to be a potential response to
 the amount of investment. However, one of the main hypotheses can be expressed
 with a single-response graph which is equivalent to the multiple-response graph in
 Fig. 19. Thus, the assumed recursive ordering of the responses is irrelevant for the
 research hypothesis of interest.

 Goldberg (1971) reported a path analysis for a system of variables with an undis-
 putable recursive ordering of the responses. The responses are respondent's vote for
 president in the USA (X), respondent's satisfaction with politics before the vote (Y)
 and respondent's party affiliation (Z). There are three variables in the system
 which are influences only (U1, U2, U3). The implicitly defined dependence chain is

 =({X}, {Y}, {Z}, {U, U2, U3}). A well-fitting model is given by a single-
 response graph which is equivalent to the multiple-response graph in Fig. 20.

 Using this equivalence gives the following interpretation of the structure. Whenever
 information on respondent's party affiliation is given, the prediction of respondent's
 satisfaction with politics before the vote and of his actual vote is not improved by
 information on the remaining potential influences. Thus, a plausible and rather
 condensed description of the many reported correlation coefficients becomes possible.

 In some descriptions of path analysis it is claimed that the analysis permits
 conclusions on the direction of an influence, which in turn is interpreted as evidence
 for some causal mechanism. However, the equivalence of models with reversals in
 the directions of influence such as in Fig. 16 make it evident that such causal
 interpretations of well-fitting path analysis models are not possible. Any direction of
 influence is prespecified by the researcher. It is not implied by models for associations
 nor can it be deduced from corresponding analyses of data.

 6. STANDARD MODELS AS ELEMENTS AND SPECIAL CASES
 OF GRAPHICAL CONDITIONAL GAUSSIAN CHAIN MODELS

 Some but not all the association structures discussed in the earlier sections could
 be described in terms of known and well-studied models, an exception being, for
 instance, the model of Fig. 9 in Section 4.
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 We now turn to a more systematic account of this aspect by listing known relations
 for symmetric association graphs G' (case 1) for single-response graphs GSr (cases 2-4)
 and for multiple-response graphs Gmr (cases 5 and 6).

 Case 1. A symmetric association model given by the graph G' is

 (a) a covariance selection model if all variables are continuous and
 (b) a graphical log-linear model if all variables are discrete.

 Covariance selection models have been proposed by Dempster (1972) and studied
 by Wermuth (1976a, b, 1980), Kiiveri (1983), Porteous (1985a, b) and Speed and
 Kiiveri (1986). Applications have been described by Hodapp and Wermuth (1983),
 Kiiveri and Speed (1982), Hodapp (1984) and Edwards (1989). A numerical example
 is given in Table 3, Section 3.2.

 Graphical log-linear models were defined as a model class by Darroch et al. (1980).
 Special aspects of these models have been studied by Goodman (1970), Andersen
 (1974), Haberman (1974), Sundberg (1975), Wermuth (1976a, b), Whittaker (1982),
 Edwards and Kreiner (1983), Kiiveri (1983), Edwards and Havranek (1985) and
 Porteous (1985b). A numerical example is given in Table 2, Section 3.1.

 By adapting the nomenclature given by Fienberg (1977) we can state case 2.
 Case 2. A univariate CG regression is

 (a) a set of I one-way analysis of variance models if the response is continuous, the
 influences are all discrete and have I level combinations,

 (b) a (multiple) logistic regression with linear and quadratic dependences if the
 response is discrete and the influences are all continuous,

 (c) a set of I (multiple) linear regression models if the response is continuous,
 influences are both discrete and continuous and the discrete influences have
 I level combinations,

 (d) a (multiple) linear regression model if the response is continuous and influences
 are all continuous and

 (e) a (multiple) logit model if the response is discrete and influences are all discrete.

 Case 3. A univariate homogeneous CG regression is

 (a) an analysis of variance model if the response is continuous and all influences
 are discrete,

 (b) a (multiple) linear logistic regression if the response is discrete and all influ-
 ences are continuous and

 (c) a (multiple) analysis of covariance model if the response is continuous and
 influences are of both types. This is also called a model with parallel regres-
 sions.

 If influences and responses are either all continuous or all discrete, the homogeneous
 CG distributions are identical with the non-homogeneous distributions, so that we
 have the same situation as in case 2, items (d) and (e).

 Discussions of these models can be found in statistical text-books such as, for
 continuous responses, Draper and Smith (1966), Kerlinger and Pedhazur (1973),
 Weisberg (1980) and, for discrete responses, Cox (1970), Bishop et al. (1975), Haber-
 man (1978), Andersen (1980), Plackett (1981) and McCullagh and Nelder (1983).

 Case 4. A univariate recursive regression model given by a single-response graph
 Gs' having a complete subgraph induced by variables which are influences only
 specifies
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 (a) a univariate path analysis model if all variables are continuous, i.e. a set of
 linear recursive equations with independent residuals, and

 (b) a univariate recursive graphical model for contingency tables if all variables are
 discrete.

 Path analysis had been proposed by Wright (1921, 1923, 1934) including suggestions
 for estimating associations and testing for the goodness of fit of a model. How-
 ever, conditions under which the estimates and tests have desirable properties
 were not specified. Such results were provided by Tukey (1954), Wold (1954) and
 Wermuth (1980). Applications have mainly been reported in the social science litera-
 ture (Goldberger and Duncan, 1973; Blalock, 1971).

 The analogous class of recursive models for contingency tables was defined and
 studied by Wermuth and Lauritzen (1983) by utilizing previous results of Birch (1963)
 and Goodman (1973).

 Extensions to models with constraints on the endogenous variables and to
 models with vector variables have been suggested by Kiiveri (1983), Kiiveri and
 Speed (1982) and Kiiveri et al. (1984). They constitute subclasses of CG chain
 models.

 Case 5. A block recursive regression model given by the multiple-response graph
 Gm" defines simultaneous linear equations, in which each equation parameter is pro-
 portional to a partial regression coefficient and in which no problems of identification
 occur (Wermuth, 1988).

 The type of hypotheses that is treatable with block recursive regression equations
 may, but need not, differ from those treatable with linear structural equations as
 discussed in econometrics (Goldberger, 1964) and in psychometrics.

 Case 6. A multiple-response regression model which has unobservable influences
 and is given by a multiple-response graph Gm" with a single-response set, which
 induces a subgraph of unconnected vertices, defines

 (a) a factor analysis model (Lawley and Maxwell, 1971) if all variables are
 continuous and

 (b) a latent class model (Andersen, 1980) if all variables are discrete.

 This fact is in essence contained in Kiiveri (1983), who also points explicitly at
 unresolved estimation problems that occur for such unobservable influences.
 Numerical examples of either case are implicitly given in Tables 2 and 3: if vari-
 able D in Table 2, Section 3.1, is unobservable, then the marginal table of variables
 A, B and C is an example of a table obtained under latent class model assumptions.
 Similarly, if variable U in Table 3, Section 3.2, is unobservable, then the marginal
 covariance matrix of variables X, Y and Z is an example for a matrix obtained under
 the assumptions of a factor analysis model with one factor.
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