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Eigenanalysis of Symmetrizable Matrix Products:
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NANNY WERMUTH and HELMUT RUSSMANN

Universitdt Mainz, Germany

ABSTRACT. A theorem is proven which relates the matrices of eigenvalues and eigenvectors of
matrix products AB7, 47B, BA”, B”A if they are symmetrizable, that is if each product itself
is expressible as the product of a symmetric and of a positive definite matrix. The result is used
to derive properties of a number of different multivariate statistical techniques.
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1. Introduction

In several multivariate statistical techniques eigenanalyses are performed, i.e. eigenvalues and
eigenvectors of real matrices are computed, to obtain representations which have the attractive
feature of being unique up to scalar multiplications or up to orthogonal transformations.
These eigenanalyses often involve matrix products of two rectangular matrices 4 and B, for
which the number of columns may differ substantially from the number of rows. As a
consequence the dimensions of the two quadratic matrix products 4B” and BA” agree but
may be much smaller say than the dimensions of the two quadratic matrix products 4 7B and
B7A. Relations between the products may be exploited to simplify calculations and inter-
pretations. Such relations are derived in this paper in the case the products are symmetrizable,
that is if the products can be written as products of a symmetric and a positive definite matrix.
This notion has been used previously in the theory of compact linear operators in Hilbert
spaces (Zaanen, 1953, ch. 12), while we are concerned here with real matrices.

Our result on eigenanalyses of symmetrizable matrix products (section 2, theorem,
equations (4)-(12)) is based on the singular value decomposition (Eckart & Young, 1931;
Lanczos, 1958; Schwerdtfeger, 1960; Searle, 1982, pp. 316-317) and on the generalized
singular value decomposition of a rectangular matrix (Paige, 1985, lem., sect. 2). A short
proof of the latter is possible if a formulation and proof are used (appendix) for the singular
value decomposition which mimics early arguments given by Schmidt (1907) for an
analogous result that has been called the canonical expansion of compact linear operators in
a Hilbert space (Kato, 1966, p. 261).

2. Matrices of eigenvalues and of eigenvectors of symmetrizable matrix products

We restate the generalized value decomposition of a rectangular matrix as

Lemma

(Decomposition of a rectangular matrix relative to two given matrices.) For every s X t matrix
M of rank r >0, a positive definite s x s matrix F and a positive definite 1 x t matrix G it is
possible to find an s x r matrix U_ of rank r, an t xr matrix V_ of rank r, and an r x r
positive definite diagonal matrix A =diag (4, ..., 4,) such that

M=U_AVT, UTFU_=I, VIGV, =1, (1)
V.A=MTFU,, U,A=MGV,. 2)
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The proof is direct with (A1) and (A2) afier denoting by U'_ and V'_ the column-orthogonal
matrices which reduce an s x t matrix M' to diagonal form and by defining

M — FI/ZM’G”:, U, — Fl/zU;’ V$ — G]’QV/T.

We are now ready to state the main result concerning matrices of eigenvectors of symmetriz-
able matrix products. Two rectangular s x t matrices A and B have symmetrizable matrix
products ABT, ATB. BA", and B"A if they are defined as

A=FC, B=CG, 3)
where C is a rectangular s x t matrix of rank r, F is a positive definite s x s matrix, and G is

a positive definite t x t matrix; 0 <r <s <.

Theorem

(Eigenvalues and eigenvectors of symmetrizable matrix products.) For every two rectangular
s x t matrices A = FC and B = CG specified as in (3) there exists an s x r matrix U_ of rank
r,an t X rmatrix V_ of rank r, an r x r positive definite diagonal matrix A =diag (4, ..., 4,)
such that we get after defining

W,=FU,, Z.=GV. (4)
(i) a decomposition and diagonal form of the rectangular matrix C:
C=U.AV", A=WTCZ,; (5)
(ii) a diagonal form of each of the positive definite marrices F, F~', and G, G™":
[ =UTFU,=VIGV,=WIF "W, =27G"'Z,; (6)

(it1) the same matrix K of positive eigenvalues for each of the symmetrizable matrix products
BAT, A"B, AB”. and B A:

BATU.=U.K, ATBV,.=V.K, (7)
AB™W,_=W_K, BTAZ.=Z_K. (8)
where K = diag (x,,....x,) =A%

(iv) a decomposition and diagonal form of each of the two symmetric matrices CGC7, and
CTFC:
CGCT=U,KUT, C'FC=V_KVT, (9
K=ZTCTFCZ, =WTCGC™W_, (10)

(v) one of the matrices of eigenvectors U, . V., W_ and Z_ together with the positive
eigenvalues of the symmetrizable products determine all the other three matrices:

V.A=ATU,., U,A=BV,, (11
Z.A=BTW., W.A=AZ,. (12)
Proof. The application of the lemma to the matrix C yields the existence of U, and V_
satisfying (6) such that C = U, AV'Z. The relations in (11) are then a direct consequence of
(2); those in (12) follow from (11) with (4) and (3). The definition of W, and Z_ in (4)

provides the link between equations (11) and (12). By using (4) the diagonalization of F~!
in terms of W, and of G~! in terms of Z_ follows from that of F in terms of U, and of G
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in terms of V', . The diagonal form of C in (5) is a consequence of the decomposition of C
and of (4) and (6):

WTCZ. =WT(U,AVT)Z, =(UTFU,)NMZTGZ,) =A.

The relations (7) and (8) can be verified by using (3), (4), (5) and (6). Finally, (10) and (9)
result with (5), (6), (4). and K = A? since e.g.

CTFC=V,NUTFU )AVT =V KVT,
ZTCTFCZ. =(ZTV.)K(VTZ.) =K.

so that the proof is complete. 0

The matrices U, , V., W_ and Z_ are not uniquely determined by equations (7) and (8);
in particular the solutions need not satisfy (6). However, for every solution U, to BATU, =
U, K, say, the matrix L = UTFU_ is positive definite, so that the square root can be
obtained and U, = U, L~'? is a solution which satisfies B470U, = U_ Kand UTFU, =1 as
well. If all eigenvalues of BA7, i.e. all diagonal elements of K, are distinct then the matrix L
is diagonal and hence computing L' just means taking square roots of the r positive
diagonal elements. In the general case L has block-diagonal form with non-zero elements at
most in submatrices along the main diagonal of a size equal to the multiplicity of the
corresponding eigenvalue.

A major numerical gain of the theorem is in situations with widely different dimensions of
rows and columns: if e.g. r =5 =4 and ¢ = 100 then the eigenanalysis of B”4 to determine
Z . and K would involve computations with a 100 x 100 matrix, while (8) and (12) show that
only an eigenanalysis of the 4 x 4 matrix AB7 is needed.

Even if r =s =1 use of the theorem may yield considerable simplifications. For instance,
the eigenvalues and the matrix of eigenvectors Z, of a matrix B”A can be given in closed
form if AB” is a diagonal matrix K having the distinct positive eigenvalues of B4 as
diagonal elements.

3. Properties of some statistical techniques

With the result in the previous section properties of several statistical techniques may be
derived. so that these properties need no longer be justified within the specific context.

3.1. The dual of principal component analysis (Hotelling, 1933; Gower, 1966)

Let X be an n x ¢ data matrix composed entirely of variates with zero sample means, i.e. the
i-th element in column j of X is the observation for the i-th individual in the sample on the
Jj-th variable, recorded as deviation from the variable’s sample mean: x;; — X;. A principal
component analysis of the variables involves then the eigenanalysis of the matrix X7X and
yields the diagonal matrix K, of eigenvalues and a g x ¢ matrix U of corresponding
eigenvectors. The eigenanalysis of the typically much larger matrix XX 7 has been called the
dual to the principal component analysis of the variables or the principal component analysis
of the individuals. After defining U =(U,, U,) as the eigenvectors corresponding to the
r < g non-zero eigenvalues of K, in K say and to the g — r zero eigenvalues, respectively, we
obtain from (11) withs =q, t =n, F=1,,G =1,, and C = X7 that the matrix of eigenvectors
V_ of the non-zero eigenvalues of XX 7 is determined by K and U, as V', = XU, K~'. This
specializes to the result by Gower if XX has full rank g and column j in V_ is normalized
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to have as length the j-th eigenvalue ;. An interpretation is that principal components of the
individuals is an inflated summary of the information provided by principal components of
the variables.

3.2. Hirschfeld’s theorem for correspondence analysis (Hirschfeld, 1935; de Leeuw, 1988)

Let C be an s x ¢ matrix of counts of two discrete variables with s and ¢ categories, F~! be
a diagonal matrix with the s marginal counts of the first variable along the diagonal, and G~
a diagonal matrix with the ¢ marginal counts of the second variable. Then Hirschfeld’s (1935)
theorem restated in this notation says that there exists an s x r matrix W, and an ¢ x r
matrix Z_ such that the following two equations hold simultaneously for an r x r diagonal
matrix A:

FCZ,=W,A, GC'W.=2Z,A.

These are just the equations in (12) with 4 = FC and B = CG. An interpretation is that the
solutions W, and Z_ permit a rescaling of the two discrete variables so that the association
between them becomes linear.

3.3. Properties of Hotelling’s canonical variables (Hotelling, 1936; Dempster, 1969,
pp. 98-100: Rao, 1973, pp. 582-585; Chambers, 1977, p. 126)

Let Y be an p x 1 vector of variables and X be an g x 1 vector of variables both measured
in deviations from their means so that the covariance matrices (Z,, and Z,,) and covariances
(Z,.) of Y and X are given by

T, =E(YY"), I, =EXX"). X, =E(YX7),

then Hotelling’s canonical variables ¥ = Z7Y and X = W7X are the linearly transformed
variables obtained from the solutions Z and W of

RIS Z=ZA, LI T W =WA,

Some of the properties of these canonical variables are obtainable from (4) to (12) since W
and Z are the matrices of eigenvectors of symmetrizable matrix products. By taking F = £},
C=%,=XI,and G=ZX' it follows in particular from (5) and (6) that the covariance

matrices (Z;; and Z;;) and covariances () of the canonical variables corresponding to
non-zero eigenvalues are given by

(z}.,}., DI > _ (ZIZ},),Z+ zZT, W, > _ <1, A> (13)
’ zfi ’ szxx W, : Ir ’

where as before we have Z = (Z, , Z,) and W = (W _, W), i.e. Z, and W, correspond to zero
eigenvalues of multiplicities p — r and ¢ — r. The interpretation is here that ZJY and WX
would just give those components of the canonical variables which are unimportant since they
are uncorrelated, while the » x r matrix A contains the r non-zero canonical correlations along
the diagonal. In the case the X-variables are uncorrelated, i.e. if £, is diagonal and W. in
(6) is the identity matrix, it follows from (12) that the squared canonical correlations are the
diagonal elements of 4B7, ie. £, %', =AB"=A> Conversely, if AB” is a diagonal
matrix of distinct diagonal elements, then (8) implies that they are the squared canonical
correlations and that W, = [,, and (12) implies that each column of Z_ is proportional to
the regression coefficients obtained when regressing X; on Y so that the corresponding squared
canonical correlation is the coefficient of determination associated with this regression.
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3.4. Properties of derived response variables with special relations of conditional linear
independence to a set of explanatory variables (Cox & Wermuth, 1992;
Wermuth & Cox 1993)

Let again, as above, Y be an p x 1 vector of variables and X be an g x 1 vector of variables

~ both measured in deviations from their means, but assume—in contrast to the situation
appropriate for computing canonical variables—that only transformations for the response
variables Y are considered while the variables X are thought of as being explanatory variables
with a strong individual identity so that they should remain untransformed. An ¢ x 1 response
Y* is desired such that each new response Y} has linear conditional independence of all
explanatory variables except one, i.e. Y} L(X\..... X;_, X;.,..... X,) | X.. If p = g the new
vector Y* is obtained by requiring that the matrix of regression coefficients of Y* on X is the
identity matrix so that in particular the regression of Y* on X involves only X,. If however
p > g a unique solution, in a reasonable sense optimal, is only achieved after first reducing
Y to the ¢ x 1 vector ¥ of variables in the canonical regression of ¥ on X. The matrix of
non-zero regression coefficients of ¥ on X can be written as Z7 Z..Z;! so that the derived
responses become

Y*=%,(Z7%,) ' P =5.,.27%,) ' ZTY. (14)

It follows from the diagonal form given in (5) for C” = X, that these derived responses can
only be obtained if all canonical correlations are non-zero, thatisif r = gsothat W_isaq x g

matrix of full rank and (Z7Z,,) ' = W_A~'. The covariance matrix of Y* and X is then:
Z}"»r" Z}",\' _ 2,\:\‘ W+ K_l WIZ\\' zxx
o/ - Zo/

This implies in particular that the joint correlation matrix of derived responses and
explanatory variables coincides with the correlation matrix of canonical variables if (1) the
explanatory variables are uncorrelated so that X . is diagonal and (2) all canonical
correlations are distinct so that W, =1,.

In the case r = g it follows from (12) and (10) that further equivalent expressions for the
derived responses are

Y* = zx,\'( W+ K_] WI)Z\‘ Z;yl Y= z,\f.\*(z,{\' zv_\] Zy.\') N lzxy Z;,v‘ Y,

the second expression may be simpler to use for some purposes.
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Appendix

In order to prove the singular value decomposition of a rectangular matrix by following
arguments of Schmidt (1907), we first give some notation and facts.

An s x 5 symmetric matrix M, i.e. a matrix which is equal to its transpose (M = M T), is
said to be positive definite if for all non-null s x | vectors x the quadratic form x"Mx is
positive and it is termed non-negative definite if x"Mx = 0.

Rank of MM™. The rank r <min {s, 1} of the matrix product MM 7 of a rectangular s x ¢
matrix M is equal to the number of linearly independent rows or columns of M since
(x| MM ™x =0} = {x | (M"x)"(M"x) =0} = {x | Mx =0}.

Orthogonal decomposition and diagonal form of a symmetric matrix. For every s X s
symmetric matrix M it is possible to find an orthogonal s x s matrix U, i.e. a matrix which
pre- or post-multiplied by its transpose gives the identity matrix (I, = UU” = UTU) and a
diagonal matrix K = diag (x,, . . ., k,) such that M = UKU”, U"MU =K, where x,, ...,k
are the not necessarily distinct eigenvalues of M and the columns of U are the corresponding
eigenvectors, i.e. U satisfies MU = UK. This implies in particular that there is an orthogonal
transformation x = Uy such that x"Mx = yTU"MUy = Z ;32, so that the eigenvalues of a
non-negative definite matrix M are either zero or positive and the eigenvalues of a positive
definite matrix M are all positive; if M is positive definite its inverse M ~! exists.

Square root of a non-negative definite matrix. For every s x s non-negative definite matrix
M a square root M can be found which returns M if squared, i.e. M'2M !> = M. In terms
of the orthogonal decomposition of M it is defined as M'/? = U diag (\/;,, o ,\/;;)UT.

Lemma (Singular value decomposition: decomposition of a rectangular matrix with column-
orthogonal matrices and its diagonal form.) For every s x ¢ matrix M of rank r is is possible to
find an s x r column-orthogonal matrix U, ,i.e. UT U, =1, an t x r column-orthogonal V_,
ie. V7 V_ =1, and an r x r positive definite diagonal matrix A = diag (4,, ..., 4,) such that

M=U_AVT, UTMV, =A, (A1)

where 4, ..., 4, are the singular values of M, i.e. the positive square roots of the non-zero
eigenvalues of MM 7, and V_ and U_ satisfy

V.A=M"U,., U A=MV_. (A2)

Proof. The matrix MM 7 is symmetric and non-negative definite, hence there exists an
orthogonal decomposition such that MM "U = UK,, where K, can be written as
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K 0 .
Ko={y o) K=dagls,....x)>0,

and r is the rank of M. After partitioning U =(U,, U,) so that U_ corresponds to the
positive eigenvalues and U, corresponds to the zero eigenvalues we get

MMTU, =U_K, UTU. =1 (A3)
and after defining V. = M7U_K~'? and K'> = A we have

(UIMV, =UT(MMTU_ )K" '"?=UTU, K'"?=A,
and ¥V, is column-orthogonal since

VIV, =K "2UT(MMTU_)K-'"?=K-'"?UTU,K'?=1,.

The matrix ¥, can be completed to an 7 x 1 orthogonal matrix V = (V_, V,) by solving
the equations MV,=0 and VIV,=1,_, for the ¢ x (t — r) column-orthogonal V,. Such a
solution exists because the rank of M is r, ie. the equation Mv =0 has 1 —r linearly
independent solutions which form the columns of V|, after orthonormalizing, i.e. after
rescaling so that they are orthogonal and have length one. Then

T T A 0NV T
M=UUMVT=(U,, U, =U_AVL,
o o)\vr
which completes the proof of (Al). The first statement of (A2) holds by definition of V'
and the second follows from this definition replacing M7U, by V., K'/? in the first statement

of (A3). -
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