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Eigenanalysis of Symmetrizable Matrix Products:
a Result with Statistical Applications
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ABSTRACT. A theorem is proven which relates the matrices of eigenvalues and eigenvectors of
matrix products AB7', ArB, BA', B'A if they are symmetrizable, that is if each product itself
is expressible as the product of a symmetric and of a positive definite matrix. The result is used
to derive properties of a number of different multivariate statistical techniques.
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l. Introduction

In several multivariate statistical techniques eigenanalyses are performed, i.e. eigenvalues and

eigenvectors of real matrices are computed, to obtain representations which have the attractive

feature of being unique up to scalar multiplications or up to orthogonal transformations.

These eigenanalyses often involve matrix products of two rectangular matrices A and 8, for

which the number of columns may differ substantially from the number of rows. As a

consequence the dimensions of the two quadratic matrix products ABr and BAr agree but

may be much smaller say than the dimensions of the two quadratic matrix products ArB and

BrA. Relations between the products may be exploited to simplify calculations and inter-

pretations. Such relations are derived in this paper in the case the products are symmetrizable,

that is if the products can be written as products of a symmetric and a positive definite matrix.

This notion has been used previously in the theory of compact linear operators in Hilbert

spaces (Zaanen, 1953, ch. l2), while we are concerned here with real matrices.

Our result on eigenanalyses of symmetrizable matrix products (section 2, theorem,

equations (4)-(12)) is based on the singular value decomposit ion (Eckart & Young, l93l;

Lanczos, 1958; Schwerdtfeger, 1960; Searle. 1982, pp.316-317) and on the general ized

singular value decomposition of a rectangular matrix (Paige, 1985, lem., sect. 2). A short

proof of the latter is possible if a formulation and proof are used (appendix) for the singular

value decomposition which mimics early arguments given by Schmidt ( 1907) for an

analogous result that has been called the canonical expansion of compact linear operators in

a Hilbert space (Kato, 1966, p. 261).

2. Matrices of eigenvalues and of eigenvectors of symmetrizable matrix products

We restate the generalized value decomposition of a rectangular matrix as

Lemma
(Decomposition of a rectangular matrix relatiue to two giuen matrices.) For euery s x t matrix

M of rank r >0, a positiue definite s x s matrix F and a positiue definite t x t matrix G it is

possible to /tnd an s x r matix U * of rank r, an t x r matrix V* of rank r, and an r x r

positiue defnite diagonal matrix A : diag ()'t, . . . , )",) such that

M :  (J *AVT,  u lF tJ * :1 , ,  v lGV* :1 , ,

v * A , : M T F U * ,  U * A : M G V * .

(  l )

(2)
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The proo.f is direct with (Al) and (A2) after denoting bt- (J'* and V'* the column-orthogonal

matrices whic'h reduce on s x t matrix M' to diagonal form and b1" defining

M :  FU2M,Gt l t .  U=  :  F t12L I , * ,  V * :  G t12V , * .

We are now ready- Io state the main result conc'erning matrices of eigenuectors of symmetriz-

able matrix products. Tvo rectangular s x t matrices A and B haue symmetrizable matrix

products ABl'. ArB. BAr, and BTA if thev are defined as

A  :  FC .  B :  CG- ( 3 )

w h e r e C i s a r e c t a n g u l a r . s x t m a n i x o f r a n k r , F i s a p o s i t i u e d e f n i t e s x s m a t r i x , a n d G i s

a positiue definite t x t malrix: 0 < r <s < t.

Theorem
(Eigenualues and eigenDectors of symmetizable ntatrix products.) For euery tw*o rectangular

s x t matrices A : FC and B : CG specified as in (3) there exists an s x r matix U* of rank

r , a n t  x r m a t r i x V * o J " r a n k r , a n r  x r p o s i t i u e d e f n i t e d i a g o n a l  m a t r i x  A : d i a g ( . ) . r , . " . , ) , )

such that we get after defining

W * : F ( J * .  Z * : G V *  ( 4 )

(i) a decomposition and diagonal form of the rectangular matix C'.

C :  [ / * A V : ,  A :  W T C Z * :  ( 5 )

(ii) a diagonal form of each of the positiue defnite matrices F, F-t, and G, G-t'.

I , :  U T . F ( J * :  V T G V * :  W T F - ' W * : Z T G - t Z * ;  ( 6 )

(iii) the same matrix K of positiue eigenualues for each of the symmetri:able matrix products

BAr.  AT8,  ABr .  and BrA:

B A T U * :  L l * K ,  A r B V * :  V - K ,

A B T W * :  W ,  K ,  B T A Z * :  Z * K ,

where K : diag (rc,,  .  .  .  .  K,) :  n2;

(iu) a decomposition and diagonal form of each of the two symmetric matrices CGCT, and

CTFC:

CGCT - (J*K( lT,  crFC :  v*KVT,

K :  ZT C.TFCZ - :  WT CGCTW *,

(u) one of the matrices of eigenuectors (J *. V *, W - and Z * together w,ith the positiue

eigenualues of the $)mmetrizable products determine all the other three matrices.

V  h :  A T L , .  .  U .  A . :  B V

Z * h : B T W - ,  W * A : A Z * .

Proof. The application of the lemma to the matrix C yields the existence of (J . and V *

satisfying (6) such that C : LJ*A1rl.The relat ions in ( l l )  are then a direct consequence of
(2): those in (12) fol low from (l l )  with (4) and (3). The definit ion of W* and Z* in (a)

provides the l ink between equations ( l l )  and (12). By using (4) the diagonalization of F-r

in terms of W* and of G-' in terms of Z* fol lows from that of Fin terms of U* and of G
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in terms of V +. The diagonal form of C in ( 5) is a consequence of the decomposition of C
and of  (4)  and (6):

wT cz * : wT(u , hvT)z * : (LrT FU *) A(ZTGZ *) : A.

The relat ions (7) and (8) can be veri f ied by using (3),

resu l t  w i th  (5) ,  (6) ,  (4) .  and K:  A2 s ince e.g .

c r F C  -  V * L ( U T F U * ) h V T :  V o K V T ,

ZTCTFCZ* :  (ZTV* )K(VTZ" )  :  K .

so that the proof is complete.

(4) ,  (5)  and (6) .  F ina l ly ,  (10)  and (9)

The matrices U*. V., W* and Z* are not uniquely determined by equations (7) and (8);

in particular the solutions need not satisfy (6). However, for every solution (/* to BArU*:

U * K, say, the matrix L : UT FIJ * is positive definite. so that the square root can be

obta ined and C*-  (J*L- t iz  is  a  so lu t ion which sat is f ies  BAr0* :  C*Kand Cl f0 . :  I ,as

well .  I f  al l  eigenvalues of BAr, i .e. al l  diagonal elements of K,are dist inct then the matrix I

is diagonal and hence computing;trz just means taking square roots of the r posit ive

diagonal elements. In the general case L has block-diagonal form with non-zero elements at

most in submatrices along the main diagonal of a size equal to the multiplicity of the

corresponding eigenvalue.

A major numerical gain of the theorem is in situations with widely different dimensions of

rows and columns. if e.g. r : s :4 and I : 100 then the eigenanalysis of BrA to determine

Z* and Kwould involve computations with a 100 x 100 matrix, while (8) and (12) show that

only an eigenanalysis of the 4 x 4 matrix ABr is needed.

Even if r : J : I use of the theorem may yield considerable simplifications. For instance,

the eigenvalues and the matrix of eigenvectors Z* of a matrix BrA can be given in closed

forrn if ABr is a diagonal matrix K having the distinct positive eigenvalues of .Brl as

diasonal elements.

3. Properties of some statistical techniques

With the result in the previous section properties of several statistical techniques may be

derived. so that these properties need no longer be justified within the specific context.

3.1. The dual of principal component analysis (Hotelling, 1933, Gower. 1966)

Let X be an n x q data matrix composed entirely of variates with zero sample means, i.e. the

i -th element in column 7 of X is the observation for the i-th individual in the sample on the

7-th variable. recorded as deviation from the variable's sample mean: xit - *j. A principal

component analysis of the variables involves then the eigenanalysis of the matrix XrX and

yields the diagonal matrix K, of eigenvalues and a q x q matrix Ll of corresponding

eigenvectors. The eigenanalysis of the typically much larger matrix XXr has been called the

dual to the principal component analysis of the variables or the principal component analysis

of the individuals. After defining U : (U *, Uo) as the eigenvectors corresponding to the

r ( q non-zero eigenvalues of K, in K say and to the q - r zero eigenvalues. respectively. we

o b t a i n f r o m ( l l ) w i t h  S : Q , t : n , F : 1 , , G : I , , a n d C : X r  t h a t t h e m a t r i x o f  e i g e n v e c t o r s

V* of the non-zero eigenvalues of XXr is determined by Kand U* as V*- X(J*K-\.  This

specializes to the result by Gower if XrX has full rank q and columnT in Z* is normalized

ic '  Board of the Foundation of the Scandinavian Journal of Stat ist ics 1993.
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to have as length theT-th eigenvalue rcr. An interpretation is that principal components of the

individuals is an inflated summary of the information provided by principal components of

the variables.

3.2. Hirschfeld's theorem for correspondence analy,sis (Hirschfeld. 1935; de Leeuw. 1988)

Let C be an s x I matrix of counts of two discrete variables with s and t categories. .F-r be

a diagonal matrix with the s marginal counts of the first variable along the diagonal. and G 
-r

a diagonal matrix with the I marginal counts of the second variable. Then Hirschfeld's (1935)

theorem restated in this notation says that there exists an s x r matrix W* and an t x r

matrix Z* such that the following two equations hold simultaneously for an r x r diagonal

matrix A:

FCZ* :  W*L ,  GCTW* :  Z * t \ .

These are just the equations in (12) with A: FC and,B:CG. An interpretat ion is that the

solutions W * and Z * permit a rescaling of the two discrete variables so that the association

between them becomes linear.

3.3. Properties of Hotelling's canonical uariables (Hotelling, 1936,: Dempster, 1969,

pp.  98-100:  Rao,  1973,  pp.  582-585:  Chambers,  1977,  p .  126)

L e t Y b e a n p x l v e c t o r o f v a r i a b l e s a n d X b e a n q x l v e c t o r o f v a r i a b l e s b o t h m e a s u r e d

in deviations from their means so that the covariance matrices (I", and I.**) and covariances

(Ir.) of I/ and X are given by

2r, : E(YY\, r,, : E(xx). r-,., : E(YX\,

then Hotelling's canonical variables V : ZrY and X : WrX are the linearly transformed

variables obtained from the solutions Z and W of

Z;rt 2r,2-..: t,,z - Z An, r;,J r-.., r;J r.,.,, w : w Lq.

Some of the properties of these canonical variables are obtainable from (4) to (12) since W

and Z are the matrices of eigenvectors of symmetrizable matrix products. By taking F : I"-.,' ,

, -2 ' -21, ,  and G- I ; , ' i t  fo l lows in  par t icu lar  f rom (5)  and (6)  that  the covar iance

matrices (Irn and Er^-) and covariances (I-r_*) of the canonical variables corresponding to

non-zero eigenvalues are given by

where as before we have Z : (.2 *, Zo) and W : (W *, Wo), i.e. Zx and W6 correspond to zero

eigenvalues of multiplicities p - r and q - r. The interpretation is here that Z{ Y and W{ X

would just give those components of the canonical variables which are unimportant since they

are uncorrelated, while the r x r matrix A contains the r non-zero canonical correlations along

the diagonal. In the case the X-variables are uncorrelated, i.e. if >,' is diagonal and W* in

(6) is the identity matrix, it follows from (12) that the squared canonical correlations are the

diagonal elements of ABr, i .e. I , ," I i r ' I ."-, :  ABr:A2. Conversely, i f  ABr is a diagonal

matrix of distinct diagonal elements. then (8) implies that they are the squared canonical

correlations and that W*:l* and (12) implies that each column of Z* is proportional to

the regression coefficients obtained when regressing X, on X so that the corresponding squared

canonical correlation is the coefficient of determination associated with this resression.

fCt Board of the Foundation of the Scandinavian Journal of Statistics 1993.

(" i;,) :("'"'* 7;r';:.7;-) : (t l) (  t  3 )



Scand J Statist 20 Eigenanal,r-sis of q)mmetrizable matrix products 365

3.4. Properties of deriued response uariables with special relations of conditional linear

independence to a set of explanatory uariables (Cox & Wermuth. 1992;

Wermuth & Cox 1993)

Let again. as above, )'be an p x I vector of variables and Xbe an q x I vector of variables

both measured in deviations from their means. but assume-in contrast to the situation

appropriate for computing canonical variables-that only transformations for the response

variables )'are considered while the variables X are thought of as being explanatory variables

with a strong individual identity so that they should remain untransformed. An 4 x I response

I* is desired such that each new response )/f has linear conditional independence of all

exp lana to ry  va r i ab les  excep t  one ,  i . e .  Y f  L6 t  X , - , .  X , * r , ,  X r )  |  X , . r c  p  :  q thenew

vector Y* is obtained by requiring that the matrix of regression coefficients of )/* on X is the

identity matrix so that in particular the regression of ff on X involves only X,. If however

p > q a unique solution, in a reasonable sense optimal, is only achieved after first reducing

Y to the q x 7 vector 7 of variables in the canonical regression of X on X. The matrix of

non-zero regression coefficients of 7 on X can be written as Zl I,,.,I".-..1 so that the derived

responses become

Y*:2 , . , (21>. , , )  - 'V :2 . , , (zTr , , ) - ' zTY.  (14)

It follows from the diagonal form given in (5) for Cr:I,,... that these derived responses can

only be obtained if all canonical correlations are non-zero, that is if r : q so that W*isaq x q

matrix of ful l  rank and (2T2,.,)- ' -  W-A-r. The covariance matrix of )/x and X is then:

/s

I

This implies in particular that the joint correlation matrix of derived responses and

explanatory variables coincides with the correlation matrix of canonical variables if (l) the

explanatory variables are uncorrelated so that I.,.. is diagonal and (2) all canonical

correlations are distinct so that W*: Ir.

In the case r : q it follows from (12) and (10) that further equivalent expressions for the

derived responses are

x* : I_._* ( w * K -, w T)2.,,2.,rt y : r..* ( r,.,. I;.r rr.*) - r t*.,. t;,1 y,

the second expression may be simpler to use for some purposes.
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Appendix

In order to prove the singular value decomposition of a rectangular matrix by following

arguments of Schmidt (1907), we first give some notation and facts.

An s x s symmetric matrix M. i.e. a matrix which is equal to its transpose (M : Mr), is

said to be positiue definite if for all non-null s x I vectors x the quadratic form xrMx is
positive and it is termed non-negatiue definite if xrMx >0.

Rank of MM 7. The rank r -< min .[s. l] of the matrix product MMr of a rectangular s x t

matrix M is equal to the number of linearly independent rows or columns of M since

{x  I  MMrx -  0}  :  ! ,x  l (Mrx) r (Mrx)  :0}  :  { "  I  Mx :0 \ j .

Orthogonal decomposition and diagonal form of a symmetric matrlx. For every J x s

symmetric matrix M it is possible to find an orthogonal s x s matrix (J, i.e. a matrix which

pre- or post-multiplied by its transpose gives the identity matrix (1,: UUr : UrU) and a

d i a g o n a l  m a t r i x  K : d i a g ( r c , , . . . , K , )  s u c h  t h a t  M : t J K U r ,  U r M r J : K ,  w h e r e  K 1 , .  , K ,
are the not necessarily distinct eigenvalues of M and the columns of U are the corresponding

eigenvectors, i.e. U satisfies MU : Ul(. This implies in particular that there is an orthogonal

t r ans fo rma t i onx : ( ) y  such tha t  x rMx -y rL I rM(Jv - :2 * , y? ,  so tha t t hee igenva lueso f  a

non-negative definite matrix M are either zero or positive and the eigenvalues of a positive

definite matrix M are all positive; if M is positive definite its inverse M-r exists.

Square root of a non-negatiue defnite matrix. For every s x s non-negative definite matrix

M a square root Mtt2 can be found which returns M if  squared, i .e. 74tlz74tlz - M.In terms

of the orthogonal decomposit ion of M it  is defined as Mtt2: (J drag(./*, , . .  .  ,  , /*,)U'.
Lemma (Singular ualue decomposition: decomposition of a rectangular matrix with column-

orthogonal matrices and its diagonalform.) For every s x / matrix M of rank r is is possible to

f ind an s x rcolumn-orthogonal matrix (J*, i .e. UTU*:1,, an / x r column-orthogonal V*,

i.e. VT V - : 1,, and an r x r positive definite diagonal matrix A : diag ()r, . . . , i,) such that

M : ( J - A V T ,  U T M V - : A , ( A l )

where ir , . .  . .2, are the singular values of M, i .e. the posit ive square roots of the non-zero

eigenvalues of MM r, and V* and U* satisly

V * h :  M ' ( J * ,  ( J * A . :  M V * .  ( A 2 )

Proof. The matrix MMr is symmetric and non-negative definite, hence there exists an

orthogonal decomposition such that MMrU : (JK", where K can be written as
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/x o\
K . : l  ^  ^  L  K : d i a g ( r c , , . . . , K , ) > 0 ,'  

\ 0  0 /

and r is the rank of M. After partitionin g U : (U * , U) so that U* corresponds to the
positive eigenvalues and Un corresponds to the zero eigenvalues we get

MMTU* :  ( J *K ,  U IU* :  [ ,  (A3 )

and after defining V-: M'[-J*K- ' /2 and Krtz - A we have

( U T M ) V * :  U T ( M M ' f t  ) X - t i z :  U T ( J * K t t 2 :  A ,

and V * is column-orthogonal since

VT  V  *  
-  K - '  t ,  UT ( t t t  l r t ,U  * )K - t  t 2  :  K - r r zL lT  ( J  *  K t t 2  :  1 , .

The matrix V* can be completed to an / x I  orthogonal matrix V:(V*,V) by solving
the equations MVo:0 and VIV,:1,-,  for the t x(t -  r) column-orthogonal Vo. Such a
solut ion exists because the rank of M is r,  i .e. the equation Mu:0 has t -r l inearly
independent solutions which form the columns of Vo after orthonormalizing. i.e. after
rescaling so that they are orthogonal and have length one. Then

M : (r(nrMV)v, :  (u *,  (D(:  : ) f  f . i )  -  {r  *AVT,
1o  0 ) \v {  /

which completes the proof of (Al). The first statement of (A2) holds by definition of Z*

and the second follows from this definition replacing M'[J*by V*K\t2 in the first statement
of  (A3) .  I
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