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Graphical Markov models are multivariate statistical models which are cur-
rently under vigorous development and which combine two simple but most pow-
erful notions, generating processes in single and joint response variables and con-
ditional independences captured by graphs. The development of graphical Markov
started with work by Wermuth (1976, 1980) and Darroch, Lauritzen and Speed
(1980) which built on early results in 1920 to 1930 by geneticist Sewall Wright
and probabilist Andrej Markov as well as on results for log-linear models by Birch
(1963), Goodman (1970), Bishop, Fienberg and Holland (1973) and for covariance
selection by Dempster (1972).

Wright used graphs, in which nodes represent variables and arrows indicate
linear dependence, to describe hypotheses about stepwise processes in single re-
sponses that could have generated his data. He developed a method, called path
analysis, to estimate linear dependences and to judge whether the hypotheses are
well compatible with his data which he summarized in terms of simple and partial
correlations. With this approach he was far ahead of his time, since corresponding
formal statistical methods for estimation and tests of goodness of fit were developed
much later and graphs that capture independences even much later than tests of
goodness of fit.

It remains a primary objective of graphical Markov models to uncover graphi-
cal representations that lead to an understanding of data generating processes. Such
processes are no longer restricted to linear relations but contain linear dependences
as special cases. A probabilistic data generating process is a recursive sequence of
conditional distributions in which response variables may be vector variables that
contain discrete or continuous components. Thereby, each conditional distribution
specifies both the dependence of response Ya, say, on an explanatory variable vector
Yb and the undirected associations of the components of Ya.

Graphical Markov models also generalize sequences in single responses and
single explanatory variables that have been named Markov chains, after probabilist
Markov. He recognized at the beginning of the 29th century that seemingly complex
joint probability distributions may be radically simplified by using the notion of
conditional independence and defined what are now called Markov chains.

In a Markov chain of random variables Y1, . . . , Yi, . . . , Yd, the joint distribu-
tion is built up by starting with the density of fd of Ydand generating next fd−1|d.
Then, conditional independence of Yd−2 from Yd given Yd−1 is taken into account
with fd−2|d−1,d = fd−2|d−1. One continues such that, with fi|i+1,...d = fi|i+1, re-
sponse Yi is conditionally independent of Yi+2, . . . , Yd given Yi+1, written compactly

1For biography see the entry Multivariate statistical analysis.
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in terms of nodes as i⊥⊥ {i+ 2, . . . , d}|i+ 1, and finally with f1|2,...,d = f1|2 having
just Y2 as explanatory variable of response Y1.

The directed graph that captures such a Markov chain is a single directed
path of arrows. Thus, for d = 5 and node set N = {1, 2, 3, 4, 5}, the graph is

1≺ 2≺ 3≺ 4≺ 5.

The graph corresponds to the factorization of the joint density fN given by

fN = f1|2f2|3f3|4f4|5f5.

The three defining local independence statements given directly by the above
factorization or by the corresponding path of dependences are 1⊥⊥ {2, 3, 4, 5}|2,
2⊥⊥ {4, 5}|3 and 3⊥⊥ 5|4. One also says that in the generating process, each re-
sponse Yi remembers of its past just the nearest past variable Yi+1.

Directed acyclic graph are the most direct generalization of Markov chains.
They have an ordered sequence of single nodes representing responses that may
generate fN , but each response may remember any subset or all of the variables in
its past. Directed acyclic graphs are known as Bayesian networks when the node
set does not only consist of random variables that correspond to varying features
of observable units, but may include nodes for decisions or parameters.

It remains an important secondary objective of graphical Markov models to
capture the independence structure of fN by some type of graph. This is the set
of all independence statements implied by the given graph and satisfied by fV . In
principle, all independence statements that arise from a given set of statements
defining a graph, may be derived from basic laws of probability. Thus, the above
Markov chain implies for instance

1⊥⊥ 4|3, {1, 2} ⊥⊥ {4, 5}|3, or 2⊥⊥ 4|{1, 3, 5}.

But for many variables, methods defined for graphs simplify considerably the task
of deciding whether an independence statement is implied by a given set of in-
dependence statements. These are called separation criteria; see Geiger, Verma
and Pearl (1990), Lauritzen et al. (1990) and Marchetti and Wermuth (2009) for
different but equivalent criteria on directed acyclic graphs.

For ordered sequences of vector variables, the graphs are directed acyclic in
blocks which contain the joint responses. The undirected association of any two
individual components of a response vector is represented by some type of line
coupling two nodes. Thus, these types of graph contain undirected and directed
edges but at most one edge for a node pair.

Four different types of such chain graphs for discrete variables have been
classified and studied by Drton (2009), extending the three types that had been
discussed before; see e.g. Wermuth and Cox (2004). Drton proves that two types
have the desirable property that each model in the given class defines a curved
exponential family; see e.g. Cox (2007) for the latter concept. The property holds
for the blocked concentration graphs of Lauritzen and Wermuth (1989) and for
the multivariate regression chain graphs of Cox and Wermuth (1993) provided the
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latter joint distribution has some properties that it shares with a joint Gaussian dis-
tribution; see Wermuth (2010). In early books by statisticians on graphical Markov
models, only blocked concentration graphs are discussed; see Edwards (2000), Lau-
ritzen (1996), Whittaker (1990), an exception is Cox and Wermuth (1996).

The main difference among the four types of chain graph is the independence
interpretation of missing edges. For undirected edges, the blocked concentration
graphs and the chain graphs by Anderson, Madigan and Perlman (2001) use con-
centration graphs in which a missing ij-edge means i⊥⊥ j given all variables in the
past and all remaining variables within the same block. Multivariate regression
chain graphs and those named type III by Drton use covariance graphs in which a
missing ij-edge means i⊥⊥ j given all variables in the past; see Marchetti and Lup-
parelli (2010) for parametrizations in terms of the multivariate logistic regressions
which lead to the equivalence of the simple pairwise independences to the more
complex defining independences given by Drton. The names remind one of the
corresponding vanishing parameters joint Gaussian distributions, where the inverse
of the covariance matrix is called the concentration matrix.

For the directed edges a missing ij-arrow, with i denoting the response at
the arrowhead, means i ⊥⊥ j given all remaining variables in the past of the block
containing node i in both the multivariate regression chain graphs and those named
type III by Drton, while the conditioning set includes in addition other components
of the block containing node i. Thus, it is only in multivariate regression chains,
that the conditional independence constraints defining the graph respect a given
order of the vector variables. It can be shown that the separation criterion for
multivariate regression chains do not change when a concentration graph is added
as a last chain component.

The following small example of a well-fitting multivariate regression chain is
for a set of data of Jochen Hardt, University of Mainz, on n = 283 adult, healthy
females who agreed to be interviewed about different aspects of their childhood.
VariablesA,B are binary, the others are based on quantitative measurements. Each
of Ya and Yc have three component variables and Yb has two.

S, mother’s

love

T, constraints

by mother

U, role

reversal

R, family

distress

A, sexual

abuse

ba

P, age

B, schooling

c

Q, family

status

The graph is constructed after checking for nonlinear and interactive effects
by using the results of a sequence of linear and logistic regressions. These show that
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the estimated dependencies, not displayed here, are in the direction hypothesized
by the researchers and that the background variable Yc does not improve prediction
of Ya given the more specific information about childhood of Yb

The resulting factorization is fN = fa|bfb|cfc.. The independences defining
the multivariate regression chain graph are S ⊥⊥ U |{a, b}, a⊥⊥ c|b andQ⊥⊥ P |B, where
relations within a are modeled using a covariance graph, those within b using a
concentration graph.

An important feature of multivariate regression chains is that they can be used
to formulate hypotheses on development in joint responses but that the goodness-
of-fit of a model to data can be well judged in terms of univariate regressions,
provided that either the last block with a concentration graph is missing or that
this graph is triangulated that is without any chordless cycles of size four or larger
as in the example above.

The outstanding feature of multivariate regression chains is that consequences
of a given family of densities fN can be derived when marginalizing over some
variables, in set M and conditioning on others, in set C. In particular, graphs can
be obtained for node setN ′ = N \{C,M} which capture precisely the independence
structure implied by a generating graph in node set N for fN ′|C the family of
densities of Y ′

N given YC . Such graphs are named independence-preserving, when
they can be used to derive the independence structure that would have resulted from
the generating graph by conditioning on a larger node set {C, c} or by marginalising
over a larger node set {M,m}.

From a given generating graph and by using the same sets C,M three cor-
responding graphs result. These are in a subclass of the much larger class of
MC-graphs of Koster (2002), a maximal ancestral graph (MAGs) of Richardson
and Spirtes (2002) and a summary graph of Wermuth (2010); see Sadeghi (2009)
for a proof of Markov equivalence that is for showing that the three corresponding,
but different types of graph capture the same independence structure.

To derive consequences of multivariate regression chains in fN not only for
independences but also for conditional dependences in f ′

N , the generating family of
joint densities fN has to share some properties with the family of joint Gaussian
distributions. These result with specific, but not very restrictive requirements for
the generating process; see Wermuth (2010). The results builds on previous dis-
cussions of such special properties; see Dawid (1979), Lauritzen (1996), Studený
(2005), Kang and Tian (2009), San Martin, Mochart and Rolin (2005), Wermuth
and Cox (2004) and proofs use properties of two corresponding matrix operators,
one for transforming Gaussian parameter matrices and one for transforming matrix
representations of graphs; see Wermuth, Wiedenbeck and Cox (2006).

In that case, the summary graph shows when a generating conditional depen-
dence of Yi on Yk, say, in fN remains undistorted in fN ′|C , parametrized in terms
of conditional dependences and when it be may become severely distorted; see also
Wermuth and Cox (2008). Some of the distortions may also occur in randomized
intervention studies but can be avoided by changing C or M . Thus, these results
are relevant for controlled clinical trials, for comparing or combining results from
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different studies on a core set of variables and, more generally, for the planning
stage of follow-up studies designed to replicate some results of a given larger study
by using a subset of the variables and studying a subpopulation.

In the near future, more results on estimation and goodness of fit tests are
expected; see also Drton, Eichler and Richardson (2009), Cox (2007) and more
discussions of causal interpretations; see Cox and Wermuth (2004), Pearl (2009).
Comparative evaluations will be needed of alternative computational methods that
are in use now for very large sets of data; see e.g. Edwards, deAbreu and Labouriau
(2010), Dobra (2009), Wang and Leng (2007).
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