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We describe a technique applicable to optimize certain quantities associated with the two-phase structure
described by a model of penetrable grains. The solution is given in a form of an intensity surface that controls
locations of the grains. Particular examples include maximization of the expected phase 2 volume and design
of functionally graded materials with a given density profile.
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[. INTRODUCTION spheres at random in order to minimize the volume fraction
of phase 1(the part exterior to the sphejesr equivalently,
A popular stochastic model for two-phase random medido maximize the volume fraction of phase(the sphere)s
is provided by Poisson ensembles of fully penetrable andhis becomes a computational geometry problem if the total
uncorrelated Spherégyz] (or more general graimsThe den- number of spheres is fixed and predetermlngd. However, in
sity of spheres is usually assumed to be independent of tH&any caseBl_,Z,?] the total number of spheres is random and
locations so that statistical properties of the microstructure i€0llows a Poisson distribution. Thus, it is natural and reason-
translationally invarianthomogeneous Because spheres are able to assume that the centers .of these .fuIIy penetrable ran-
used, this model corresponds to rotationally invarigsutro- ~ d0m spheres form a spatial Poisson point process. In such
pic) random media. Significant work has been done to opti-Cases the optimal locations of cepters may vary dgpendlng on
mize the design of homogeneous materials, both in the co he total number of spheres available. The objective function

text of bounds [3] and of design[4]. Quintanilla and hen becomes a function of a non-negative measure repre-

Torquato[5] studied an inhomogeneous random medium insentmg the spatial densitalso called the intensity measure

. . : f the Poisson point process of the sphere cer@sThe
which uncorrelateq spheres are still used bUt. the densny R ptimization problem can then be reformulated as the search
spheres varies with the locations. They derived analytic

expressions for the canoniaapoint microstructure function or an “optimal” (not necessarily uniquéntensity measure
P of the Poisson point process. This optimization problem is

and the lineal-path function. . : usually constrained by fixing the total mass of the intensity
In the present paper we continue to study such inhomo-

; measure(representing the resources availablelowever,
geneous random med[a. We do not attempt here to relate_t Sther constraints may also be used, e.g., one may want to
mechanical and effective transport properties of the materle} PoTE

to its microstructure, but rather assume such relation entify an optimal intensity measure with a given bary-
' Tenter. There are numerous other functions that may be op-

known. Provided the s_pat_lally |nhc_)mogeneous ‘?'er?s'ty can bﬁmized, for example, the perimeter or surface area, or func-
controlled, our main aim is to design the material in order to,

- . " . ... tions that characterize fluctuations of the volume fraction
optimize the corresponding quantities associated with |t%
. uch as the entropy
two-phase microstructure.
At the first approximation, the properties of such hetero-
geneous media depend on the volume fractions of the phases _ f p(x)log p(x)dx
(see, e.g.[6]). As a simple example, one may want to locate '

wherep(x) is the one-point phase probability functiph,5].

*Email address: ilya@stats.gla.ac.uk; More complex constraints arise in the design of function-
URL: http://www.stats.gla.ac.ukfilya ally graded(gradienj materials(FGM) [9]. An FGM con-
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design. The gradients are introduced intentionally and aran atomic paypt then the right-hand side of E@l) should
guantitatively controlled in order to optimize specific prop- include a sum of measures of singletons located wighin
erties for use in real environments. “A major problem in the The second step of the construction of an ensemble is to
design of an FGM, aside from that of materials selection, lieassociate each point with a sphere. The most obvious way is
in determining the optimum spatial dependence for the comto place fully penetrable spheres of independent random radii
position[10].” The proposed optimization technique solves centered at these points.
this problem for FGM materials modeled by Poisson en- Analytical analyses of such a model are possible if the
sembles of fully penetrable spheres. distribution of the radii and the intensity measure of the Pois-
The outline of this paper is as follows. Section Il intro- son process are knowd,2,7,9. Actually, using spheres as
duces a mathematical model used to describe heterogenedusilding blocks does not simplify the analyses much. In
materials. Sections Il and IV present a general approach tother words, generalizing the model by replacing spheres by
find an optimal intensity measure and the correspondingnore general sets does not complicate the situation severely.
steepest descent algorithm. Section V describes how to applyet us consider a sequence of independent and identically
the algorithm in order to find an intensity measure maximiz-distributed random compact sef4l] =,,=2,,... (called
ing the mean volume of phase 2 and presents various exraing which are not necessarily isotropic. A random Set
amples. Section VI shows how to determine the intensityhaving the same distribution as &;, i=1, is called the
measure to achieve a predetermined mean phase 1 voluntgpical grain. The ensemble of the fully penetrable and un-
Section VII deals with a more general case of functionallycorrelated grains
graded materials.
E = U (Xi + E« i ),
Il. MATHEMATICAL MODEL Xje®

The construction of an ensemble of fully penetrable ands called a Boolean modgl2,11], where here and thereafter
uncorrelated spheres involves two steps. x+aE={x+ay:ye E}. If the underlying Poisson process
First, points determining locations of the centers are® is homogeneous, then we also say tBas homogeneous.
placed randomly and independently on a rediowhichisa  The total mass oA, A(D), determines the mean total num-
subset of thal-dimensional Euclidean space. Because of theéber of grains.
randomness and independence, it is quite natural to assume Consider a Boolean model inside a region The mean
that no two points coincide and the numbers of points ind-dimensional phase 2 volumé (that corresponds to length
disjoint subregions are independent. Such a collection oif d=1 or to area ifd=2) can be calculated as
points can be modeled very well by a Poisdpoint) pro-
cess. A Poisson process is characterized by its intensity, —
which describes the mean number of points in subregions. (V(END))= po(x)dx, 2
Mathematically, a Poisson procedswith intensity measure

A(-) is a random collection of points i® such that the \here p(x)=P(xe E) is the one-point phase probability

number of points ofP in a bounded subregidBC D follows  fynction for phase 2, sgd] and[5]. It is easy to se¢l2, p.
a Poisson distribution with meah(B) and the number of 21] that

points in disjoint subregions are mutually independent. For
example, Quintanilla and Torquafb] simulated planar ran- _
dom media with the following\ (-): p(x)= 1—exr3{ - fD P(x—ye :o)A(dy)}. 3

)dx, Note that/ pP(x—y e Eg) A (dy) equals(A(x—Ey)). If Eq.
(1) holds, thenA (dy) =\ (y)dy. If Eq=B,(0) is a ball cen-
tered at the origin 0 of random radius with P(&>t)

A(B)zf Aexp(—||x])dx, A(B):f Aexpl— X,)dX, =F(t), thenP(x—ye Eo)=F(|x—yl|)). Furthermore, if the
B B radius of the ball is deterministic and equalrtahen

K
A(B):LAHtzdx, A(B):JBAIn(C_Xl

whereA, K, andC are constantsg=(x;,X,) and|x| is the p(x)=1—exp{—A[DNB,(X)]}. (4)
Euclidean distance betweeanand the origin, see also Quin-
tanilla [1]. Each of these examples expresges) as an

integral in the form Ill. OPTIMIZATION SETUP

In the following we keep the distribution of the typical
A(B):f A(x)dx, (1) grain fixed and aim to find & that provides realizations of
E with required properties. The quantities of interest then
become functions of the intensity measuke Consider a

where\(-) is called the density function. If the density is a general problem of minimizing a functioh(A) over all
constant, the Poisson procebsis said to be homogeneous. measures\ satisfying some constraints:

Wheneveri(-) is not a constant® is called inhomoge-

neous. However, it is not always possible or necessary to f(A)—»min for AeM and H(A)=C. 5)
expressA(B) in the form of Eg.(1). For instance, ifA

attaches non-negative masses to single pdirgs possesses HereM denotes the family of all non-negative measures, and
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over all signed measurés with the total variations=¢,,,
(6) the latter being the size of step At every step it is vital to

ensure that thé\,+7Y,, is a non-negative measure that sat-
maps M into the k-dimensional Euclidean space, so thatisfies the imposed constraints. _ .
H(A)=C=(Cy,...,C)) singles out those measurds for Consider minimization problents) with only constraint
which [phi(X)A(dx)=C;, 1<i<k. We will also assume (7) on the fixed total mass. In order to keap(D) fixed, the
that hy,... hy are linearly independent oB. Note that a incrementY, at every step must deliver a total mass zero.
maximization problem can be easily turned into a minimiza-1he integral given by Eq(10) is minimized over such’ if
tion problem by changing the sign of the objective function Y =Yn has an atom of positive mags2 attached to any

An important example of a single constraint appears whe0int whered¢(x,A ) is minimal and an atom of negative

H(A)=( thl(X)A(dX),...,thk(x)A(dx)

k=1h,(x)=1 for all x. Thus mass—e/2 to any point wherel;(x,A,) is maximal. How-
ever, adding a negative atom may render, ,=A,+Y,
H(A)=A(D)=C, (7)  nonpositive.

o ] The optimal steepest descent direction in the fixed total
specifying that the total mass of is a constantC. The  mass problem on a discretized sp&evith only constraint
corresponding optimization problem is called the fixed totaIEq. (7) can be found as follow§16]. Find the points of
mass problem. Further examples of constraiwisich can be  gjopal minimum ofd(x,A,) and distribute somehow the
applied simultaneous)yare total mass:/2 over these point@ne or several Then deter-
minet, (respectivelys,) which is the smallestrespectively
the largest value such that the total, mass of points at

whereh,(-) pinpoints the center of gravity of andhy(-) ~ Which the gradientli(x,A,) is at leastt, (respectivelys,)
imposes a restriction on the inertia afwith respect to ro-  are less than or equal 2 (respectively greater thaar2);

ha(x)=x,  ha(x)=[x=Xo|?,

tations around a givery. let the totalA,, mass of points where the gradient is at least
Assume thatf(A) is Frechet differentiable(see, e.g., t. be m=e/2. Finally, assign zero mass to all these points
[13]) with a gradientd;(x,A), meaning that and reduce the total mass of the points at which the gradient

is betweent, ands, by an amounts/2—m. The obtained
measure is\ . ;. If the value of the objective functiohat
Anyq is less than atA,, then A, is taken as the next
approximate solution. Otherwise, the step sizis adjusted

up to terms of smaller orders than the total variation norm ofand another step with the new step size is attempted. Many
a general signed measuleé Recall that the total variation involved and efficient ways of choosing the step size can be
norm of Y is defined to be the sum of the total masses of themplemented, for example, the Armijo method described in

f(A+Y)%f(A)+f di(x,A)Y (dx)
D

positive and negative parts of. [15, Sec. 1.32
Molchanov and Zuye{8] showed that ifA solves Eq(5), The described algorithm surely leads to the global mini-
then there exist some constants, ...,u, such that mum when applied to convex objective functions. In the gen-

eral case it may get stuck in a local minimum, a common

feature for gradient algorithms applied in the context of glo-

bal optimization[15]. The necessary condition for the opti-
(8  mum given by Eq.(9) is used as a stopping rule for this
df(x,A)zz uhy(x) for all x. algorithm: the functiong(x)=d(x,A) is a constant and
takes its minimal value on the support of an optimalAl-
though, strictly speaking, the support &f on the discrete
spaceD is the setS={xe D:A(x)>0}, in practice one may
di(x,A)=u A almost everywhere, wish to ignore the atoms of the mass less than a predeter-
(9  mined small threshold.

For the optimization problem Ed5) with many linear
constraints given by Ed6), it is computationally more effi-
cient to use an approximation to the exact steepest direction.

ifor instance, we choose the negative component of the in-
crementY proportional toA in every step and vary its posi-
tive part Y™, i.e., Ap ;=A,+Y"—yA, for some <y
<1. The value ofy characterizes the size of the step, al-
though generally it is not equal to the total variationYoflt
Algorithms of the steepest descent type and their variousan be showri17] that the positive par¥ * of the steepest
modifications are widely known in the optimization literature increment measure consists of at moatoms, wherd is the
[15]. The most basic method of the gradient descent suggestsimber of constraints. Thedeatoms of massep; ,...,px
moving from A, (the approximate solution on stap to  located at pointx,,... X, are chosen to minimize
Aps1=A,+Y,, whereY,, minimizes

di(x,A)=2, uhi(x) A almost everywhere,

In particular, for the fixed total mass problem E§) implies

di(x,A)=u for all x,

so thatd;(x,A) is a constanti on the support ofA and is at
leastu for all otherxe D. First order optimality necessary

[8] and[14].

IV. STEEPEST DESCENT ALGORITHM

fdf(XvAn)Y(dX) (10 de(X.A)Y+(dX)=E di(Xi, A)p; (11)
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FIG. 1. Measures maximizing the mean phase 2 area and the corresponding gradient functions with grains are balls e0rad{as
The only constraint on the total mass being {); under an additional constraint on the center of gravity located at 0.8.

and to maintain the imposed constraif®. To satisfy the algorithm started with any initial measure indeed converges
constraintsH(A+Y " —yA)=C=(C4,...,C), we impose  to a solution of Problen(5) for the objective function given
by Eg.(14). Although the optimization problem is convex, it
k may have several solutions that provide the same values of
H(Y+)=E p;h(x;)=yC. (120 the objective function. The gradiedt(y,A) can be easily
=1 calculated as the main term in the expansion

For everyk-tuple (X{,...,X), EQ.(12) can be used to find
P1,---,.Px and then compute the right-hand side of Ehjl). tfl[f(A+tY)—f(A)]~f d:(y,A)Y(dy) for t]O.
The k-tuple (Xq,...,X,) and the corresponding weights D
P1,..-,.Px that minimize Eq. (11) subject to the non-

negativity constraint o, ,...,p are then used to determine Substitutingf from Eq. (14) yields

Y.
Similarly, Eq. (8) provides a stopping rule for the algo- de(v A :_f P(x—ve S
rithm. For example, under the two constraints on the total () D (X=yeZo)

mass and the center of gravity, E&) requires that

><exp|—j P(X—ZEEo)(dZ)]dX. (15
D

di(X,A)=u;+u,x A almost everywhere,
di(x,A)=u;+u,x for all x, . o L .
In particular, ifZ is a deterministic ball of radius then by

for some real numbens; andus,. Eq. (4) one has

The described optimization routines can be obtained from

the authors’ web pages. They are realized in SRlistatis- f(A):J exp{— A[B,(x)]}dx,
tical computing languages and organized afdwundle me- D
sop.
V. MAXIMIZATION OF THE MEAN PHASE 2 VOLUME de(y,A)=— JDnBr(y) exp{— A[B(x)]}dx.

Consider maximization of the mean phase 2 volume. |
follows from Egs.(2) and(3) that this problem is equivalent
to minimization of the following objective function:

LI'he formulas for the objective function and the gradient are
then used in the steepest descent algorithm described in Sec.
V.
Below we provide several examples for=[0,1] (the
f(A):J' Dexp[_f P(x—ye Eo)A(dy) dx. (14) unit segmentandD =[0,1]? (the unit squargand the typical
D grain being either deterministic or random ball. Note that
numerical implementation of algorithms inevitably requires
The exponential function is convex and sd igs a func-  discretizingD by imposing a sufficiently fine mesh. In all
tion of A, meaning thatf(tA;+(1—t)A,)<tf(A,)+(1 cases starting measures for descent algorithms were uniform
—1)f(A,) for everyte[0,1] and every two measures; distributions over the mesh vertices.
andA,. The convexity of confirms that the steepest descent Example 1. (One dimensional cas€pnsider the fixed
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FIG. 2. Measures maximizing the mean phase 2 area in two dimensions with the fixed tot&l.fasstypical grain is a ball of radius
r. (@ C=10,r=0.1; (b) C=50,r=0.1; (c) C=10,r is exponentially distributed with mean 0.(d) C=10,r=0.3.

total mass problem in one dimensi@=[0,1] with mesh

size 0.005. Figure (B shows the plots of masses of the f(A)_JDa(X)eXPl’—jDP(X—YE Eo)A(dz) | dx,
obtained optimal\ for the grains being fixed ball with radius

0.2. The corresponding plot of the gradieh{x,A) confirm  ang Eq.(15) holds withdx replaced byg(x)dx. A constant

gradient is minimal and constant on the supporflofCom-  mean phase 1 volume.

pare this to the theoretical solution available for this model—  Another function of interest may be the entropy of phase
optimal A has four atoms:A(0.2)=A(0.8)=10/3 and 1 jp 3 two-phase medium given by

A(0.4)=A(0.6)=10/6. In order to avoid comutational prob-

lems with rounding off when the radius of the ball is a mul-

tiple of the mesh size, the algorithm was actually run for the 91(A)=~— fD[l— p(x)Jlog[1—p(x)]dx,
ball of radius 0.199999. Figurgld) shows the solution of the

same problem as above with an additional constraint\on jth p(x)=p(x,A) given by Eq.(3). This entropy function
that its center of gravity is located at 0.8. Note that the grajs not convex inA, so that additional computation has to be
dient is linear on the support of as it should be for an performed to finding an optimal. The methods are known
optimal A by Eq. (13).

. ] 5 from the literature on global optimization and may include
~Example 2. (Two dimensional casé.¢t D=[0,1]" be  starting the descent from various initial measures or allowing
discretized by using a square grid with mesh size 0.02. Figthe algorithm to go sometimes in the direction of increase of

ure 2 shows several results for the fixed total mass problemne objective function with the hope to visit the attraction
Generally, the optimal measures have a well-identifiablejomains of different minima.

“comb” pattern, which is typical in deterministic dense

packing, but the probabilistic setup manifests in different VI. BOOLEAN MODELS WITH A PREDETERMINED
masses attached to various nodes of the grid. An increase in MEAN PHASE 1 VOLUME

radius or its randomness results in a sparser “comb.”

It is possible to generalize the setup to minimize the mean It is easy to modify the approach in order to be able to
of an integral of a functiord(-) over phase 1, so that the find models with a predetermined value of the objective

objective function is given by function. For example, consider the following equation:
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FIG. 3. Intensity measures providing the mean proportion of phase 1 atap58h; (b) 10%; (c) 20%:; (d) 30%; (e) 40%; (f) 60%. The
total mass is 20 and grains are balls with exponentially distributed radii of mean 0.1.

f(A)=a, (16) mean 0.1. The total mass dfis fixed at 20. Figure 3 shows
a solution of Eq.(16) for various values of. The way the

wheref(A) is given by Eq.(14). The solution of Eq(16) is  algorithm was programmed, the obtained solutions are some-
a measure that provides two-phase media with the meawhat trivial in that they have no phase 2 in a part of the
phase 1 volume equal @ Consider a new objective func- material. More practically sensible solutions can be obtained
tion either by starting algorithm from different initial measures or

B 5 by adding new constraints, say on the maximal possible

fa(A)=[F(A)~a]". value of density ().

The corresponding gradient is Clearly, Eq.(16) may have no solution i& is too small or
too big, so that it lies out of the range of values that are
di (X,A)=2[f(A)—ald¢(x,A) (17)  possible for all intensity measures with a given total mass. In

: such cases the minimization problem leads t{ &) which
that is then used to perform the steepest descent. is as close ta as possible. The smallest possible phase 2

Example 3 Consider a one-dimensional problem for volume is obtained if the whole intensity is concentrated at a
grains being balls having exponentially distributed radii with corner ofD and is 2 9(1— e~ ) u, whereC is the total mass

N =3
2

00.20.40.60.8 1 1.
0.8

0.6

~
0.4

0.2

0.0 0.2 0.4 1 0.6 0.8 1.0

FIG. 4. Measure with a total mass of 50, providing a functionally graded material with a given target densityhgtpfle’ (solid line)
and the corresponding density profgét,A) (dotted ling according to the optimal measure obtained.
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FIG. 5. Target density profilés (solid lineg and the calculated density profilgét,A) (dashed linesfor optimal measures with a total
mass 50, assuming that the two-phase media on slices taken at eacht eghbmogeneousa) d=1, h(t)=t3; (b) d=2, h(t)=t3; (¢
d=1, h(t)=tY3% (d) d=2, h(t)=t*3,

of A andu the mean volume of grains. The smallest phase Xheighd determines the grading of the material. The mean
volume can be obtained by minimizifgA) as described in  phase 1d-volume of slices taken at heighis equal to
Sec. V. Becauséis a continuous function, all intermediate

valuesa of mean phase 1 volume are realizable for suitable B -
intensity measures, so th&fA)=a has a solution for all Q(I’A)_L exp{ —(AL(x) = Eol)}dx,
sucha.

However, the objective functiofi, is not convex inA,  which is called the density profied.8]. An intensity measure

and so an additional analysis is needed to confirm that thg on D x[0,1] that provides a functionally graded material
obtained solution indeed minimizes the objective function. Aitn q(t,A) mimicking a given functiom(t) is a measure\

natural stopping criterion for the steepest descent algorithih o+ minimizes the function
in this case is to stop wheh(A) reaches its true minimum
(being zerg within some degree of accuracy. 1
Since the gradient given by the left-hand side of Bd) Gh(A):f [a(t,A)—h(t)JPw(t)dt, (18
vanishes only iff (A)=a or d;(x,A) =0 identically,f, does 0
not have any local minimum points but only stationary point
of f, whered;(x,A)=0, or whereA solves Eq.(16). This
confirms that iff is convex, the steepest descent algorithm,
indeed leads to the global minimum &f when it does not
find a solution to Eq(16). It should be noted that Eq16)
may have a number of different solutions. dg,[(y.8),A]= —< L

SWherew(~) is a given weight function used to emphasize
particular ranges where a closer fit is required. The corre-
sponding gradient is given by

)Z[Q(t,/\)—h(t)]

ot (y.s
VII. OPTIMIZATION PROBLEMS FOR FUNCTIONALLY
GRADED MATERIALS x e~ (AL =Eoldxw(t)dt ),

A functionally graded material is ad{+ 1)-dimensional
two-phase medium iD % [0,1], where the last coordinate cf. Eq.(15).
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ol dx A(t)dt, where\(t) is the density function ofi0,1] (the
range of heights). In this case, an expression fpft,A) can
be explicitly obtained as

(o. 1

q(t,A)=V(D)exp{—f )\(s)g(s—t)ds]
0

<1 for some functiong(s) depending on the grains. For ex-
ample, if the typical grain is a ball with @ossibly randorn
radiusé, then

o 9(s) = kg(max ¢*—s,0)%),

H H| H m ‘ ’ where k4 is the volume of ad-dimensional unit ball(we

ol | ‘ ‘ Lol ‘ ’ assume that the values éfare smaller than the diameter of

‘ : ‘ : ‘ ‘ the maximal ball that fits ifD).

0.0 02 04 t 0.6 0.8 1.0 Example 5. (Uniform spatial distributions)igure 5
shows plots that compare the required density profile func-
tion h and the density profiles obtained from the optimal
measures, assuming that the two-phase media on slices taken

0] at each height are homogeneous. Figure 6 shows the corre-

N sponding density functions(s).

Note that the function given by E@18) is nonconvex. A
convex problem can be posed in the context of functionally
= graded materials to minimize
H(A):f q(t,A)h(t)dt. (19

[Tol . .

for a given functionh.
| ‘ ‘ VIIl. CONCLUSIONS
© AT We described a general framework for computation of the

0.0 0.2 04 0.6 0.8 1.0 spatial densities of particles to obtain media with given geo-
t metrical microstructure that would enable design of materials
with desirable effective properties. The latter calls for further
studies to relate such macroscopic properties with micro-
structural information. The corresponding analysis includes
optimization procedures based on the explicit expressions for
b_the gradient and the necessary optimality conditions for
c)f[metionaI depending on the density measures. Numerical al-
gorithms are encoded in Splus/R statistical computing lan-
guages and are available from the authors’ web pages.

FIG. 6. The obtained optimal density functiongs) corre-
sponding to the cases shown in Fig&a)sand 5b).

Example 4 ConsideD =[0,1] discretized with mesh size
0.05. Assume that grains are balls with exponentially distri
uted radii with mean 0.1. Figure 4 shows the perspective pl
of a measure that minimizes E¢L8) with w(t)=1 for a
fixed total mass 50. The plot df compared with the ob-
tained functiongy confirms that the fit is fairly good.

The computational time is reduced substantially in the
case when the two-phase medium sliced at each height is The first two authors were supported by the UK/Hong
required to be homogeneous, i.A(dxdt) has the form Kong Joint Research Scheme.
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