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Design of inhomogeneous materials with given structural properties
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We describe a technique applicable to optimize certain quantities associated with the two-phase structure
described by a model of penetrable grains. The solution is given in a form of an intensity surface that controls
locations of the grains. Particular examples include maximization of the expected phase 2 volume and design
of functionally graded materials with a given density profile.
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di
an

t
e
e

pt
o

i
y
ic

o
t

ri
on

b
t
i

ro
as
te

ion

tal
, in
nd
on-
ran-
uch

g on
ion
pre-

rch

is
ity

t to
y-
op-

nc-
ion

n-

in
the
nes
the
I. INTRODUCTION

A popular stochastic model for two-phase random me
is provided by Poisson ensembles of fully penetrable
uncorrelated spheres@1,2# ~or more general grains!. The den-
sity of spheres is usually assumed to be independent of
locations so that statistical properties of the microstructur
translationally invariant~homogeneous!. Because spheres ar
used, this model corresponds to rotationally invariant~isotro-
pic! random media. Significant work has been done to o
mize the design of homogeneous materials, both in the c
text of bounds @3# and of design @4#. Quintanilla and
Torquato@5# studied an inhomogeneous random medium
which uncorrelated spheres are still used but the densit
spheres varies with the locations. They derived analyt
expressions for the canonicaln-point microstructure function
and the lineal-path function.

In the present paper we continue to study such inhom
geneous random media. We do not attempt here to relate
mechanical and effective transport properties of the mate
to its microstructure, but rather assume such relati
known. Provided the spatially inhomogeneous density can
controlled, our main aim is to design the material in order
optimize the corresponding quantities associated with
two-phase microstructure.

At the first approximation, the properties of such hete
geneous media depend on the volume fractions of the ph
~see, e.g.,@6#!. As a simple example, one may want to loca
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spheres at random in order to minimize the volume fract
of phase 1~the part exterior to the spheres!, or equivalently,
to maximize the volume fraction of phase 2~the spheres!.
This becomes a computational geometry problem if the to
number of spheres is fixed and predetermined. However
many cases@1,2,7# the total number of spheres is random a
follows a Poisson distribution. Thus, it is natural and reas
able to assume that the centers of these fully penetrable
dom spheres form a spatial Poisson point process. In s
cases the optimal locations of centers may vary dependin
the total number of spheres available. The objective funct
then becomes a function of a non-negative measure re
senting the spatial density~also called the intensity measure!
of the Poisson point process of the sphere centers@8#. The
optimization problem can then be reformulated as the sea
for an ‘‘optimal’’ ~not necessarily unique! intensity measure
of the Poisson point process. This optimization problem
usually constrained by fixing the total mass of the intens
measure~representing the resources available!. However,
other constraints may also be used, e.g., one may wan
identify an optimal intensity measure with a given bar
center. There are numerous other functions that may be
timized, for example, the perimeter or surface area, or fu
tions that characterize fluctuations of the volume fract
such as the entropy

2E p~x!log p~x!dx,

wherep(x) is the one-point phase probability function@1,5#.
More complex constraints arise in the design of functio

ally graded~gradient! materials~FGM! @9#. An FGM con-
sists of two~or more! phases, and its composition varies
some spatial direction for specific requirements. Grading
internal microstructure of a composite material enables o
to integrate the material and structural considerations into
4544 ©2000 The American Physical Society
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PRE 62 4545DESIGN OF INHOMOGENEOUS MATERIALS WITH . . .
design. The gradients are introduced intentionally and
quantitatively controlled in order to optimize specific pro
erties for use in real environments. ‘‘A major problem in t
design of an FGM, aside from that of materials selection,
in determining the optimum spatial dependence for the co
position @10#.’’ The proposed optimization technique solve
this problem for FGM materials modeled by Poisson e
sembles of fully penetrable spheres.

The outline of this paper is as follows. Section II intr
duces a mathematical model used to describe heterogen
materials. Sections III and IV present a general approac
find an optimal intensity measure and the correspond
steepest descent algorithm. Section V describes how to a
the algorithm in order to find an intensity measure maxim
ing the mean volume of phase 2 and presents various
amples. Section VI shows how to determine the intens
measure to achieve a predetermined mean phase 1 vol
Section VII deals with a more general case of functiona
graded materials.

II. MATHEMATICAL MODEL

The construction of an ensemble of fully penetrable a
uncorrelated spheres involves two steps.

First, points determining locations of the centers a
placed randomly and independently on a regionD which is a
subset of thed-dimensional Euclidean space. Because of
randomness and independence, it is quite natural to ass
that no two points coincide and the numbers of points
disjoint subregions are independent. Such a collection
points can be modeled very well by a Poisson~point! pro-
cess. A Poisson process is characterized by its inten
which describes the mean number of points in subregio
Mathematically, a Poisson processF with intensity measure
L(•) is a random collection of points inD such that the
number of points ofF in a bounded subregionB#D follows
a Poisson distribution with meanL(B) and the number of
points in disjoint subregions are mutually independent.
example, Quintanilla and Torquato@5# simulated planar ran
dom media with the followingL(•):

L~B!5E
B
Aixi2dx, L~B!5E

B
A lnS K

C2x1
Ddx,

L~B!5E
B
A exp~2ixi !dx, L~B!5E

B
A exp~2x2!dx,

whereA, K, andC are constants,x5(x1 ,x2) and ixi is the
Euclidean distance betweenx and the origin, see also Quin
tanilla @1#. Each of these examples expressesL(•) as an
integral in the form

L~B!5E
B
l~x!dx, ~1!

wherel(•) is called the density function. If the density is
constant, the Poisson processF is said to be homogeneou
Wheneverl(•) is not a constant,F is called inhomoge-
neous. However, it is not always possible or necessar
expressL(B) in the form of Eq. ~1!. For instance, ifL
attaches non-negative masses to single points~i.e., possesse
re
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an atomic part!, then the right-hand side of Eq.~1! should
include a sum of measures of singletons located withinB.

The second step of the construction of an ensemble i
associate each point with a sphere. The most obvious wa
to place fully penetrable spheres of independent random r
centered at these points.

Analytical analyses of such a model are possible if
distribution of the radii and the intensity measure of the Po
son process are known@1,2,7,5#. Actually, using spheres a
building blocks does not simplify the analyses much.
other words, generalizing the model by replacing spheres
more general sets does not complicate the situation seve
Let us consider a sequence of independent and identic
distributed random compact sets@11# J1 ,J2 ,... ~called
grains! which are not necessarily isotropic. A random setJ0
having the same distribution as allJ i , i>1, is called the
typical grain. The ensemble of the fully penetrable and u
correlated grains

J5 ø
xiPF

~xi1J i !,

is called a Boolean model@12,11#, where here and thereafte
x1aJ5$x1ay:yPJ%. If the underlying Poisson proces
F is homogeneous, then we also say thatJ is homogeneous
The total mass ofL, L(D), determines the mean total num
ber of grains.

Consider a Boolean model inside a regionD. The mean
d-dimensional phase 2 volumeV ~that corresponds to lengt
if d51 or to area ifd52) can be calculated as

^V~JùD !&5E
D

p~x!dx, ~2!

where p(x)5P(xPJ) is the one-point phase probabilit
function for phase 2, see@1# and@5#. It is easy to see@12, p.
21# that

p~x!512expH 2E
D

P~x2yPJ0!L~dy!J . ~3!

Note that*DP(x2yPJ0)L(dy) equalŝ L(x2J0)&. If Eq.
~1! holds, thenL(dy)5l(y)dy. If J05Bj(0) is a ball cen-
tered at the origin 0 of random radiusj with P(j.t)
5F̄(t), thenP(x2yPJ0)5F̄(ix2yi). Furthermore, if the
radius of the ball is deterministic and equal tor, then

p~x!512exp$2L@DùBr~x!#%. ~4!

III. OPTIMIZATION SETUP

In the following we keep the distribution of the typica
grain fixed and aim to find aL that provides realizations o
J with required properties. The quantities of interest th
become functions of the intensity measureL. Consider a
general problem of minimizing a functionf (L) over all
measuresL satisfying some constraints:

f ~L!°min for LPM and H~L!5C. ~5!

HereM denotes the family of all non-negative measures, a
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H~L!5S E
D

h1~x!L~dx!,...,E
D

hk~x!L~dx! D ~6!

maps M into the k-dimensional Euclidean space, so th
H(L)5C5(C1 ,...,Ck) singles out those measuresL for
which *Dhi(x)L(dx)5Ci , 1< i<k. We will also assume
that h1 ,...,hk are linearly independent onD. Note that a
maximization problem can be easily turned into a minimiz
tion problem by changing the sign of the objective functionf.

An important example of a single constraint appears w
k51,h1(x)51 for all x. Thus

H~L!5L~D !5C, ~7!

specifying that the total mass ofL is a constantC. The
corresponding optimization problem is called the fixed to
mass problem. Further examples of constraints~which can be
applied simultaneously! are

h2~x!5x, h3~x!5ix2x0i2,

whereh2(•) pinpoints the center of gravity ofL andh3(•)
imposes a restriction on the inertia ofL with respect to ro-
tations around a givenx0 .

Assume thatf (L) is Fréchet differentiable~see, e.g.,
@13#! with a gradientdf(x,L), meaning that

f ~L1Y!' f ~L!1E
D

df~x,L!Y~dx!

up to terms of smaller orders than the total variation norm
a general signed measureY. Recall that the total variation
norm ofY is defined to be the sum of the total masses of
positive and negative parts ofY.

Molchanov and Zuyev@8# showed that ifL solves Eq.~5!,
then there exist some constantsu1 ,...,uk such that

H df~x,L!5( uihi~x! L almost everywhere,

df~x,L!>( uihi~x! for all x.
~8!

In particular, for the fixed total mass problem Eq.~8! implies

H df~x,L!5u L almost everywhere,

df~x,L!>u for all x,
~9!

so thatdf(x,L) is a constantu on the support ofL and is at
leastu for all other xPD. First order optimality necessar
conditions for more general constraints can also be foun
@8# and @14#.

IV. STEEPEST DESCENT ALGORITHM

Algorithms of the steepest descent type and their vari
modifications are widely known in the optimization literatu
@15#. The most basic method of the gradient descent sugg
moving from Ln ~the approximate solution on stepn! to
Ln115Ln1Yn , whereYn minimizes

E df~x,Ln!Y~dx! ~10!
t
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over all signed measuresY with the total variation«5«n ,
the latter being the size of stepn. At every step it is vital to
ensure that theLn1Yn is a non-negative measure that sa
isfies the imposed constraints.

Consider minimization problem~5! with only constraint
~7! on the fixed total mass. In order to keepLn(D) fixed, the
incrementYn at every step must deliver a total mass ze
The integral given by Eq.~10! is minimized over suchY if
Y5Yn has an atom of positive mass«/2 attached to any
point wheredf(x,Ln) is minimal and an atom of negativ
mass2«/2 to any point wheredf(x,Ln) is maximal. How-
ever, adding a negative atom may renderLn115Ln1Yn
nonpositive.

The optimal steepest descent direction in the fixed to
mass problem on a discretized spaceD with only constraint
Eq. ~7! can be found as follows@16#. Find the points of
global minimum ofdf(x,Ln) and distribute somehow th
total mass«/2 over these points~one or several!. Then deter-
mine t« ~respectivelys«) which is the smallest~respectively
the largest! value such that the totalLn mass of points at
which the gradientdf(x,Ln) is at leastt« ~respectivelys«)
are less than or equal to«/2 ~respectively greater than«/2!;
let the totalLn mass of points where the gradient is at lea
t« be m<«/2. Finally, assign zero mass to all these poin
and reduce the total mass of the points at which the grad
is betweent« and s« by an amount«/22m. The obtained
measure isLn11 . If the value of the objective functionf at
Ln11 is less than atLn then Ln11 is taken as the nex
approximate solution. Otherwise, the step size« is adjusted
and another step with the new step size is attempted. M
involved and efficient ways of choosing the step size can
implemented, for example, the Armijo method described
@15, Sec. 1.3.2#.

The described algorithm surely leads to the global mi
mum when applied to convex objective functions. In the ge
eral case it may get stuck in a local minimum, a comm
feature for gradient algorithms applied in the context of g
bal optimization@15#. The necessary condition for the opt
mum given by Eq.~9! is used as a stopping rule for th
algorithm: the functiong(x)5df(x,L) is a constant and
takes its minimal value on the support of an optimalL. Al-
though, strictly speaking, the support ofL on the discrete
spaceD is the setS5$xPD:L(x).0%, in practice one may
wish to ignore the atoms of the mass less than a prede
mined small threshold.

For the optimization problem Eq.~5! with many linear
constraints given by Eq.~6!, it is computationally more effi-
cient to use an approximation to the exact steepest direc
For instance, we choose the negative component of the
crementY proportional toL in every step and vary its posi
tive part Y1, i.e., Ln115Ln1Y12gLn for some 0,g
,1. The value ofg characterizes the size of the step, a
though generally it is not equal to the total variation ofY. It
can be shown@17# that the positive partY1 of the steepest
increment measure consists of at mostk atoms, wherek is the
number of constraints. Thesek atoms of massesp1 ,...,pk
located at pointsx1 ,...,xk are chosen to minimize

E df~x,L!Y1~dx!5( df~xi ,L!pi ~11!
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FIG. 1. Measures maximizing the mean phase 2 area and the corresponding gradient functions with grains are balls of radiusr 50.2. ~a!
The only constraint on the total mass being 10;~b! under an additional constraint on the center of gravity located at 0.8.
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and to maintain the imposed constraints~6!. To satisfy the
constraintsH(L1Y12gL)5C5(C1 ,...,Ck), we impose

H~Y1!5(
j 51

k

pjh~xj !5gC. ~12!

For everyk-tuple (x1 ,...,xk), Eq. ~12! can be used to find
p1 ,...,pk and then compute the right-hand side of Eq.~11!.
The k-tuple (x1 ,...,xk) and the corresponding weigh
p1 ,...,pk that minimize Eq. ~11! subject to the non-
negativity constraint onp1 ,...,pk are then used to determin
Y1.

Similarly, Eq. ~8! provides a stopping rule for the algo
rithm. For example, under the two constraints on the to
mass and the center of gravity, Eq.~8! requires that

H df~x,L!5u11u2x L almost everywhere,

df~x,L!>u11u2x for all x,
~13!

for some real numbersu1 andu2 .
The described optimization routines can be obtained fr

the authors’ web pages. They are realized in Splus/R statis-
tical computing languages and organized as anR-bundle me-
sop.

V. MAXIMIZATION OF THE MEAN PHASE 2 VOLUME

Consider maximization of the mean phase 2 volume
follows from Eqs.~2! and~3! that this problem is equivalen
to minimization of the following objective function:

f ~L!5E D expH 2E
D

P~x2yPJ0!L~dy!J dx. ~14!

The exponential function is convex and so isf as a func-
tion of L, meaning thatf „tL11(12t)L2…<t f (L1)1(1
2t) f (L2) for every tP@0,1# and every two measuresL1
andL2 . The convexity off confirms that the steepest desce
l

It

t

algorithm started with any initial measure indeed conver
to a solution of Problem~5! for the objective function given
by Eq.~14!. Although the optimization problem is convex,
may have several solutions that provide the same value
the objective function. The gradientdf(y,L) can be easily
calculated as the main term in the expansion

t21@ f ~L1tY!2 f ~L!#'E
D

df~y,L!Y~dy! for t↓0.

Substitutingf from Eq. ~14! yields

df~y,L!52E
D

P~x2yPJ0!

3expH 2E
D

P~x2zPJ0!~dz!J dx. ~15!

In particular, ifJ0 is a deterministic ball of radiusr, then by
Eq. ~4! one has

f ~L!5E
D

exp$2L@Br~x!#%dx,

df~y,L!52E
DùBr ~y!

exp$2L@Br~x!#%dx.

The formulas for the objective function and the gradient
then used in the steepest descent algorithm described in
IV.

Below we provide several examples forD5@0,1# ~the
unit segment! andD5@0,1#2 ~the unit square! and the typical
grain being either deterministic or random ball. Note th
numerical implementation of algorithms inevitably requir
discretizingD by imposing a sufficiently fine mesh. In a
cases starting measures for descent algorithms were uni
distributions over the mesh vertices.

Example 1. (One dimensional case.)Consider the fixed



4548 PRE 62I. S. MOLCHANOV, S. N. CHIU, AND S. A. ZUYEV
FIG. 2. Measures maximizing the mean phase 2 area in two dimensions with the fixed total massC. The typical grain is a ball of radius
r. ~a! C510, r 50.1; ~b! C550, r 50.1; ~c! C510, r is exponentially distributed with mean 0.1;~d! C510, r 50.3.
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total mass problem in one dimensionD5@0,1# with mesh
size 0.005. Figure 1~a! shows the plots of masses of th
obtained optimalL for the grains being fixed ball with radiu
0.2. The corresponding plot of the gradientdf(x,L) confirm
that the necessary optimality condition is satisfied, i.e.,
gradient is minimal and constant on the support ofL. Com-
pare this to the theoretical solution available for this mode
optimal L has four atoms:L(0.2)5L(0.8)510/3 and
L(0.4)5L(0.6)510/6. In order to avoid comutational prob
lems with rounding off when the radius of the ball is a mu
tiple of the mesh size, the algorithm was actually run for
ball of radius 0.199999. Figure 1~b! shows the solution of the
same problem as above with an additional constraint oL
that its center of gravity is located at 0.8. Note that the g
dient is linear on the support ofL as it should be for an
optimal L by Eq. ~13!.

Example 2. (Two dimensional case.)Let D5@0,1#2 be
discretized by using a square grid with mesh size 0.02. F
ure 2 shows several results for the fixed total mass probl
Generally, the optimal measures have a well-identifia
‘‘comb’’ pattern, which is typical in deterministic dens
packing, but the probabilistic setup manifests in differe
masses attached to various nodes of the grid. An increas
radius or its randomness results in a sparser ‘‘comb.’’

It is possible to generalize the setup to minimize the m
of an integral of a functionu~•! over phase 1, so that th
objective function is given by
e

e

-

-
.

e

t
in

n

f ~L!5E
D

u~x!expH 2E
D

P~x2yPJ0!L~dz!J dx,

and Eq.~15! holds withdx replaced byu(x)dx. A constant
u(x) corresponds to the original problem of minimizing th
mean phase 1 volume.

Another function of interest may be the entropy of pha
1 in a two-phase medium given by

g1~L!52E
D

@12p~x!# log@12p~x!#dx,

with p(x)5p(x,L) given by Eq.~3!. This entropy function
is not convex inL, so that additional computation has to b
performed to finding an optimalL. The methods are known
from the literature on global optimization and may inclu
starting the descent from various initial measures or allow
the algorithm to go sometimes in the direction of increase
the objective function with the hope to visit the attractio
domains of different minima.

VI. BOOLEAN MODELS WITH A PREDETERMINED
MEAN PHASE 1 VOLUME

It is easy to modify the approach in order to be able
find models with a predetermined value of the object
function. For example, consider the following equation:



PRE 62 4549DESIGN OF INHOMOGENEOUS MATERIALS WITH . . .
FIG. 3. Intensity measures providing the mean proportion of phase 1 area of~a! 5%; ~b! 10%; ~c! 20%; ~d! 30%; ~e! 40%; ~f! 60%. The
total mass is 20 and grains are balls with exponentially distributed radii of mean 0.1.
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f ~L!5a, ~16!

wheref (L) is given by Eq.~14!. The solution of Eq.~16! is
a measure that provides two-phase media with the m
phase 1 volume equal toa. Consider a new objective func
tion

f a~L!5@ f ~L!2a#2.

The corresponding gradient is

df a
~x,L!52@ f ~L!2a#df~x,L! ~17!

that is then used to perform the steepest descent.
Example 3. Consider a one-dimensional problem f

grains being balls having exponentially distributed radii w
an

mean 0.1. The total mass ofL is fixed at 20. Figure 3 shows
a solution of Eq.~16! for various values ofa. The way the
algorithm was programmed, the obtained solutions are so
what trivial in that they have no phase 2 in a part of t
material. More practically sensible solutions can be obtain
either by starting algorithm from different initial measures
by adding new constraints, say on the maximal poss
value of densityl(x).

Clearly, Eq.~16! may have no solution ifa is too small or
too big, so that it lies out of the range of values that a
possible for all intensity measures with a given total mass
such cases the minimization problem leads to af (L) which
is as close toa as possible. The smallest possible phas
volume is obtained if the whole intensity is concentrated a
corner ofD and is 22d(12e2C)m, whereC is the total mass
FIG. 4. Measure with a total mass of 50, providing a functionally graded material with a given target density profileh(t)5t3 ~solid line!
and the corresponding density profileq(t,L) ~dotted line! according to the optimal measure obtained.
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FIG. 5. Target density profilesh ~solid lines! and the calculated density profilesq(t,L) ~dashed lines! for optimal measures with a tota
mass 50, assuming that the two-phase media on slices taken at each heightt are homogeneous.~a! d51, h(t)5t3; ~b! d52, h(t)5t3; ~c!
d51, h(t)5t1/3; ~d! d52, h(t)5t1/3.
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of L andm the mean volume of grains. The smallest phas
volume can be obtained by minimizingf (L) as described in
Sec. V. Becausef is a continuous function, all intermediat
valuesa of mean phase 1 volume are realizable for suita
intensity measures, so thatf (L)5a has a solution for all
sucha.

However, the objective functionf a is not convex inL,
and so an additional analysis is needed to confirm that
obtained solution indeed minimizes the objective function
natural stopping criterion for the steepest descent algori
in this case is to stop whenf a(L) reaches its true minimum
~being zero! within some degree of accuracy.

Since the gradient given by the left-hand side of Eq.~17!
vanishes only iff (L)5a or df(x,L)50 identically, f a does
not have any local minimum points but only stationary poi
of f, wheredf(x,L)50, or whereL solves Eq.~16!. This
confirms that iff is convex, the steepest descent algorith
indeed leads to the global minimum off a when it does not
find a solution to Eq.~16!. It should be noted that Eq.~16!
may have a number of different solutions.

VII. OPTIMIZATION PROBLEMS FOR FUNCTIONALLY
GRADED MATERIALS

A functionally graded material is a (d11)-dimensional
two-phase medium inD3@0,1#, where the last coordinat
1

e

e

m

s

~height! determines the grading of the material. The me
phase 1d-volume of slices taken at heightt is equal to

q~ t,L!5E
D

exp$2^L@~x,t !2J0#&%dx,

which is called the density profile@18#. An intensity measure
L on D3@0,1# that provides a functionally graded materi
with q(t,L) mimicking a given functionh(t) is a measureL
that minimizes the function

Gh~L!5E
0

1

@q~ t,L!2h~ t !#2w~ t !dt, ~18!

where w(•) is a given weight function used to emphasi
particular ranges where a closer fit is required. The co
sponding gradient is given by

dGh
@~y,s!,L#52K E

J01~y,s!
2@q~ t,L!2h~ t !#

3e2^L@~x,t !2J0#&dxw~ t !dtL ,

cf. Eq. ~15!.
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Example 4. ConsiderD5@0,1# discretized with mesh size
0.05. Assume that grains are balls with exponentially dist
uted radii with mean 0.1. Figure 4 shows the perspective
of a measure that minimizes Eq.~18! with w(t)51 for a
fixed total mass 50. The plot ofh compared with the ob-
tained functionsq confirms that the fit is fairly good.

The computational time is reduced substantially in
case when the two-phase medium sliced at each heig
required to be homogeneous, i.e.,L(dx dt) has the form

FIG. 6. The obtained optimal density functionsl(s) corre-
sponding to the cases shown in Figs. 5~a! and 5~b!.
-
.

p.
-
ot

e
is

dx l(t)dt, wherel(t) is the density function on@0,1# ~the
range of heightst!. In this case, an expression forq(t,L) can
be explicitly obtained as

q~ t,L!5V~D !expH 2E
0

1

l~s!g~s2t !dsJ
for some functiong(s) depending on the grains. For ex
ample, if the typical grain is a ball with a~possibly random!
radiusj, then

g~s!5kd^max~j22s2,0!d/2&,

where kd is the volume of ad-dimensional unit ball~we
assume that the values ofj are smaller than the diameter o
the maximal ball that fits inD!.

Example 5. (Uniform spatial distributions)Figure 5
shows plots that compare the required density profile fu
tion h and the density profiles obtained from the optim
measures, assuming that the two-phase media on slices t
at each height are homogeneous. Figure 6 shows the c
sponding density functionsl(s).

Note that the function given by Eq.~18! is nonconvex. A
convex problem can be posed in the context of functiona
graded materials to minimize

H~L!5E q~ t,L!h~ t !dt. ~19!

for a given functionh.

VIII. CONCLUSIONS

We described a general framework for computation of
spatial densities of particles to obtain media with given g
metrical microstructure that would enable design of mater
with desirable effective properties. The latter calls for furth
studies to relate such macroscopic properties with mic
structural information. The corresponding analysis includ
optimization procedures based on the explicit expressions
the gradient and the necessary optimality conditions
functional depending on the density measures. Numerica
gorithms are encoded in Splus/R statistical computing l
guages and are available from the authors’ web pages.

ACKNOWLEDGMENT

The first two authors were supported by the UK/Ho
Kong Joint Research Scheme.
ci.

r

-

@1# J. Quintanilla, Polym. Eng. Sci.39, 559 ~1999!.
@2# J. Quintanilla and S. Torquato, Phys. Rev. E54, 5331~1996!.
@3# G. Milton, in Homogenization and Effective Moduli of Mate

rials and Media, edited by J. L. Ericksen, D. Kinderlehrer, R
Kohn, and J.-L. Lions~Springer, New York, 1986!, Vol. 1 of
The IMA Volumes in Mathematics and its Applications, p
150–174.

@4# O. Sigmund and S. Torquato, J. Mech. Phys. Solids45, 1037
~1997!.

@5# J. Quintanilla and S. Torquato, Phys. Rev. E55, 1558~1997!.
@6# Z. Hashin and S. Shtrikman, J. Appl. Phys.33, 1514~1962!.
@7# J. Quintanilla and S. Torquato, Phys. Rev. E54, 4027~1996!.
@8# I. Molchanov and S. Zuyev, Math. Oper. Res.25, 485 ~2000!.
@9# N. Cherradi, A. Kawasaki, and M. Gasik, Composites Eng.4,
883 ~1994!.

@10# A. J. Markworth, K. S. Ramesh, and W. P. Parks, J. Mater. S
30, 2183~1995!.

@11# D. Stoyan, W. S. Kendall, and J. Mecke,Stochastic Geometry
and its Applications, 2nd ed.~Wiley, Chichester, 1995!.

@12# I. S. Molchanov, Statistics of the Boolean Model fo
Practitioners and Mathematicians~Wiley, Chichester, 1997!.

@13# E. Hille and R. S. Phillips,Functional Analysis and Semi
groups, Vol. XXXI of AMS Colloquium Publications~Ameri-
can Mathematical Society, Providence, 1957!.

@14# I. Molchanov and S. Zuyev, J. Math. Anal. Appl.~to be pub-
lished!.



i-

:

4552 PRE 62I. S. MOLCHANOV, S. N. CHIU, AND S. A. ZUYEV
@15# E. Polak,Optimization: Algorithms and Consistent Approx
mations~Springer, New York, 1997!.

@16# I. Molchanov and S. Zuyev~unpublished!.
@17# I. Molchanov and S. Zuyev, inOptimum Experimental Design
Prospects for the New Millennium, edited by A. C. Atkinson,
B. Bogacka, and A. Zhigljavsky~Kluwer, Dordrecht, 2000!,
pp. 79–90.

@18# V. Parameswaran and A. Shukla, J. Mater. Sci.35, 21 ~2000!.


