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Analyse Variationnelle de Fonctionnelles de Processus de
Poisson

Résumé : Soit F' une fonctionnelle d’un processus de Poisson dont la distribution est
définie par la mesure d’intensité p. En considérant l'espérance E, F' comme une fonction
sur le cone M des mesures positives finies, nous obtenons des expressions explicites pour les
dérivés de Fréchet de tous ordres, ce qui généralise les formules d’analyse de perturbations
pour les processus de Poisson. Ces méthodes variationnelles permettent d’obtenir des
conditions nécessaires d’ordre un et deux pour plusieurs types de problémes d’optimisation
sous contraintes. Nous étudions en détails "optimisation dans la classe des mesures de
masse totale a fixée et développons une technique permettant ’obtention du comportement
asymptotique de la mesure d’intensité optimale quand a tend vers I'infini. Nous donnons
des applications de nos méthodes & la planification des expériences, a 'approximation
des fonctions convexes par des splines et au probléme de placement optimal des stations
d’un systéme de télécommunications. Nous proposons des algorithmes numériques de type
“steepest descent” basés sur la forme explicite du gradient.

Mots-clés : processus de Poisson, méthodes variationnelles, optimisation sur des me-
sures, analyse de perturbations, planification des expériences, approximation des fonctions,
modélisation de systémes de télécommunications, ensemble d’arrét, méthodes de gradient
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1 Introduction

Many stochastic systems are modelled using Poisson point processes. Given a o-finite
measure i on a Polish locally compact space X, the Poisson point process II on X with
the intensity measure p is the random set of points such that 1) the number of points,
II(K), inside a Borel set K has a Poisson distribution with the parameter p(K); and 2) the
number of points inside disjoint sets are independent. These fundamental properties often
make a Poisson framework ideal for modelling complex stochastic systems. On one hand,
Poisson driven models are quite often directly computable, on the other hand, there is a
large freedom of choice of the measure u, which determines the distribution of the process.
For example, the Poisson process serves as a reference (or benchmark) distribution for
different interaction models that appear in statistical physics and spatial statistics, many
objects in stochastic geometry are related to the Poisson processes in abstract spaces (sets
of lines, planes, etc.).

Last decades new methods of analysis of functionals of Poisson processes have been
developed including variational calculus on the Poisson space (cf. [20, 21, 1]), asymptotic
expansions (cf. [6, 5]) and change of the phase space technique (cf. [5, 19]).

If IT is a Poisson point process with intensity measure p, the corresponding expected
value of a functional F(II), i. e. a function defined on realisations of the process, is denoted
by E, F(II). The latter depends on p and can be considered as a functional defined on
a cone M of (non-negative) measures. In this paper we develop a variational calculus for
such functionals of a Poisson point process directly on its parameter space, i. e. on M.
First, in Section 2 we obtain analyticity results that generalise the perturbation analysis
formulae derived for such functionals in [3, 19]. In particular, we show that in the case of
a finite intensity measure, the expectation E, F/(IT) is analytic on M for most ‘reasonable’
functionals F.

The obtained formulae for derivatives in the space M are useful to solve variational
problems of minimising the above expectation E,, F/(IT) over a class of admissible intensity
measures. To outline the difficulties, it is worth noting that the cone of all positive measures
has a very rich boundary. In fact, each measure lies on its boundary, because a subtraction
of another (even ‘small’) measure may lead to a signed measure that does not belong to the
cone in question. Section 3 relies substantially on new results obtained for optimisation
problems in abstract Banach spaces (cf. [22, 29, 7]) in order to find useful first and second
order necessary optimality conditions for the constrained optimisation problem on the cone
ML

Section 4 describes the form these conditions take in the most common cases like
optimisation with finite number of linear constraints, including, in particular, optimisation
in the class of measures with a fixed total mass, fixed barycentre, in the class of absolutely
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4 I. Molchanov and S. Zuyev

continuous measures, optimisation of a mark distribution. In subsection 4.5 we study
asymptotic behaviour of solutions with a fixed total mass, when this mass increases to
infinity. We develop a method that often makes possible an explicit calculation of the
asymptotically optimal measure in this high intensity framework.

In Section 5 we give many examples illustrating the developed technique. Applications
include, in particular, optimal design of experiments, modelling of large telecommunica-
tions networks, approximation of convex functions and some stochastic geometry models
of random sets.

Finally, in the last section we outline numerical optimisation methods based of the
explicit form of the gradient obtained in the paper.

Note that our method differs fundamentally from optimisation technique for systems
driven by point processes whose distribution depends on a finite number of parameters.
For the latter, we address the reader to the book [23]| and references therein.

In the paper we use of the following notation:

X : a Polish locally compact space with its Borel g-algebra 98;

B¢ : complement to B in X, i.e., B = X\ B,

Y : a Banach space, often it will be Euclidean space R™;

Y* : the space dual to Y;

u-y : the canonical bilinear form on v € Y* and y € Y;

M : the pointed cone of all non-negative finite measures on 8 with the topology of the

total variation convergence;

M :the Banach space of all signed measures on % with bounded total variation and
equipped with the total variation norm,;

A : a closed convex subset of M

u" =p X -+ X p, the direct n-product of a measure y;

put — p~ : the Jordan decomposition of a signed measure p € I\Nﬂ;

| : the variation measure of a signed measure y;
Il ]l = |u](X), the total variation of p € M
)z : the restriction of a measure p onto a Borel set B: p|g(e) = p(+ N B);

M(B) —{ue€M: pu(B¢) =0}, respectively M(B) = {s € M : u(B¢) = 0};

INRTA



Analyse Variationnelle 5

(9,1 = [g(x)u(dz) for a measurable g : X — R and p € M.

O : the Dirac measure or the unit measure concentrated at x € X: 6,(B) = T,ep,
B €°3;

N : the set of counting measures on B supplied with the standard o-algebra 9t which is
generated by the system {v e N': v(B)=n}, Be®B, n=0,1,...;

I :a point process in the phase space X i.e. a measurable mapping from some abstract
probability space to [A,N]. If otherwise not stated explicitly, we identify this pro-
bability space with the space [AV,N] itself and IT with the identical mapping. The
same letter IT is used to denote the point set (with multiple points allowed) which is
the support of the counting measure II.

P, : the distribution of the Poisson process with intensity measure u € M

E, : the expectation with respect to the measure P, on 91;

F : a real-valued measurable function on A/

ba — 274241 /T(d/2), the volume of a unit ball in R%.

2 Derivatives of functionals and perturbations

In this section we establish smoothness properties of the expectation E, F(II) with respect
to p. In particular, if u is a finite measure and the functional F' of a Poisson process’
configurations admits an exponential type upper bound in the number of the process’
points, then E, F(II) is an analytic function on the cone M of finite positive measures.
Under additional conditions on F' further generalisations to the case of an infinite intensity
measure j are obtained.

2.1 Analyticity on the cone of finite measures

The observations in this section is based on the following useful property of an a.s. finite
Poisson process: if the expectation E, F(II) exists, then it can be written in the form

E, F _6‘“2 / 25 w(day) .. p(dan) 2.1)

nO

(cf. [9, p. 129]). Here the term corresponding to n = 0 should be read as e #X) F((),
where ) is the empty point configuration. In what follows the function F is fixed, so that

RR n°® 3302



6 I. Molchanov and S. Zuyev

(2.1) can be seen as the definition of E, F(II) as a function of the intensity measure p € M
of the underlying Poisson process.

To formulate the main result of this section we extend the definition of the functional
E, F(II) to pn € M by means of (2.1). Remember that M consists of signed measures on
% with the finite total variation.

Theorem 2.1. Let p, n € M. Assume that there exist a function g:X —[0,00) and a
constant b > 0 such that (g, |u|) < o0, (g,|n|} < oo and

2

F(Y 6| < bﬁg(xi) (2.2)
AR

for all n > 0 and p" and n"-almost all (x1,...,x,) € X". Then the expectations E, F(II)
and E,, F(IT) exist and

o0

1 _
Eu+nF(H):ZE /AZ(xlv---7xn)77(dx1)-"77(dxn)v (2.3)
n=0 ‘X”
where
An n . _ - _1\n—m n o
Ai(w1,... wn) = By Al(zy,..., 2 1) = B, mz_o( 1) (m>F<H—|—];15x].)].

(2.4)

Proof. First of all note, that in view of (2.2) the absolute value of the n-th summand in the
right-hand side of (2.1) is dominated by ({g, |¢|})"/(n!) and thus E, F(II) exists whenever
{(g,|v|) < co. In particular this is true for the measure v = u + 7. Moreover, by Fubini’s
theorem we may interchange the order of integration in the summands.

When the measure p is replaced by u + 7, the n-th summand in (2.1) can be rewritten
as

[ (3 00 Tt +nta)

xn =1

(;5:%) S IIntes) [ wtda)

{ir, i} 7=1 a@{in, i}

k n

INRTA
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which in view of (2.1) coincides with

n

S E, / F(H + fléz) Ti(x)=nk <Z> (n — k)! f[ n(dz;).
= i=1

k=0

(By convention H -, = 1). Therefore

0 _u(X) n n
TSN s
E ., FII)=¢" Z - /F(;égg) H (dx;) + n(dax;))
n=0 ’ i=1
Xn
N 0 1 9] k k
— o n(X) Z il E, / F(H+ Z 6951.) T x)=n—k H77(d$i)
k=0 " n=k =1 i=1
e ]
— o n(X) Ik
=" Z 2
k=0

where

k
I, =E, / F(H + Z ‘5:ci) n(dxy)...n(dxy) .
T =1
Now writing the Taylor expansion for the exponent e~"X) we find that the coefficient
of 1/(n!) in the product above equals

~ (" n— - et [T k
kZ_O <k) (—n(X)" "1 = kz_o(—l) k <k) E#A[ F(H + ; 61,1.) n(day)...n(day)
and we finally obtain (2.3). -

Note that if (2.3) holds for all # with sufficiently small ||5|| then E, F as a functional
on M is analytic, see [11].

Corollary 2.2. If the conditions of Theorem 2.1 hold for all n € M (e.g., this is the
case when F is bounded or the function g from (2.2) is bounded), then the functional
p— E, F(II) is analytic on M. In particular, for all n, it is n-times Fréchet differentiable
and its n-th Fréchet derivative is the following n-linear form:

DnEuF(H)[nlvvnn] = /A_Z(xlv7xn)771(dx1)77n(dxn)

RR n°® 3302



8 I. Molchanov and S. Zuyev

In particular, the first order Fréchet derivative is defined by the condition
Ejy F(II) = E, F(II) + DE,, F(ID[n] + o([n]]) -

In the framework of the Perturbation analysis, a random variable ® is called a stochastic
gradient of a random variable F' for a family of probability distributions Py if % EoF =
Ey ®. Therefore under the conditions of Corollary 2.2 the n-linear form

/ Al(@1, .o T mi(day ) - (dn)
Xn

is an n-th order stochastic gradient of the random variable F(II).
Note that for Poisson processes

k
Ey F(IT+ 3 6,,) = ERb" F(II),
=1

where E7!~"* is the expectation with respect to the k-fold Palm distribution Pyl (cf.
[12, p.110]). Introduce the following multi-index notation: for s C {1,...,n} let |s| denote
the cardinality of s and @s = {x;, : i; € s}. Then it is easy to see that

Ay, zp) = Y (1) FIE®™ F. (2.5)
sC{1,...,n}

An alternative expression can be obtained using an operator V, acting on an expectation
Eas V,E=E"—E. Put Vo, 4, 2, = Va,(Vay. 2._,). Then the family of operators
E, is analytic for the functionals satisfying (2.2) and its n-th Fréchet derivative is the
following n-linear form:

D"E,Fm,... g = / (Vorwn By )F i (dey) .. .nn(day,) . (2.6)
Xn

Remark 2.1. Note that Theorem 2.1 yields the result of [19]. Indeed, if n = cu, then

d" _
B F|_ = [ B udn) i),
Xn

which is n-th Gateaux derivative of E, F in ‘direction’ y (compare with Corollary 2 of

[19]).

INRTA
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In our considerations the central role play the first two derivatives given by

DE, Py = [ B[P+ 5,) ~ FD]n(z) (2.7
X

and

DR, F(I)[. 2] = / / B, [F(IL + by, + 8,) — 2F(I+ 6,,) + F(ID)] e ) (a)
X X

(2.8)
The function
A T) = Al (1) = FIT + 6,) — F(I), z€ X, (2.9)
is called the first order difference of F(II) and its mean
A, () = E, A 1)
is called the ezpected first difference. In our notation (2.7) becomes
DE,FM[n = (A,.,n) . (2.10)
Similarly, the second order difference is defined by
Az, y;T1) = F(IT + 6, + 6,) — F(IT +6,) — F(TT + 6,) + F(I) (2.11)

with A_z(x, y) =E, A%*(z,y; 10).
Example 2.1. (Symmetric statistics.) Let
1
F(ID) =3 > flaiag)
x5, €]

be the second-order symmetric statistic defined for the process II, where f is a symmetric
real-valued function on X x X. Assume there exists a function h(z) such that |f(z,y)| <
h(z)h(y) with (h, u) < co. Then (2.2) holds with g(x) =1+ h(z) and

Al(aj;H) = Z f(l';l'i)’

x; €11
so that

A, (2) = / Fy)u(dy) -
X

Obviously, A_z(x,y) = A?(x,y;TI) = f(x,y) in this example.

RR n°® 3302



10 I. Molchanov and S. Zuyev

2.2 Infinite measure case

While the Taylor expansion (2.3) holds for Poisson processes with finite intensity measures,
it is sometimes possible to extend it to measures with infinite total mass. Since X is locally
compact, it can be represented as a countable union U X}, where X}, are compact for all
k. Everywhere in this section we assume that the reference measure p is locally finite (i.e.
p(Xy) is finite for all k) and that a function F : N +— R is continuous at infinity, i.e.
F(N) = limj_.o F(N|x,) (remember that N|p is the restriction of a measure N onto a
set B). Below we simply write py instead of u|x, and Fi(N) instead of F(N|x,).

The key observation is the following. An important property of a Poisson process is
that the distribution of a random measure II|g under the probability law P, coincides with
the distribution of IT under P . Therefore E, F;(IT) = B, F(IT), measures y, are finite,
so that Theorem 2.1 is applicable. Additional restrictions should, however, be imposed to
assure the convergence of the corresponding terms to their infinite measure counterparts.

Theorem 2.3. Assume that ||n|| < oo and there exists a constant M such that |F (3 ;- 65,)] <

M for all n > 0 and p™ and n™-almost all (x1,...,x,) € X™. Then the expansion (2.3)
holds.

Proof. Write the tail of the series (2.3) for the function Fj:

o0

n=ng xn
k

<y M Z( Y = 2 R LRt

n=ng m=0 n=ng
The expression above is the tail of M exp{2||n||} and therefore it is uniformly small in
k. Now take the limit ¥ — oo in (2.3). By dominated convergence we can exchange the
expectation and the limit in the left-hand side, swap the sum and the limit in the right-
hand side and, finally, exchange the integral and the limit to obtain (2.3) for locally finite
u and finite 7. O

The condition on the boundedness of the function F can be relaxed to conditions on
the boundedness of its first order difference:

Theorem 2.4. Assume that |F(}"7" | 6y, + 63) — F(3 .11 6z,)] < 2M for all n > 0 and
p" and n"-almost all (xy,...,x,) € X". If the family Fy(Il) = F(Il|x,) is uniformly
integrable with respect to P, for all n with ||n|| < oo, then the expansion (2.3) holds.

INRTA
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The proof is similar to Theorem 2.3, but the bound in (2.12) is obtained now by
iteration of the difference functions.

3 Optimisation in the space of signed measures

In this section we derive first and second order necessary conditions for an extremum in
constrained optimisation problems on the cone of positive measures.

3.1 Necessary conditions for extremum

Let Y be a Banach space, Y* be its dual space and u-y be the canonical bilinear form
defined for y € Y and u € Y*.
Consider the following optimisation problem:

f(p) —inf, peA, H(u)eC, (3.1)

where A and C' are closed convex subsets of M and Y, respectively, f : M +— R and
H : M — Y are Fréchet differentiable functions.

The following is the definition of the Robinson’s regularity condition |22, Theorem 1|
which, as shown in [29], guarantees the existence and boundedness of the Lagrange multi-
pliers (see also [17] for the discussion on different forms of the regularity condition).

Definition 3.1. A measure p is called regular for Problem (3.1) if

0 € core{H(p) — C + DH(p)[A — p]}, (3.2)

where core A is the set of all y € A C Y such that y +ty; € A for all y; € YV and all
sufficiently small positive t. Note that ‘4’ (respectively ‘—’) operation with sets designates
all pairwise sums of (respectively differences between) the points from the corresponding
sets.

Note that the lower limit of a system {S;} of subsets of a Banach space is defined to
be the set of limits for all convergent sequences {x;, ¢ > 0} such that x; € S, for all t.
The first order tangent set to a set B at a point x in a Banach space is defined as

— X

Tp(x) = lirﬁ(i)nf

RR n°® 3302



12 I. Molchanov and S. Zuyev

and the second order tangent set to a set B at a point x in direction z € Tg(x) is the
following set

B—a—tz
2 — Liminf
I's(z, 2) i in —em

Both tangent sets are closed and Tg(z) is, in addition, a cone.

The following theorem, which is a synthesis of Theorems 4.1 and 4.2 of [7] applied
to our framework, gives first and second order necessary conditions for a minimum in
Problem (3.1).

Theorem 3.1. Assume that both f : M — R and H : M — Y are continuous on A
and twice Fréchet differentiable at a regular i € A such that H(i) € C. Then, if [i is a
local minimum point in Problem (3.1), the following (necessary) optimality conditions are
satisfied for all ) € Tynp-1(c)():

(i) Df(@nl > 0; (3.3)
(ii) if Df(m)[n] =0, then
Df (@[] + D*f(mn.n] > 0 for all v € Ty 1 oy (T ) - (3.4)

Moreover, for each 7 verifying

(a) DS =0 and
(b) Ti(mm)# 0. T&(H(m), DH(m)[m)# 0
the following dual conditions hold: there exists (a Lagrange multiplier or a Kuhn-Tucker

vector) u € Y* such that u-y > 0 for any y € T (H(ﬁ)) and for the Lagrangian function
L(p) = Df(p) — u-H(p) one has

(iii) DL(m)n] = Df(@)n] — wDH(@)n] > 0 for all n € Ty(7) ; (3.5)
(iv) DL(m)[n] = Df(m)n — w-DH(m)[n] = 0. (3.6)

Remark 3.1. By replacing f by —f we obtain necessary conditions for mazimum that
manifest in changing > by < in (3.3), (3.4) and (3.5).

INRTA
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3.2 Structure of tangent sets in the space of measures
By [7, Theorem 3.1] for a regular x one has

Tyrm-1 (1) = Ta(u) N (DH()) ™ [Te(H(p)))] (3.7)

and

T2 -1 ¢y () = T () N (DH () ™ [T2(H (1), DH (u)[n]) — (D*H (1)) [, m]] - (3.8)

Consider, for example, an important case of finitely many equality constraints H;(u) =
0, i =1,...,k, so that H is the vector function from M to RF. Often the differentials
DH(p)[n] admit the integral representation (h;,n) for some functions h; : X — R If
h = (hy,...,h;), then the tangent sets to the feasible set A N H~'(0) are given by

Tpnm-1(0) () = Ta(p) N {n : (h,n) =0} (3.9)

and

Tinm-1(0) () = T () N {v = (b, v) = 0}. (3.10)

Different forms of constraints will be considered in Sections 3.3 and 4. Here we cha-
racterise the tangent sets Ta(u) and T3 (u,n) for the most common cases: for A being the
whole cone M, and for A which consists of measures absolutely continuous with respect to
some reference measure .

Theorem 3.2. Let 4 € M. Then
Tha(p) ={n €M : 5~ < p}; (3.11)
T, m) = {l/ EM: v~ < norv. K 77"'} if % is bounded. (3.12)
To prove this theorem we need the following result.
Lemma 3.3. If u € M, then
Tw(p) 2 {n € M : 7~ < p and % is bounded} . (3.13)
If, additionally, dg—f: is bounded, then

T&(M,n) D {ve M: v~ < porv- <L n' and at least one
of the corresponding densities is bounded} . (3.14)

RR n°® 3302



14 I. Molchanov and S. Zuyev

Proof. Let n be such that n~ < 1 and dg—; < N. Then for all t < N~! the measure

u+nt=/<1—t%(l‘)> p(dx) +n*

is non-negative, so its distance to M is 0 and we get (3.13).

Similarly, v € TZ(u,n) if the distance from p + nt + vt2/2 to M has order o(t?) as
t — 0. Let now 1 € Tir(p) be such that its density with respect to u is bounded. Take v
such that either v~ < p or v~ < 5. Then writing

t? -
u+nt+ut2/2:n+t+u+5—l—/(1—t————)du

in the first case, or

t? dn t dv
279 — * +
pnt+uvt/2=v 2—1—/(1 td )du—i—t/(l 3 dn )dn

in the second case, we see that the measures above belong to M for all sufficiently small
t if the density of v~ with respect to p or with respect to 7 is bounded, that proves
(3.14). O

Remark 3.2. The statement of Lemma 3.3 is, in fact, independent of the topology chosen
in the set of measures. In contrast, the eract form of the tangent sets depends on it.
Assume that the topology satisfies the following property: for any p-integrable function h
the sequence of measures p,(+) = [, min{hi(x),n} dp converges to [, h(x)dpu (this is true,
e.g., for the total variation convergence and hence for all weaker types of convergence: set-
wise, weak etc.) Then the boundedness of the derivatives can be omitted from (3.13) and
(3.14). Indeed, in this case the closure of the set in the right-hand side of (3.13) coincides
with {n € M : = < u}. But Tiu(p) is closed, so we get the inclusion

Tha(p) 2 {n €M : 7~ < p}.
The same argument applies to (3.14), since Ti4(p, n) is also closed.

Proof of Theorem 3.2. By Lemma 3.3 and in view of Remark 3.2, it suffices to prove that
the tangent cones are contained in the families in the right-hand sides of (3.11) and (3.12).

Assume that = &« p, i.e. there exists B € B(X) such that pu(B) = 0 and n~(B) =
e > 0. Then (u+1tn)(B) = —te. But v(B) > 0 for all v € M so the total variation distance
from p + nt to M does not have order o(t).

INRTA



Analyse Variationnelle 15

Similarly, if v is such that neither » < »* nor v~ < p holds, then there exists a Borel
set B such that v~ (B) =& > 0 but n*(B) = u(B) = 0. Therefore (u + nt + vt?/2)(B) =
—12/2 ¢ and thus the distance between u+ nt + vt?/2 and M is of order at least O(t%). O

It is possible to show that Theorem 3.2 holds also for the space of measures with the
topology induced by the set-wise convergence.

Consider now the family Ml of measures which are absolutely continuous with respect
to a certain reference measure A and denote by Mf\v its convex subset

d
MN:{MGMA : ﬁgz\f}. (3.15)
If v € M, then ¢, stands for its Radon-Nikodym derivative with respect to A. Note that
the total variation distance between i, uo € M) equals

A, p2) = s — i) = / 16 () — By ()| A(d)

X

Theorem 3.4. If M), is equipped with the topology of total variation convergence, then
the first order tangent cones are given by:

T, (1) = {n : n < Xand ([to,- —du]", ) =o(t) as t| 0} ; (3.16)
Ty () =A{n = n < X and ([té)- — du] " A) + (b + tdyr — NI, A) = o(t) as t| 0},
(3.17)
where [a|T = max{a,0}. In particular,
n € T, (1) implies n~ < (3.18)
n € Ty (1) implies n~ < p and n*t({x : ¢u(x) = N})=0. (3.19)

Proof. If n &« X then d(u + tn, M) ) has order ¢, since p < A. Therefore, such 1 does not
belong to Thr, . If n < A, then

- tn.103) = it [ 16,(5) + 16,(2) = ¥(a) i)

X
= / |0u() = 0y (2)] Ty, (2)—t9, _ (x)<0 Aldix)
X

that has order o(t) by (3.16). Clearly, this is not the case if (3.18) is violated. Finally,
(3.17) and (3.19) can be derived similarly. O
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3.3 Equality and inequality constraints

Many interesting functionals of measures have derivatives which can be represented in the
integral form. Then it is possible to simplify conditions of Theorem 3.1. Below we consider
a practical case of finitely many constraints of the equality and inequality type:

H; =0 =1,... :
Z(:u) ’ Z‘ 9 >, (320)
Hij(p) <0, j=m+1,... k.

In this particular case one has Y = Y* = R¥, H : M — RF, €' = {Ogm} x (R k=™,
R_ = (=00, 0], and u-y is the scalar product of vectors u and y in R¥.

Theorem 3.5. Assume that the conditions of Theorem 3.1 are satisfied and there eicjst
measurable functions Vf : X — R and h; : X — R, ¢ =1,...,k, such that for all n € M

Df(mnl = (Vf,n) and DH(@)nl = (h,n) , (3.21)

where H = (Hy,...,Hy) and h = (hy,...,hg). Let It be a regular local minimum of f
subject to (3.20). Assume that there exists € > 0 such that

(i) I—eg)meAand(1+e)meA; (3.22)
(il)) m+té,€Aforallz € X andt € (0,¢]. (3.23)

Then there exists u € R™ x (R_)*~™ such that

h(x) 17— a.e.,

3.24
h(z) forallxz € X. (3:24)

Proof. First of all note that a measure n belongs to Ty (z) if and only if the distance from
7t + tn to the set A is of order o(t) as ¢t | 0. Condition (3.23) implies that @ + teé, € A for
all t <1, so that €6, € Ty(fr) for all x € X. Furthermore, (3.22) and convexity of A imply
that su € A for all s € [1 —e,1+ ¢|, whence both ez and —e7 belong to T (7). Therefore,
inequality (3.5) writes

(Vf —wuh,n) >0 forall neTy(n),
so substituting n = €6, yields the inequality in (3.24). Finally, choosing n = 7 and

n = —en consequently yields (Vf — w-h, 1) = 0, whence the non-negative function Vf(x)—
u-h(z) vanishes for p-almost all z. O
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Remark 3.3. In the case of constraints (3.20) satisfying (3.21), the regularity condition
(3.2) becomes the Mangasarian-Fromowitz constraint qualification (cf. [7, p.274]) that is
the linear independence of the gradients hq, ..., h, and the existence of a measure n € M
such that

{(m,n>=0 forall i =1,...,m, (3.25)

(hj,m) <0 forallje{m+1,... k} verifying H;(z) = 0.

Without the inequality constraints (3.25) trivially holds for 5 being the zero measure.

Remark 3.4. Conditions (3.22) and (3.23) can be replaced by the condition that +tm €
Tp(p) and t6, € Ta(fr) for all € X and sufficiently small ¢. Theorem 3.2 shows that this
is indeed the case if A = M.

Remark 3.5. Relation (3.24) has been obtained by applying (3.5) to some specific measures
n from the tangent cone Ty (f). It is easy to see that if, in addition, fi|p € Ta(fz) for all
Borel sets B (for example, if A = M or A = M, ), then the first order conditions from
Theorem 3.1 are, in fact, equivalent to (3.24).

4 Special optimisation problems

In this section, the general results of Section 3 are applied to derive specific necessary
conditions for extremum of the functional f(y) = E, F(IT) defined on g € M by means
of (2.1). We address problems with various types of constraints: fixed total mass, fixed
barycentre, optimisation of the mark distribution and discuss the case of a high intensity.
The class A in which we search the optimum will be the set M of all positive measures,
the set M, of the measures that are absolutely continuous with respect to some measure A
and finally, the class of product measures with one fixed component (representing marked
point processes with a fixed distribution in the position space).

4.1 Measures with a fixed total mass

In most examples considered in Section 5 below we deal with the following optimisation
problem:

E,F(II) —inf, peM, wX)=ua, (4.1)

called the fized total mass problem with the total mass a. We assume that the condition of
Corollary 2.2 holds, so that E, F' has two Fréchet derivatives. If H(u) = p(X) — a, then
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18 I. Molchanov and S. Zuyev

the condition H(p) = 0 singles out the family of measures with the total mass a. In this
case DH(pu)[n] = (1,7) = n(X) and Theorem 3.5 applies with A = M, m =k = 1 and
hi1 = 1. Namely, if 7 € M solves (4.1), then there exists a constant u € R such that

§E (r)=w @u—ae., (4.9)
Ag(z)>u forallz e X.

Take now a measure 1 € Tyng-1(o) () such that <ZE777> = 0. The second order
optimality condition (3.4) now reads

(Az,v) +//A_3(x1,x2)n(dx1)n(dx2) >0 (4.3)

for all v € Ty ;1 (g (1)
By (3.9) n(X) = 0, whence

/ AZ (i1, 12) n(day) = / (BalF (I + 83, + 62,) — F(ID] + 257 (21)) n(da)
= /E#F(H—i-ém1 + 64,) n(day) .

and (4.3) transforms into

(Ag,v)+ // Eg F(IT + 65, + 62,) n(dx1)n(dzs) > 0. (4.4)
Choose

77(') = 6:r1 - ﬁ(' N Br(xZ))/ﬁ(Br(xZ))z

where Az (z1) = Az(22) = v and B,(z) is a ball of radius r centred in z. Then by
Lemma 3.3 and (3.9) we have

dn~
nefn <m =

7 is bounded and 7(X) = 0} C Tyng—1(0) (77),

and, in addition, <ZE777> = 0. Moreover, n~ converges weakly to ¢,, as r vanishes, so if
the function Ez F(IL + &,, + d,,) is continuous for z>-almost all (21, 22), then (4.4) gives
the following second order necessary condition for minimum:

Ep[F(I1 + 26,,) + F(IT + 26,,)] > 2Bz F(IL+ 65, + 6,,) (4.5)
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for m-almost all z1 and xy. If F does not depend on multiple points, then (4.5) becomes
FpF(T1 + 8,,) — F(T)] + B (T + 8,,) — F(T)] > 2Bl F(Tl + 6, +6,,) — F(I)].
Thus, under (4.2), the condition (4.5) is equivalent to
Eg F(TT+6,,) > Eg F(TT+ 6, + 64,) for fi*-almost all (w1, x9). (4.6)

Remark 4.1. One can give a probabilistic meaning of the constant u intervening in (4.2).
Assume that 7 satisfies (4.2). Then for m-almost all = Slivnyak’s theorem (see, e.g. [26,
p.121] and [25]) yields

uw=Ag(x) = EglF(I1 4+ 6,) — F(II)] = E}, F(II) — Ex F(IT),

where Ef is the local Palm expectation (the expectation ‘given a point of the process at
location z’). Therefore by Campbell’s formula (see, e.g. [26, p.119])

0= [(Bp F(D) - B F(1) A(dny) = [ B P j(dor) — m(X) B F(D
— Ex[F(IDI(X)] — a EZ2 F(II).
Thus the constant w in (4.2) equals
E. [F(H)(a—ln(X) - 1)] = cov{F(IT),a"'TI(X) — 1} .

4.2 Measures with a fixed barycentre

Let X C RY, Y =R¢, and

Hw = [ ouis).

X

The condition H(u) = z for some z € R? means that the barycentre of y is located at z.
Clearly, DH(u)[n] = (h,n) for h(z) = z, € R?. By Theorem 3.5, if & minimises E,, F
under the condition H(u) = z, then

{Z# (x) =vax J1—ae.,

_ (4.7)
Ag(x) >vax forallz e X

for some v € R?. Thus, (4.7) means that Az (z) is linear for fi-almost all .

One can show similarly, that if 7 provides a minimum over all measures with a given
total mass and a fixed barycentre, then the function Az (z) must be affine for f-almost
all z.
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20 I. Molchanov and S. Zuyev

4.3 Optimisation in the class of absolutely continuous measures

In this section we consider optimisation problems in the spaces M, and MJAV of absolutely
continuous with respect to A measures introduced in Section 3.2 (see (3.15)). As above,
¢, denotes the Radon-Nikodym derivative of a measure v with respect to A. Recall the
definitions of essential extrema:

A—ess-inf f(z) = sup inf f(x);
B E:\(F)=0 B\E
A-ess-sup f(z) = inf sup f(z).

B E:\(E)=0 B\E

Note that neither My nor MJAV satisfies (3.23) so that Theorem 3.5 is not applicable. Ho-
wever, a modification of its proof allows us to obtain the following result.

Theorem 4.1. Assume that the conditions of Theorem 3.1 and condition (3.21) are satis-
fied. Let i be a regular local minimum of E,, F over u € A subject to (3.20). Then there
exists u € R™ x (R_)*~™ such that

(i) in the case A = M), one has

Ap(z) —wh(x) =0 L — a.e.,
{/\uess—inf (Zﬁ (x) — uh(x)) >0; (4.8)

(ii) and in the case A = MY one has

Az () —uwh(z) =0 Bl{greny — ae.,
A-ess-Sup (4 — N} (Az (x) —wh(x)) <0; (4.9)
A-ess-infrys oy (Az (z) — wh(z)) > 0.

Proof. Let p(x) = Az (z) — u-h(x). By Theorem 3.4 we have A|p € Ty, for all Borel sets
B. So taking n = A|p in (3.5) we obtain (p Ip,A) > 0 for any B that is equivalent to the
second statement of (4.8). Put now consequently n = &efi| gnfg, >} € Thr,- Then (3.5)
gives p(x) = 0 for fi-almost all = from {¢g > c}. Since ¢ is arbitrary, we get the first

statement of (4.8). If p satisfies (4.8) and n € Tj, , then (3.16) and (3.18) yield

dn—
<,07 77> = <p¢n+7/\> - <p67i7—ﬁ7ﬁ> > 07
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because the first summand is non-negative and the second is 0. Thus, (3.5) turns into
(4.8).
The case A = Mﬁ\v is treated similarly. Taking n = )\|Bm{¢ﬁ§N75} € TMQI gives

A—ess-inf p(z) > 0

{pp<N—¢} ( )

and by arbitrariness of ¢, it implies the third statement of (4.9). Then 1 = —¢fi| pn{p, =N}

gives the second one. Finally, n = £¢Ji| pnfe<g,<N—-} vields p(z) = 0 for any ¢ > 0 and

fi-almost all x such that ¢ < ¢p(2) < N — ¢, that implies the first statement in (4.9).
Again, if p satisfies (4.9) and 7 € Ty , then by (3.17) and (3.19) one has

dn~ _ dn~ _
<p7 /\> = <p¢17+ ]I¢g<N7 /\> - <pﬁ I[¢g<N7 M> - <pﬁ Hd)ﬁ:N? M> >0,

so that (3.5) implies (4.9). O

4.4 Optimisation of the mark distribution

Assume that the phase space X is represented as a direct product of a Polish space Z
called position space and a complete separable metric space Q — mark space. We are
looking for a minimum value of E, F' on the set of such measures y that are represented
as a direct product of a fixed o-finite measure A on Borel o-algebra B(Z) of subsets of Z
and a probability measure on B(Q). Note that A may not be a finite measure on Z. Let
A be the family of measures © = A\ x k obtained for all finite measures «. Consider the
minimisation problem

E,F —inf forpe€A, (4.10)
subject to
Ho(pu) = p(ExQ) — A(E) = 0;
H;(p) =0, i=1,...,m; (4.11)
H]-(u)go j:m+1,...,k.

for some E C Z with 0 < A(F) < oo. Note that the first constraint yields x(Q) = 1.
Assume that for all II one has F(II) = F(II|w ), where W C X is a fixed Borel set with
u(W) < oo. Assume that (2.2) holds with a bounded ¢, so that Corollary 2.2 is applicable
and E, F(II) is differentiable with respect to s.
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Similarly to Lemma 3.3, it is possible to deduce that
die—
TA(AXRE) D {p=Axk : k= <& and ;—E is bounded} .

Following the lines of the proof of Theorem 3.5 we find that if 7 = AxK is a regular minimum
point for Problem (4.10) and the derivatives of the constraints can be represented in the
form H'() = (h, ) for some h = (Tpxg,h1,,...,hr) : X — REFL then there exists
u = (ug,u,...,u) € RMF! x RE=™ guch that

{fZ[Zu(z,q) —u-h(z,q)] A(dz) =0 for F-almost all ¢ € @,

= (4.12)
JAA7 (2,¢) —u-h(z,¢)] Mdz) >0 forallqeQ.

Here the inequality is obtained for 7 = A x§,, while the identity can be deduced taking
n==+Axek. If k=0, then (4.12) implies

N Adz) =u for § —almost all ¢ € Q,
[, A Adz) >u forallqgeQ

for some u € R, which may depend on E.

(4.13)

The situation simplifies if A is a finite Haar measure for a group of shifts in Z. Define
0.B = z+ B for any B € B(Z) and z € Z. This group of shifts in Z generates a family
of shifts acting on a measure v in Z by the rule: (6.7)(B) = v(6,B) for all B € B(Z);
and a family of shifts acting on u = yxk € M by (0.u)(BxK) = p(0.B x K) for all
BxK € B(Z) @ B(Q).

Theorem 4.2. Assume that for all = € Z one has 0.\ = \, F(6,I1) = F(I) and the
derivatives of the constraints h;(z,q),i=1,...,k, do not depend on z. Then if T = AXE
is a regular local minimum in Problem (4.10), H = (Hy, Hy,, ..., Hy) is twice Fréchet
differentiable at 7@ with the derivatives allowing representation H'(ft) = (h, ) for some
h=,hi,,...,h) : Q — RFFL then Az (z,q) does not depend on z and there exists
u € R X RE=™ guch that

§E (z,q9) =u-h(q) R — a.e., (4.14)
Az (z,q) > u-h(q) for all g € Q.
Proof. Tt suffices to note that
E) F(0.11) = Eg_y F(IT) = Eyy F(IT).

Thus the integral in (4.12) equals A\(Z)(Az(z,¢) —u-h(q)) and the statement of the lemma
follows easily. O
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4.5 The high intensity case

Consider optimisation problem (4.1) and assume that a measure aj, minimises E, F(IT)
over all measures v with the total mass a. Unfortunately, in most cases the problem
of finding explicitly the optimal measure is hardly achievable, as examples in Section 5
readily illustrate. However, even if the measures u, are not available for each fixed a, in
many cases it is possible to find their limit g as @ — oo (assuming that p, converge to
i in some sense). It is natural to call this limiting measure p a high intensity solution of
Problem (4.1), so that au becomes ‘asymptotically optimal solution’ of the problem with
the fixed large total mass a.

We concentrate here on the case when the phase space X is a compact subset of

Euclidean space R? such that X coincides with the closure of its interior )% . In this section
A denotes the d-dimensional Lebesgue measure.

Let 4 denote the homothetic transformation of R with the centre 2 € R? and the
coefficient a/?. These transformations of the phase space generate corresponding trans-
formations of measures defined by (yiv)(*) = v(72+). In particular, if IT = ) ¢,, then
Yall = ;6= ;- Tt is easy to see that for any measure v the distribution of 47Tl under
P, coincides with the distribution of II under Pz, (cf. [1, Prop.2.1]). Therefore for any
measurable functional F(IT) one has

Ea,ua F(H) = Eﬂg F(’Y;E ) ) (415)

where fig(s) = apq(y2-1+). This change of the phase space formula is the key to our
method. The idea is the following. Assume that u, are absolutely continuous with respect
to A for all sufficiently large ¢ with the corresponding densities p,. For each a, the measure
fiy is concentrated on the set y7 X and has the density p,(y7_,y) there. If, for simplicity,
all p,(x) are continuous at = and converge as a — oo to some limit p(z) > 0, then
the restriction i |y of the measure ¥ onto any compact set W C X containing x inside,
converges in total variation to the measure p(x)A|w being the uniform measure with density
p(x) on W. One may expect that if A(x;y21) o< g(a)T'(x; 1) for some normalising function
g(a) and a random variable I'(x; II) that ‘depends mainly on II|y’, then

Za,ua (z) = Eqp, A(z; 1) = E;q Az v, ) o< g(a) E, )\ [(;10).

Since by (4.2) the left-hand side is a constant, then it might be possible to find p(x) by
equating the right-hand side E, ;5 T'(2;1I) to a constant.

To make explicit what is meant by ‘depends mainly on II|y’, we need the concept of
a stopping set that is a multi-dimensional analogue of a stopping (or optional) time, well
known for temporal stochastic processes.
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Let Fp be the o-algebra generated by the events of the form {v € N': v(ANB)=n},
where A is Borel and n > 0. A random compact set S = S(II) is called a stopping set (with
respect to filtration {Fr}) if {S C K} € Fy for any compact K C R?. Each deterministic
compact set is a stopping set. Probably, the simplest non-trivial example of a stopping set
is the random closed ball centred at a fixed point xg with the radius given by the distance
from xg to its k-th closest neighbour from IT (if IT contains less than k points, S(II) is
equal to a fixed compact set, e.g., X). The stopping o-algebra is the following collection:

Fs={Ee€Fx : EN{SC K} € Fxk for all compact K}.

(For details and properties of the stopping sets in the Poisson framework see [30]).
Now we are ready to formulate the main result of this section.

Theorem 4.3. Let au, be a family of measures solving the Problem (4.1) for the fixed
total mass a. Assume that for an inner point x € X the following condition on j, holds:

(M) for all sufficiently large a, j, are absolutely continuous with respect to \ with densities
Pa; and there exists a finite double limit

lim p,(y) =p(z) > 0. (4.16)

Yy—x
a— 00

Furthermore, assume that for the same x the random variable A(x; IT) satisfies the following
conditions:

(D) (Path differentiability) For some positive function g(a) = g(a,z) and P y-almost all
I the variable T, = Ty(2; 1) = ¢~ '(a)A(z;42TD) has a limit T = T'(z;11) as a — oo
such that

0< Ep(:r)A F(l’;H) < 00. (4.17)

(L) (Localisation) There exist a family of compact stopping sets S, = S, (x;II) and a
compact stopping set S = S(x; 1) such that T, (x; 1) is Fg, -measurable for all a > A;
[(x; 1) is Fs-measurable; and for any compact set W containing x in its interior

Us, (z;mew — Ugmcw as a — oo for Py-almost all I1. (4.18)

(UI) (Uniform integrability) There exists a compact set W containing x in its interior such
that

ali—>nolo Eﬂ: |Fa| Hgag,ygw =0. (419)

b—o00
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In addition, there exists a constant M = M (W, b) such that

|To(z; )| < M for all @ > A and I such that S, (z;11) C Ay W. (4.20)
Then,
lim |Egz Do(2;10) — By T2 )| =0 (4.21)
and
A,
lim _“A =1. (4.22)
=00 Aap(x))\ (x)

Proof. Let the conditions of the theorem hold for z € X. Consider W from (UI) and
denote W, = 4y’ W, for short. Then

| Epe To = Epen I < [ Bz Lo Ts,cwy, — Epon I Tscw, |
+ Epz |Tal Ls,gw, +Epayn [T Lsgw, -
By (4.17) and (4.19) the last two terms can be made arbitrarily small for all sufficiently
large a by an appropriate choice of b. For that b the first summand is bounded from above
by
| Ep: Lo Ts,cw, — Epon I Tscw, | (4.23)
< | Big Ta Ts,cw, = Epayr Ta Ts,cw, | + By [Ta Ts,cw, =T Tscw, |
The second term in the right-hand side of (4.23) vanishes as a — oo by (4.18) and the
bounded convergence theorem.
To estimate the first summand in (4.23) we can use the stopping property, due to which

[y s, cw, is Fw,-measurable. Since for Poisson processes the restriction of Pgz onto Fyy,
coincides with P, then (4.20) yields

A% w0

| Ejiz Ta Ts,cwy, — Epop Ta Ts,cw, | = [Bpepy, Ta Ts,cw, = Epaw, Fa Ls.cw, |
< MIPy1, — Pyoysg, | < 202l — p(e) N | (420

(cf. |13, Prop. 1.6.26] for the last inequality). But

121w — p(e) A | = / 1Pa(r? 19) — pla)| dy.
Wy
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By Condition (M) the function under the integral is uniformly bounded for all sufficiently
large a. Thus by Fatou’s lemma

lim sup 32w, — p(z)Alwy || < / lim sup [pa(v719) — p(a)| dy

a—00 a—00
Wy

Again, Condition (M) guarantees that the expression under the integral is zero and thus
(4.21) follows.
Finally, (4.17) yields

ape () Epg Ta(a;1T)

A
ZoLp(a:)/\ (x) Ep(a?)/\ F(x’ H) 7

and (4.22) follows from (4.21). O

Corollary 4.4. For A-almost all x satisfying the conditions of Theorem 4.3 with the func-
tion g(a) not depending on x, one has

Ep()x T'(z; ) = const,. (4.25)

Proof. Let X denote the set of all x € X satisfying the conditions of Theorem 4.3 with
the function g(a) not depending on z. Assume that A\(X() > 0 (otherwise, the statement
of the corollary is trivial). Let

Xe=U Ni{x: pa(z)>c}nXp.
A>0a>A

Since Condition (M) is satisfied for A-almost all x € X, then up to a null-set we have
X.1Xp as £]0. Thus there exists ¢ > 0 such that \(X.) > 0. By (4.2)

Agp, () = g(a) Egz Ty (23 I1) = const

for j1,-almost all 2. Therefore, Eje I'y (23 I1) = C, p1q-almost everywhere for some constants
C,. Take a sequence 0 = {a,} such that a, — oo. Since p, < A then ‘“for p,-almost
all @’ effectively means ‘for A-almost all = such that p,(x) > 0’. Therefore there exists
a set ©(c) with A(©(c)) = 0 such that Egz T, (2;1) = C, and (4.21) hold for all
x € ©%c) N X.. Thus there exists lim, ., C,, = C(o) that is finite by (4.17), so that
the functions Ege T'y, (z;1II) are uniformly bounded for A-almost all © € X.. Therefore,

INRTA



Analyse Variationnelle 27

understanding the limits below as A-almost everywhere limits, for any measurable B C X,
we have

B B

implying E, ;) ['(7;1) = C(o) for A-almost all # € X.. But the last quantity in (4.26)
does not depend on o, hence C'(o) does not neither. Thus (4.25) holds for A-almost all
r € X, and, thereupon, for A\-almost all x € Xy if ¢ | 0. O

The formula (4.25) is useful because the expectation E,,, I'(z;II) is usually simpler
to obtain explicitly, since this expectation is calculated for a homogeneous Poisson process.
As we show in the examples below, the density, p(z), of the high-intensity solution yu, can
be easily derived from (4.25).

Note, also, that Condition (M) can be relaxed to

(M) there exists a number p(z) > 0 such that

Ka_1{s € STL: limsup |pa(x 4+ a=Y%) — p(x)] > 0} =0,

a— 00
where kq_1 is a standard Haar measure on the sphere Se-1,

It should be noted that the absolute continuity of the measures u, imposed by Condi-
tion (M) was used only in showing that the term (4.24) vanishes. This can also be the
case under rather weaker conditions like the weak convergence of il to u = p(z)\ and
additional assumptions of the smoothness of the functionals I'y(x;II). If it is true then
Corollary (4.4) could be used to find p(x), even if the measures y, are atomic but the
atoms are accumulating with the density p(z) as a — oc.

Usually a difficult part in specific applications of Theorem 4.3 is establishing the uniform
integrability Condition (UI). Theorem 4.6 below gives useful sufficient conditions that
simplify verification of (UTI) for the measures p, satisfying Condition (MG) below and a
class of stopping sets that we call thick. Note that (MG) is a ‘global’ variant of (IM).

(MG) There exists a positive constant N such that

(i) pa(z) < N for all z € X and all sufficiently large a;
(ii) Condition (M) is satisfied for A-almost all z € X.
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Definition 4.1. Compact set K is called (x, «)-thick if there exists a closed ball B C K
containing = such that \(B) > aA(K).

Lemma 4.5. Assume that (MG) is satisfied, x is such that p(z) > 0 and a compact K
containing x is (x, «)-thick for some « > 0. Then there exists 6 > 0 such that

A2(K) > M) . (4.27)

Proof of Lemma. Denote U, = {z € X : liminf, .o pa(z) > 2m}. By Condition (MG)
for sufficiently small ¢ > 0 there exists 0 < m’ < p(x)/2 such that

(i) Ba:(x) C Uy, for all m < m/.

Since US, | © = {z € X : liminf, .oope(z) = 0} as m | 0, then (MG) implies
limg oo A(US,) = A(©) = 0. Therefore

(ii) X \ Uy, does not contain a ball of radius ¢ > 0 for all sufficiently small m.

Choose now m so that both (i) and (ii) above hold. Since X coincides with the closure of
its interior, the function

AB:(y) N Un)

1) = 3By n x)

is continuous for » > 0 and y € X. By the assumption of the lemma, K is (z, «a)-thick,
so that there exists a ball B,(y) C K containing x. Let us show that inf{f(r,y) : x €
B.(y)} > 0. For this, note that if r < ¢ and = € B,(y), then B,.(y) C Ba.(x) whence
flryy) = 1. Also, f(r,y) = MUpn)/A(X) = const > 0 if » > diam X. Furthermore,
{(r,y): e<r<diamX, y € X,z € B,(y)} is compact in [0,00) x R?. Since the function
f(r,y) is continuous and non-vanishing on this set, its infimum is strictly greater than zero.
Thus,

flry) >8>0

for all r > 0 and y € X such that x € B,.(y). By definition of U,,, the functions p,(x) are
bounded from below by m for all sufficiently large a and x € U, that yields the following
sequence of estimates:

fig(K) > jig(B) = aﬂa('ycaf—lB) > aﬂa(ryz—lB NUm)
> amA(v2-i BN Upy,) > am&' A(vi-1 B) = m§'\(B) > am§' \(K),

where B = B,.(y), for short. So the statement of the lemma follows with 6 = amé’ > 0. O
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Theorem 4.6. Assume that the measures p, satisfy Condition (MG). Assume also that
in notation of Theorem 4.3 for A\-almost all x € X

i ere exists a compact se containing x in its interior suc at for a >0 an
i) th St pact set W taining x in its interi h that f 116 >0 d
e>0

Jim Egy |To|'** Togpw = 0; (4.28)

b—oo

(ii) there exists o > 0 such that for Py-almost all I and all sufficiently large a one has
So(x; ) C S(x; 1) and S(x;10) is (x, )-thick.

Finally, assume that at least one of the following two conditions is satisfied:

(iiiy) for 6 given by Lemma 4.5 with K = S(x;1I) and N as in (MG) there exists € > 0
such that

(N) (1+E)H(S($§H))
Esy 5 < 00

(iiiy) for N as in (MG) there exists ¢ > 0 such that

1—e)NA(S(z;10))

ENAe( < 00.

Then Condition (UI) is satisfied for A-almost all x € X.

Proof. For the proof we need the following change of the intensity measure formula proved
in [30, Prop.2|. Let S be a compact stopping set, f(II) is Fg-measurable and vy, vy be
two o-finite measures such that v; < vo with density ¢(z). Then

E,, f(II) = E,, f(I)exp {m(S(I) = (SN} [ alx)- (4.29)

z,; ETINS(II)
By (ii) we have S, = S,(a;1I) C S(a;1) = S. Therefore Fs, C Fg, whence ', is

Fs-measurable for all a. Using (4.29) and Lemma 4.5 for the set S we can write

Ei: [Tol Is,gw, < Bz ITal Tsgw, = B |Tal Tsgw, exp{\(S)—jiz($)} [[ palri-12:)
z; €TINS

< By [Tu| Tsgw, exp{(1 — HA(S)INTE) | (4.30)
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where N is the same as in Condition (MG) and W, = /W, for short. Then, writing
NTS) as §1105) (N/6)11(5) we can again apply (4.29) to see that (4.30) equals

€
€

N 1cs) 1+e 1+
Esy Dol Tsgw, | — < |:E§>\|Fa| c ]ISZWZ,}

1
; |:E§>\(N/6)(1+E)H(S) 1+e 7

for any £ > 0 by Holder’s inequality. The second factor is finite if Condition (iii; ) holds,
while the first is uniformly in ¢ > A small, so Condition (UT) is satisfied.
If Condition (iiiz) is satisfied then apply (4.29) to write (4.30) as

€ 1
14¢

S lsgw, | [Ewaexp{(1+)(N - oS} T

B [Tal Tsgw, exp{(N = §)A(S)} < [Ew [La|

Here the second factor is finite by (iiis ) provided ¢ is chosen so small that (14¢)(N—§) < N
and (UT) follows similarly. O

5 Applications and examples

In this section we give, first, a few illustrative examples of applications of our methods
before passing to more serious models.

5.1 Symmetric statistics
Consider two examples where the functional F' is related to symmetric statistics defined
on a Poisson process.

Ezample 5.1. (First-order symmetric statistics.) Let X be a subset of R?. The first order
symmetric statistic F(IT) =} f(2;) with a bounded function f(z), z € X, is a trivial

example. In this case A, (z) = f(x) and A_z(x,y) = 0 for all u. The fixed total mass
problem is trivial, so that the necessary condition is validated by any measure concentrated
on the set of global minimum points of f(z), x € X.

Ezample 5.2. (Hard-core type functional.) Let X be a convex closed subset of R? and let

1
FM) =5 > Moz

@i,z €11 i

for some r > 0. The functional F(II) appears, for instance, in the definition of the Strauss
process [27]. This functional can be represented as the second order symmetric statistic
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on IT (see Example 2.1) with f(2,y) = j,_yj<,. Clearly, (2.2) holds and Ay (z) =
(B, (x) N X), where B,(x) is the ball of radius r centred at x. The necessary condition
for the problem with the fixed total mass is

a(B(r)NX)=u T —ae.,
a(By(z)NX)>wu forallze X.

It is hard to express explicitly the optimal measure in this model. A numerical solution
can, however, be obtained using the steepest descent type algorithm described in Section 6
below.

5.2 Optimal design of experiments

Consider the following linear regression model. Assume that at any x € X it is possible to
observe a random variable y(x) represented as

k
y(x) =D i fi(x) + dw(x) = f(x)8 + duw(x), (5.1)
j=1
where 8 = (B1,...,0) " is a vector of unknown parameters, f(x) = (fi(x),..., fe(x)) is a
row of linearly independent on X functions and dw(x) is an orthogonal white noise, so that
Ew(r) =0 and cov(w(zy), w(ry)) = 02 M,,—,,. Given n observation points x1,...,z, the
least square estimator 8 = 3(x1,...,2,) minimises
n k 2
> (vl =Y Bifiten)) (5:2)
=1 7=1

The theory of experimental design addresses the problem of choice of the observation points
in order to achieve better properties of the estimator 3. As a criterion for optimality one
may take, for example, the so-called generalised variance that is the determinant of the
covariance matrix || cov(j;, 3;)||. Specifically, let £(dx) be a probability distribution on X
describing the frequency of taking = as an observation point. Then it can be shown that
the above covariance matrix equals o2 M (¢)~!, where

M(E) = / £ f () €(de)

is the information matriz (cf. [2] for details). The measure ¢ that maximises det M () is
called D-optimal design measure. Note that the objective functional is a concave functional
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on the space of measures, so that any maximum found will certainly be global. The general
equivalence theorem by Kiefer and Wolfowitz [15] implies, in particular, that the measure
& provides the D-optimal design if and only if the function

d(x,&) = f(@)M~ (&) f(x)T

called the standardised variance of the predicted response at point x, achieves its maxima
at the atoms of £.

In general, given a goal function W : RF R, a U-optimal design measure & minimises
U (M(€)) over all probability measures on X. The technique developed in Section 3 allows
us to obtain general equivalence type theorems. Indeed, if m;; = [ f;(z)f;(x) &(dx) denotes
the (i, j)-h entry of the information matrix, then the Fréchet derivative of m;; considered
as a functional of & equals Dmj;[¢] = (fifj, ). Therefore

DYOHE)] = 3 G @D (€] = G @) () = (DY)
where
Do) = [ G|

Since the total mass of ¢ is fixed to 1 then applying (3.24) we obtain, similarly to (4.2),
that the optimal £ satisfies

{f(m)D‘If(M(f))fT(x) =u £-ae.,

f(2)DU(M(E)fT(x) >u forallaz e X. (5:3)

In particular, if U(M) = —logdet M then D¥ = M ! and we obtain the Kiefer-Wolfowitz
theorem for D-optimal designs, cf [14]. An advantage of this approach is that one can easily
integrate additional constraints on the design measure, like, for instance, the boundedness
of the density discussed in Section 4.3, see also [8]. These issues will be discussed in details
in a separate paper.

Consider now a problem where the observation points are distributed according to a
point process N and one can control them only through the process’ intensity measure .
In this case the fixed total number of points n is replaced by the fixed total mass constraint
#(X) = a. Then it is possible to choose the estimator 3 = 3(u) in order to minimise

k 2 k 2
Bx 3 (so0 =2 8i650) = [ (s = S si@) wtdn) (5
7=1 7=1

r;EN X
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(where we have used the Campbell’s theorem for the last equality) and to choose p after-
wards to minimise the generalised variance of 3. From (5.4) it is clear that this approach
is equivalent to the construction of a D-optimal design, so that the solution is given by

uw=ak.

It is also possible to use another approach which is more natural: define 5 as in the
standard regression model (5.2) thus letting it to be a functional of a configuration of the
process N, and choose then i that maximises E det M (N), where

N) = [ £ #@) N(do).

We will call such @ a P-optimal design measure.

If the process N = II is Poisson then putting F(IT) = det M (II) in (4.2) and assuming,
for simplicity, that all f;(x) are bounded on X, we get the following necessary condition
for the P-optimal design measure 7z (note that this is a mazimisation problem)

§E (r)=w u—ae., (5.5)
Ag(x) <u forallz e X.

This condition provides an analogue of the general equivalence theorem for P-optimal
designs. The stochastic gradient in this problem is given by

A(z;TT) = det M(TT + 6,,) — det M(IT) = det(M () + f(z)" f(2)) — det M(TI).
Recall that for any &k x k positive definite matrix A and a 1xk-row b one has

det(A+b"b)

—1=0A"1p"
det A ’

see, e.g., [28]. Therefore

A, (z) = B, det M(IT) f(x)M (1) f(2)T = B, det M(IT) d(x, II)
k

= 3 (1) fi(a) () By det / Fa0)T Fiy) TI(dy)

2,7=1

where f3(y) is the row of f,,(y), m € {1,...,k} \ {¢,7}. In particular, if £ = 2, then

— e /fz u(de) + 3 /f1 u(dt) = 251 () fola /f1 Vot ().
(5.6)
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If X is a compact subset of R and all f1,..., fi are polynomials of the highest order
n, then A, (x) is a polynomial of order 2n. Therefore, (5.5) implies that 7 has at most
(n+1) atoms.

Example 5.3. (Simple linear regression.) Let X be a subset of the real line. If fi(x) =1
and fo(z) = x, then (5.1) is the simple linear regression model. Then (5.6) yields

A, (2) = 2* = 2417 + as,

where
a; :/tlp(dt), i>1. (5.7)
X
Therefore if X = [s,t] is a segment, then the optimum design is concentrated at one or

both its end-points. If u({s}) = w, then A, (s) = (s + )>(1 —w) and A, (t) = (s + t)*w.
If w =0, then A, (t) < A,(s), which violates (5.5) because t is a support point of
ft. Similarly, the case w = 1 is excluded. Thus, 0 < w < 1, whence A, (s) = A, (t)
and w = 1/2. Therefore, the P-optimal p assigns equal weights to the end-points of the
segment independently of its location.

Ezxample 5.4. Let X = [s,t] C R and let fi(z) =1 and fo(x) = g(z) for some function g.
If ¢ is monotone, it is possible to show that the P-optimal design 7 assigns equal weights to
the end-points of X. The problem is more interesting if g is not monotone on X. Consider
a particular case when g(r) = 2% and s < 0 < t. By analysing the expected first order
difference

A, (x) = 2" = 2a22% + a4

it is possible to show that if |s| < |¢|, then the P-optimal design i assigns equal weights
to 0 and to . Assume that X = [—,#] is a symmetric interval. If ¢+ < 27"/ then 7
assigns equal weights to the end-points of X. Otherwise, m({—t}) = m({t}) = 1/(4t*) and

A({0}) = 1 - 1/(21%)

Ezample 5.5. (Quadratic regression through the origin.) If X = [s,t] C R, fi(x) = x and

fa(x) = 22, then (5.1) yields the quadratic regression through the origin. Now (5.6) yields
A, (z) = asz® — 2a32% + aga?,

where a; are given by (5.7). Therefore, the P-optimal design is atomic and has at most 3
atoms. If X = [0, 1], then the optimal p has at most two atoms, one at « € (0,1) and the
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other at point 1. It is easy to see that a one-point design does not satisfy the necessary
condition (5.5). Assume that p({1}) = w. Then a; = /(1 — w) + w, whence

Ay (2) = (@21 —w) +w)at — (@*(1 — w) + w)z® + (a*(1 — w) +w)a?.

Then the derivative of A, taken at x = « is given by 2(1 — w)a(2a® — 3a +1). Since a
is the point of a local maximum of A, (x), we get a = 1/2. By comparison of A, (a) and
A, (1), we can easily find that w = 1/2, so that 7 gives equal weight to = 1/2 and 1. Tt
is easy to check that

— 5 9 17
A _ 2.4 3, 10 9
T TR TR
satisfies (5.5).

5.3 Optimal placement of stations

Point processes find applications in modelling of telecommunication networks. In [4] and
[10] the following model of the topology of a two level telecommunication system was
considered.

Let g, II be two independent Poisson process on a compact Borel set X ¢ R? (usually
R?) with the intensity measures v and p, respectively. The process Iy represents the
subscribers of telecommunication services and II represents the stations or concentration
points. Each station x; € II serves its zone Z; = Z;(II) consisting of those points of X
which are closer to x; than to any other x; € II. This system of zones constitutes a Vorono:
tessellation of X with respect to the point set II, see, e.g., [26]. Let f(y;,x;) denote the
cost of the connection of a subscriber y; € Il situated in a zone Z; to its serving station
x;. Our goal is to find the intensity measure u of the process of stations IT which minimises
the expected total connection cost:

E Z Z f(yj,zi) Mz, (y;) — inf  subject to u(X)=a, (5.8)
y; €lo z; €11

where E is the expectation with respect to the product of the distributions P, and P, of
the processes Iy and II, respectively.

We start with the simplest one-dimensional variant of this problem where the exact ana-
lytical solution is possible to obtain. Assume that X = [0, 1]; the subscribers are uniformly
distributed, i.e. v(dy) = Aody; and the cost function f(y,x) = |y — x| is proportional to
the distance for some v > 0. To exclude the degenerate case when II([0,1]) = 0, assume
that there are two fixed stations in positions 0 and 1.
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Conditioning on IT and then applying Campbell’s theorem to the process Il in (5.8),
it is easy to reduce (5.8) to the following equivalent problem:

1
E, F(IT) = Aoy E#/R IM)dy — inf subject to u(X) =a, (5.9)
0

where R(y,II) = min{|y —z;| : =; € IIU{0,1}} is the distance from x to the set ITU{0, 1}.
It is straightforward to verify that the first order difference equals

Az 1) = NS rr, (5.10)

where 7 is the distance from a point = to its nearest to the left point of the set II U {0},
and 7} is the distance from x to its nearest to the right point of the set II U {1}. By
the well known property of Poisson processes, the variables r; and r} are independent so
that =2y 'A, (z) = E,r; E,r}. Assume that 7 solves (5.9). Then, by the first order
necessary condition (4.2), Az (x) should be a constant, say, u, for fi-almost all z € [0, 1].

Note that the functions E, 7, and E,r}, x € (0,1), are strictly positive and bounded
for all 4 € M. Since the product of these expectations approaches 0 when = tends either
to 0 or to 1, the support of & must be separated from these points unless we have u = 0.
Therefore, we see that [ is concentrated on [e1,22] for some 0 < &1 < g9 < 1.

Suppose Az (71) = Az (22) = u for some 21 < xa. If i((x1,22)) = 0, then

vy =1, +x—x and ri=rl +ary—u
for all x € (z1,x2), whence

Az () =—1(Egr;1 +ao—x)(Egr}, + 22— x). (5.11)

Equation (5.11) shows that the function Az (x), z1 < x < 79, is a convex parabola taking
the value u in the points 21 and x5. Thus Az (x) < u for all # € (21, x2) that contradicts
the necessary condition (4.2). Thus, the optimal measure 7 has a connected support, and

Az (x) = u for all z from some segment.
We have

x

Epr; = /eXp{—ﬁ[w —y, ]} dy = exp{—7[0, ]} /eXp{ﬁ[O,HC —y)}dy
0

— exp(—zl0.1} [ exozlo.)} dy. (5.12)
0
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Similarly,
1-z 1=
Epry = / exp{—lx, x + y|} dy = exp{7[0, )} / exp{—7[0, = + y]} dy
0 X 0
— exp(lo.a)} [ exp (0.1} dy. (5.13)

Therefore, introducing functions

T 1
Ux) = [ exp{7[0,y)}dy and V()= [ exp{-T7[0,y]} dy
/ /
we obtain
Egry Egrl = exp{-n{z}}U(x)V(z) =u 7 —ae.. (5.14)

Therefore, fi({x}) is continuous on a segment which is the support of @, whence n({z})
vanishes identically and @ has no atoms. To meet the identity (5.14) at the boundary
points of the support of 7z, it is necessary that they were symmetric with respect to 1/2,
so that the support of @ is [¢,1 —¢] for 0 <& < 1/2.

Now (5.14) yields U(x)V(x) = u for all « € [¢,1 — ¢] and thus

U(x)V(z) + U(x)V(X) = wU'(2)/U(z) — U(x) /U (z) =0,

since V'(z) = — exp{—7[0,2]} = —1/U’(z). The solution is given by U(z) = C/\/uexp {z/\/u}
implying that the measure 7z is uniform on [¢,1 — ¢] with density e . The condition on
the total mass 72([0,1]) = a allows us to determine ¢ = (a + 2)~!.

It is also easy to verify that Az (z) > —uvy/2 = Az (¢) for all z € [0,) U (1 —¢, 1], thus
condition (4.2) is satisfied for that measure f.
Remark 5.1. If we denote the solution for the problem with the total mass a by aj,, then
[ converges in total variation as a — oo to the uniform distribution on [0,1] that is the
high intensity solution for this problem.

Consider now a multidimensional variant of the problem with non-homogeneous distri-
bution of the subscribers. In this setup even the one-dimensional problem becomes quite
difficult to solve analytically and leads to a differential equation of the fourth order. Below
we will find the high intensity solution in the multidimensional case when X is a compact
subset of R? such that X coincides with the closure of its interior.
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Assume that the connection cost is equal to the Euclidean distance between the sub-
scriber and the server raised to the power 3 > 0 and the intensity measure v of subscribers
has an almost everywhere continuous bounded density p, (with respect to the Lebesgue
measure \ in R?) that is positive almost everywhere in X. Finally, assume that Condi-

tion (MQG) of Section 4.5 holds.
It is easy to see that

D = [ 0 1(d),

where p(z,1T) is the minimal distance from z to the points of II. Then for z € X

A(I§H) == /[pﬁ(z,ﬂ) - |Z - m|ﬁ] ]Ip(z,l'[)f|zfx\>0 V(d'z)

—— [ Wem -,

C(II)

where C,(II) is the Voronoi cell with nucleus z constructed with respect to IT + ¢,. Below
we use the notation of Theorem 4.3. Putting z = v7_,y and using C,(v;TI) = v, C,(I)

we obtain

—A(7;72I) = o~ =AM / 102 (y, 1) — |y — 2?02 (dy) = a™ ' =P/9D, (2;10),  (5.15)

C(II)

where 77 ( ) = av(y,-, ). Since at the continuity points of p,
Dy (dy) .
T Pv(Vg-19) = pu(x) +0(1),

we have g(a) = a='=8/% and
LI =po(e) [ 10210 Iy~ ol)dy.
Co(IT)
Applying the change of space formula (4.15) we get for some constant ¢ > 0
By D) =p @By [ Pt = by = o)y
Cw('Y;(m)H)
—p(p(e) B [P - |z = ol

C(II)

= epy(x)p(x)” P> 0

(5.16)
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after change z = 7;@)9: so that the path differentiability condition (D) of Theorem 4.3
holds.

The measure 7} is concentrated on the set 47X, whence the domain of integration in
(5.15) can be reduced to C,(II) NyZX. Let V,(x;II) denote the set of vertices of the cell
C.(IT) and the intersection points of the cell’s one-dimensional faces with the boundary of
veX. The set C,(IT) N vF X can be associated with a random compact set S, = S, (x; 1)
being the intersection of 77X with the union of the closed balls containing x in their
boundaries and centred in the points of V,(x;II) (see Figure 1). By definition of the
Voronoi cell all these balls have no points of the Poisson process inside. It is readily
seen that S,(x;II) is a stopping set and that it completely determines the geometry of
C.(II)N~ZX. Therefore, T',(x; 1) is Fg, -measurable. If all the balls forming S, lie entirely
inside 47 X then S,(x;II) coincides with the so-called fundamental region S(x;II) or the
Voronoi flower associated with the cell (cf. [18]). Since Pj-almost all Voronoi cells are
compact then (4.18) is satisfied and thus the localisation property holds.

To show the uniform integrability of the family I',(x;II) we use Theorem 4.6. By
construction S,(x;IT) C S(x;1I) for all sufficiently large a. Given a compact set K, let
72 (K) = supyc i [y — 2| It is easy to see that r,(S(z;II)) equals the diameter of the largest
ball, call it D(z;II), forming S(x;II), and is twice 7,(C,(IT)). Since

A(S(2: 1)) < bary(S(a10))* = 29A(D (a3 10))
then A(D(z;II)) > 279\(S(x; 1)) so that S(a;II) is (x,27%)-thick and thus condition (ii)
of Theorem 4.6 satisfied.
Next,
Por{\(S(z; 1)) > t} < Por{N(D(x; 1)) > 27 %} < ¢~

for some positive constant ¢; depending on the dimension d of the space only, see [10,
Lemma 1 and Remark 5]. This bound implies

Egy e M) o o

for all  and all v < 8, so (iiis) is also satisfied.
To show validity of condition (i), note that p, is bounded, so that sup,cy [p,(y)| < L
for some L < oo. Therefore

La(a;ID)] < L / p(y. 1) dy < Lrl(Ca(IHAC,(ID) < Lharf T 4(C, (). (5.17)

C(II)
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S(x;10)

e - the process’ points

P P Sa(w; II)
| - Voronoi cell’s boundary
| - circles forming

the stopping set

|

: . - the limiting shape of \
| the stopping set

| (the Voronoi flower) ~ g
|

|

Figure 1: Stopping sets in the optimal placement of stations example.

But
Py {72(Co(TD)) > t} < Por{ro(D(2;T0)) > 2t} = Por{A(D(x:10)) > 2%bgtd} < ¢ 2700t

that implies Egy |T'4|™ < oo for any n > 0. We have verified all conditions of Theorem 4.6
that implies (UT) condition for A-almost all x € X.

Finally, (5.17) implies (4.20), Theorem 4.3 is applicable, so that (4.25) and (5.16) yield
the density of the high intensity solution

p(x) o (py () @)

In particular, in the planar case with a linear cost function (8 = 1) the asymptotically
optimal density of stations should be proportional to the density of subscribers raised to
the power 2/3.
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5.4 Approximation of convex functions

The following example is related to £;-approximation of convex functions. Let f(x),
0 < x <1, be a twice continuously differentiable convex function. For a point configuration
IT on X = [0,1] denote by g(z;II) the piecewise linear function such that g(z;II) = f(x)
for all = from IT U {0,1}, and otherwise obtained by linear interpolation. By convexity,
g(x; 1) > f(x) for all x € [0,1].

The functional

1
F(IT) = / (g(:TD) — f(2))do (5.18)
0

characterises the quality of approximation in the .Z;-metric. This functional is bounded
and, therefore its expectation is analytic as a function on M. Furthermore,

A ) = F(T+8,) = (L) = =2 [~(r5 + 2)f () 7 f + 7)1 fle = 7]
(5.19)

- (IT) have the same meaning as in (5.10). Since 7} and r

where 7} = r¥(I) and r;, =7
are independent,

~2, (2) = [ = f@)(Burs + Byrd) + By By flo+ 1)) + B rd By f (o = 15)]
=Eyury By f(z+ry) = f(@)] + Bury [By fz —ry) = f(2)] -

Similarly to (5.12) and (5.13) it is easy to show that

xT xT

B / G,u([x,y,y})f/(x —y)dy = — / e*/l([,Z,:d)Jcl(z)dz7

=
=
Ly
—~
5
|
<
8
|
~
=
I

Then

—9R, (z) = e#{zD) (U(I)Vf(x) - V(:B)Uf(x)) : (5.20)
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where

x

Ulz) = /eu([o,y)) dy, Up(x)= /f/(y)eu([o,y)) dy .
0
1

0
1
Vi(z) = /eu([o,y]) dy, Vi(z)= /f’(y)e“([oﬁy})dy.

T

It is possible to show that the optimal measure in the minimisation problem (4.1) has no
atoms and its support is a connected set. For each fixed a, it is possible to reduce (5.20)
to a system of four differential equations by using relationships between the derivatives of
U,V and Uy, Vy. In general, it requires numerical solution for any given f and a.

Below we find the high intensity solution that reduces to a routine check of the condi-
tions of Theorem 4.3 and Theorem 4.6. Assume that condition (MG) of Section 4.5 is
satisfied. Denoting 42 the homothetic transformation with the centre x and the coefficient
a, and

=M =inf{y —x: y>uw yell},

& =& (M =inf{le—y: y<wzyell}, (5.21)

one may write
Ty (7§H) = ailéxi (H) ]IH([faa:+x,x))>0 +x ]IH([faera:,a:)):O .
Similarly,

rE (eI = o™ "I T a(i—a)4a))>0 (1 — @) T a(i—2)4a))=0 -

Since the second derivative of f is continuous,

[+ (i) — f(z) = [a7' f(2)Ef + a_%f"(fﬂ +0(ED] Tii((w,a(1—2)4a])>0
+ [f(1) = f(2)] Tt((a,a(1—2)+a])=0 »

where 0 < 0 < a 1¢}. Using a similar expansion for f(x —1r;) — f(x), we get

1 N
a?’A(x; ’Y;JH) = _Z [f"(x—l—@j)ﬁ; (5;)2+f”(x_9x )(gaz )252] ]IH([faa:+x,x))>0 HH((x,a(lfx)+x})>0
+ a?’A(aj; 7§H) [1 - HH([faa:+x,x))>0 ]IH((a:,a(lfa:)+a:])>0 ] = Fa(x; H) ) (5'22)

INRTA



Analyse Variationnelle 43

where 0 < 67 < a~'¢;. The right-hand side of the last identity is the function I'y(a;II)
of Theorem 4.3. Note that [',(z;II) is Fg,-measurable for the stopping set S, = [—ax +
x,a(l —z)+x]N[¢,;,&F]. For Py-almost all IT the second summand in T',(x; IT) vanishes
for all sufficiently large a. Therefore conditions (D) and (L) of Theorem 4.3 hold with

o(a) =, S(a;0) = [¢; (D), &(IT)] and
D 1) = — () [ €5 (M2 € () + €5 (M & (2]

To check Condition (UI) for A-almost all = € [0, 1] we use Theorem 4.6. Since S(x;1I)
is a segment, it is (x, 1)-thick and Condition (ii) of Theorem 4.6 holds by definition of S,,.
Next, II(S(x; 1)) < 2 for all II, so (iify ) is also satisfied. To show (i), note that there exists
a constant ¢ such that |f(x)] < cand |f”(x)| < ¢ for all & € [0,1]. Therefore by (5.22) and
(5.19)
L. -
|Fll(x; H)| < ZC (gz )25; + &5 (f;)z] ]IH([—a:E+:r,:r))>0 HH((m,a(l—m)+m})>O
+ 2ca’ [ Tn((—ansa,m))=0 + Tni((z.a(1—a)+a))=0] -
Take W = [z — 1,2 + 1] so that vfW = [z — b, + b]. For any positive power n one has
Ta(a; " Tsgypw < Ta (a3 H)|n[ﬁg;>b + Hg;>b] :

Furthermore, for any positive k£ and any ¢ > 0
[ee)
EOA(f;)k ]Igj>b = Q/yke_'gydy —0 asb— oo;
b

a" Bo [T aztar.2))=0 + In1((a.a(1—2)+a])0) = a* (e *" + e 9172y 0 asa—oco.

The random variables £, £ are independent and under Py) have the exponential distri-
bution with parameter 6, so that Egy(¢;)* < oo for all k£ > 0. Thus

GIL% Eg/\ |Fa|n ]Ifj>b =0

b—oo

for all n. Similarly,

allngo Eg)\ |Fa| H£;>b =0

b—o00
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and condition (i) of Theorem 4.6 is satisfied implying Condition (UI) for A-almost all
x € [0,1].
Finally,

Ep(m))\ f::rt = p(m)_l and Ep(:ﬂ))\(f::rt)z = ZP(I)_Q
giving
Eyop () = —f"(z)p(x)3.

1/3

From (4.25) we immediately obtain that p(x) is proportional to (f”(x)) Since, the

integral of p(x) is 1,
(f" ()
Jo (F" (@) 3da”

is the density of the measure that provides a high intensity solution of the minimisation
problem.

p(x) = z €10,1],

Clearly, the functional F(IT) given by (5.18) characterises the quality of numerical
integration of f by trapezoidal rule using Poisson points. If f is non-increasing and the
integral is computed by step-function approximations using the left end-points only, then

n 1
F() = Y f(e i = ) [ fa)de.
=0 0

In this case A(x;1T) = r¥(f(z) — f(x —r;)). It is easy to show that the high intensity
solution here has the density p(z) proportional to (| f/(x)])'/2.

Using the same technique it is possible to find the best Poisson points approximations
of convex functions in the uniform metric. A similar method is also applicable for the
study of approximations of convex sets by inscribed polyhedra if the error is measured as
the Hausdorff distance or as the difference between the areas (or perimeters) of the set and
the polygon. For example, if a planar compact convex set K with a twice differentiable
boundary 0K is approximated by a polygon obtained as the convex hull of a high intensity
Poisson point process on its boundary, then the best area approximation is achieved if
the density is proportional to (R(z))2/3, where R(x) is the radius of curvature at point
x € OK. This is the same as the best density if the number of points is fixed and tends to
infinity, see [24]. Note that the quality of approximation in the high intensity Poisson case
does not differ from the quality of approximation using » random points with n — oo.
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An alternative method of approximation of a real-valued twice continuously differen-
tiable convex function f defined on a convex set X C R? is based on approximation from
below. This tangent approximation is defined by

(e T1) = mas { () + Y @)-(x = a) }

The graph of y(x,1T), z € X, is composed of tangent planes drawn at the points of IT to
the graph of the function f. As above, we take the £ -distance between f(z) and y(x, II)
as the object function F. In addition we assume that the function f does not contain
parabolic points, so that the Gaussian curvature of its graph does not vanish. It is easy to
see that

f(z0)+V f(zo0)-(z—20)

—A(xo;II) = / dx / H Ty @)+ V (@) (v—a0) DY -

¥ e i€l
Since for a Poisson process with the intensity measure p,
B, [] o) =exp{~ [(h(2) = Dut=))
z; €1
for a suitable function h : X — R, . Therefore,
f(x0)+V f(x0)-(z—0)

—Ay (w9) = / dx / exp{ - / ]Iyéf(Z)+Vf(Z)~(I—Z)”(dz)}dy

X —00 X
= /dl’ / exp { — /H—tgf(z)-l—Vf(Z)'(CE—Z) M(dZ)}dta
X 0 X

where f(2) = f(2) — f(zo) — V f(20) (2 — o)

The set A(x,t) = {2z : f(z) + Vf(z)-(x — z) > —t} is the projection onto X of the
part of the cone lying below the graph of f and formed by the tangent rays to the graph
of y = f(z) drawn from the point (z, —t) (see Fig. 2). Introduce the polar coordinates
x = o + 7u, where r» > 0 and u belongs to the unit sphere, S4~!in R?. Let x + p(s)s =
xo + ru + p(s)s describe the boundary of the set A(x,t) for p(s) = pu+(s) > 0 and
s € ST At the boundary points = + p(s)s the segment with the end-points (z,—t) and

P = (z+ p(s)s, f(x+ p(s)s)) is orthogonal to the normal vector to the surface f at P, so
that p = p(s) can be found from the equation

Vf(xo +ru+ ps)ps — f(xo +ru+ ps) —t =0. (5.23)
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(Iv _t)

Figure 2: Tangent approximation.

Although we do not give details here, one can show that since A(xzg;II) depends only
on the nearest to zy points of II, there exist compact stopping sets S, (zo;II) such that
A(wo;75°M) is Fg,-measurable. Moreover, g, (zo:m) — Mg(zgm), Where S(xo;IT) is the
Voronoi flower centred in xo defined in Section 5.3 (see Fig. 1). If we assume that (MG)
holds, then, by (4.22) and (4.25), p(x¢) can be found from g(a)zap(zo) (zg) = const for a
suitable normalising function g(a).

Since
Bapten) (0) = [ do [ expl-aplaw)(AGe, 1)t
X 0
= / du/rd_ldr/exp{ - %ap(xo) / pg,t(s)ds}dt,
Sd—1 0 0 -1

then the asymptotic behaviour of Zap(zo) (z9) is determined by the behaviour of the ex-
ponent when A(A(x,t)) | 0, i.e. when r and t are close to 0. In this settings, (5.23)
writes

D2 f(wo)(ru+ ps)-ps — 5 D* f(zo)(ru + ps)-(ru+ ps) — £+ oft” +7%) =0,
or

pPks — 12k, — 2t +o(t* +1%) =0,
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where ks = D?f(x0)s-s is the curvature of the normal section of the graph of f at zp in
the direction of s € S! (similarly, ky, = D?f(zo)u-u). Therefore, up to the smaller terms

1 2t + kyr? d/2 1 ds
MA(, 1) = - / (T) ds = (2t + k1) / 7
qd-1 8

gd—1

(remember that the graph does not contain parabolic points, so that ks > 0 for all s from
the unit sphere). To evaluate the last integral, note that the function R(s) = k‘si/z, s €81,
represents in polar coordinates the boundary of an ellipsoid E oriented along the directions
of the principal curvatures of the surface y = f(x) at the point (xg, f(z0)). The semi-axes of
E are given by /k;, where k;, i = 1,... ,d are the corresponding principal curvatures (to see
this, write the positive quadratic form D?f(x¢)s-s in the coordinate system corresponding
to the principal directions where it takes the canonical form Z?Zl k,sf) Therefore,

J 1/R(s)
/%:d/ds / rd=ldr
gd-1 ks gd-1 0

that is d-times the volume of the body obtained by the inversion of E with respect to the
unit sphere. Since this body is again the ellipsoid with the semi-axes k; 1/ 2,

dS dbd - —1/2
- — dbyK /
[ = i = e

gd—1

where K (zg) = det ||D?f(x0)| is the Gaussian curvature of the surface y = f(z) at the

point (zo, f(x0)).
Substitution

z= bdp(mo)K(xo)_l/Q(Zt + kur2)d/2

reduces the integral [ exp{—ap(xo)A(A(x,t))}dt to the incomplete Gamma function

o0
1 .
g / 2ld-le—azg, — [ ,
Bk ?pd

where B = by p(xg) K (z0)~ /2. Using
7 5 —ab
/yﬁe_“ydy: b (1+0(1/a)), b>0,
a
b
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we get
1-d/2 9 4
hi~ kudilge_“Bkgmrd as @ — 00 .
a
Therefore,
r kYT r(2/d
/lehd?“ ~ /TGGBkZ/QrddT = (2/d) as @ — 00.
adB a1+2/ddB1+2/dkg/2
0 0
Finally,
- T(2/d) K (0)"/4
_Aap(zo) (xo) ~ / 2/d ) (524)
ql+2/d b p(x)1+2/d
whence

p(z) o K(gc)%lr_d .

In particular, if d = 1, then p(x) o (f”(x))'/? that coincides with the optimal density for
the polygonal approximation from above for one-dimensional convex functions.

5.5 How to ‘catch’ a random set by random points?

Let Y be a random closed subset of X (see [16, 26]) that is independent of the Poisson
process 1. We say that Y is trapped by T if TI(Y) > 0 (or TINY = (), since we identify TT
and its support). The distribution of Y is fixed, so the subscript x denotes the probability
and expectation for IT having the intensity measure u. By independence of Y and II, we
get

P{IINY #0} =EP,{IINY #0 | Y}zE[l—e‘“(Y)] . (5.25)

We seek p that maximises the trapping probability P{IINY # ()}. Equivalently, we can
minimise E, F', where

F(IT) = Ty =p -
Then

B, F(I) = Ec) = B, Qy(II),
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where Qy(K) = P{Y N K = 0} is the avoiding functional of Y. Below we consider the
problem with the fixed total mass u(X) = a.
The expected first difference can be written as

A, (x)=—F [e*“m I[xey] (5.26)
or, equivalently, as
Ay (z) = ELQy (MU {z}) — Qy(ID)]. (5.27)

Note that A, (z) < 0 for all z € X. If 77 is a solution of the fixed total mass problem, then
(4.2) yields

{Zu (r)=—u T —ae., (5.28)

Ag(x) > —u forallz € X,

for a constant u > 0. Note that u = 0 yields Az (#) = 0 everywhere, which is possible only
if P{z € Y} =0 for all . In the sequel we exclude this trivial case.

Assume that there are at least two points x € X such that P{z € Y} > 0. Otherwise
Y either cannot be trapped at all using a Poisson point process on X, or the trapping
strategy is trivial. Furthermore, assume that Y has no fixed points, i.e. P{z € Y} <1 for
all x € X.

Ezxample 5.6. Let X = {w1,x2}, and let Y take values {x;}, {w2} or {x1, 72} with proba-
bilities p1, p2, p12 such that p1,p2 > 0. Note that P{Y = 0} =1 — p; — p2 — p12. Each
measure p on X is represented by two non-negative numbers (mq,mso). Then

m; —mi1—m -
— P12€ ! 2, 2—1,2.

Zu (z:) = —pie”
If 7 = (mq, my) minimises the trapping probability, then (4.2) yields

—mi1 _ —ma
p1€ = p2€ >

so that ma = mq + log(pa/p1). If @ =1, then my + mg = 1, whence

my = (1 —log(pa/p1))/2, ma = (1+log(p2/p1))/2.

Ezxample 5.7. Let X be a countable space {z1,x2,...}, and let Y = {{} be a random
singleton. Renumbering, if necessary, the points of X, we may assume that p;, = P{¢ = x;},
i > 1, is a non-increasing sequence. By (5.28), there exists u > 0 such that

Ap(vi)=-E e H({E}) Teey,| = —e™ip; > —u
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for all i and Az (v;) = —u if m; = g({x;}) > 0. Thus,

{mz‘ = log(pi/u), x; € Sy, (5.29)

pi <u, x; & S,

where Sy C X is the support of 7z, so that 77(Sz) = a. Note that Sz = X is impossible,
since this leads to negative values of m; as p; — 0 for i — oc. Thus Sy = {x1,..., x4} for
some number k£ > 1. Then

k k k

P {TI(Y) > 0} = Z(l —e Mi)p; = Z(pz —u) = Zpi — ku.

i=1 i=1 i=1

If the total mass of u is a, then
k
> log(pi/u) =a,
=1
so that

logu =

[zk:logpi - a] .
=1

=

Therefore,

k 1 k
P, {TI(Y) >0} =Y pi—kexp {% [Zlogm - a] } =g(k).
i=1 =1

The optimal value for k£ can be found by maximising the function g(k). Clearly, k¥ < min{i :
p; = 0}. Moreover, the second condition of (5.29) implies pr11 < u < pg, so that

k

klogpryr < Y _logp; —a < klogpy. (5.30)
=1

Consider the case when { = x; with a geometrically distributed 7, so that p; = pg !

with p4+ ¢ = 1. Then (5.30) yields

k(k—1) < —2a/logqg <k(k+1).
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Therefore, k is equal to the integer part of (1 4+ /1 —8a/logq)/2. The corresponding
hitting probability equals

g(k) =1—¢" — kpg*=D/2e=o/k |

For example, if p = ¢ = 0.5 and @ = 1, then k = 2 with 7 = (0.847,0.153), and ¢(2) =
0.3211. Since the total mass is equal to 1, on average we have only one point of the process.
It is interesting to note that the fixed point {x;} traps Y with probability p = 0.5, which
is larger than ¢(2). Indeed, the Poisson point process with the unit intensity measure
concentrated in x1 may have zero points, while multiple points at x; do not increase the
trapping probability.

In the high intensity case it is possible to come up with further results.

Ezample 5.8. Let Y = [min(&, n), max(§,n)] for two random variables ¢ and 7 with the
joint probability density function pg,(-,-) and a compact support X € R. Using represen-
tation (5.27) we get

A(z; 1) = =P{z — & (I) <min(&, ) <z <max(£,n) <z+ (D},

where ¢ (I1), &+(IT) are defined in (5.21). Thus all Ty(x;11) = a?A(z;721I) are Fg-
measurable for the stopping set S = [z — &,z + £f]. Similarly to as we have done it in
Section 5.4, one can show that the conditions of Corollary 4.4 are satisfied for I'(z;II) =
2pen(x, )&, (INEF(IT) and all x from the set {x : pgy(x, ) > 0}. If pey(x, ) > 0, then

- Ep(x))\ I'= —2])577(37,37)(])(1'))72 s

where p(x) is the density of the high intensity solution. Thus, p(x) o \/pey(,2). For
instance, if £ and 7 are independent and identically distributed, then p(z) = pe(x).

Ezample 5.9. Let X C R? be an open set, and let Y = B,(¢) be a random ball, where the
centre ¢ and the radius p are independent and have probability density functions p; and
pp respectively. We have

Az 1) = PAII(B,(£)) = 0, = € By(§)} -

Under this event B,(¢) C S(x;1II), where the stopping set S = S(x;1I) is the Voronoi flower
constructed with respect to IT + ¢, defined in Section 5.3 (see Fig. 1). Thus A(x;~Z1I) is
Fgs-measurable and equals

Az v, 1) = Pl € B,(§) C v, S(a; 1)}
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If pgk)(O)rk is the first non-zero term in the Taylor expansion of the density p,(r) at 7 =0
and p, is at least £ times continuously differentiable in a neighbourhood of » = 0, then the
above quantity behaves like O(a*kpg(x)pgk)(())). As in Section 5.3, it is possible to show
that the conditions of Corollary 4.4 are satisfied on the set {x : p¢(x) > 0}. Therefore, for

any ¢ > 0,

akzaua (r) o akzap(m))\ = —ak/pp(r)dr / e_“p(z)’\(B’(y))pg(y)dy
0 B, (z)
x —pe(z) / e w(@)barty [pg‘j)(O)r’c + O(a'r)] dr
0

POV (A E+ DDA+ (k+1)/d
o QIO s )0

that allows us to find p(z) o (pg(x))¥/(@Hr+1),

6 Gradient method for minimisation of functional

Even if the minimisation problem does not admit an analytical solution, it may be possible
to find an approximate solution using gradient based numerical methods. Because of the
form of the directional derivative, the function K# (z) plays the same role as the gradient
in the classical steepest descent method. We consider the fixed total mass problem in the
space of all positive measures.

Let ¢ > 0 be a constant that controls the maximal size of a step of the algorithm. If
pv is a starting measure, then in order to minimise E, F(IT) it is natural to move from px
to p+ n where n(X) = 0, ||n|| = € and 1 minimises the directional derivative <Zu,77>.
Clearly, such n can be obtained by putting the atom of weight —e in the point of maximum
of A, (x) and the atom ¢ in the point of minimum of A, (x). However, often this is not
possible, because p + 1 may not be a non-negative measure. If 4+ 7 € M, then 7 is called
an admissible direction. It is easy to see that the ‘steepest’ admissible direction 1 can be
constructed as follows.

Let N, be the set of all global minima points of A, (z). For each t € R denote

Ei={reX : A,(x)>t}.
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the level sets of the function A, (x) and introduce

hu(e) =inf{t e R : p(E;) < e},
E(e) = Ep, ) -

Now construct the measure

n=u(E@E)vN, = ilee)

where vy, is any measure concentrated on N, with the total mass 1, and pu|4 is the
restriction of p onto a set A. It is easy to see that any such 7 serves as the steepest
admissible direction for the gradient method.

The necessary condition (4.2) can be used as a stopping rule for the described algorithm.
The difference between the supremum and infimum of A, () over the support of  can be
used to adjust the value of ¢ of the next step. The series ), ¢ of values ¢ on k-th step
should, of course, diverge.

In many practical situations the optimal measure is atomic. Then it is possible to
stop the descent when the mass starts accumulating around atom locations of the optimal
measure. An additional analysis is however, necessary to justify that the found local
minimum is the global one.

Similar numerical methods are used to find an optimal experiment design, see [2, Sec-
tion 11.2]. However, the latter methods are designed to minimise a special type of func-
tionals on the space of measures and have no direct relation to the Poisson process setup.

In order to check the feasibility of the steepest descent method, we have considered the
following minimisation problem.

Ezample 6.1. Consider again the hard-core type functional F(IT) defined in Example 5.2
with the phase space X = [0, 1]. We are looking for a measure y on [0, 1] with x([0,1]) = a
that minimises E, F'. In this problem the function A, (x) is computed directly and equals

A, (2) = %u([o,u Al —ra+r]).

Intuitively it is clear, that the optimal p should repulse the points in order to keep the
distance between them of order r. Figure 3 shows the resulting functions A, (z) (the upper
graph) and the density of p (the lower graph) as the algorithm runs 0, 20 and 40 steps.
The initial distribution was taken uniform on [0,1], 7 = 0.1 and a = 10. One can see that
the function Zu () after 40 steps is almost a constant on the support of the measure pu
and is greater beyond it, so the necessary condition (4.2) is fulfilled within the error 0.1
for that measure.
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Figure 3: Implementation of the steepest descent algorithm.
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We observed that depending on the initial measure the algorithm converges to different

local minima. Indeed, one can easily check that, for instance, the uniform distribution
among k equally spaced atoms for k = 5,6,...,9 satisfies the necessary condition (4.2).

Thi

More detailed analysis of the gradient type algorithms will be reported elsewhere.
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