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Abstract The expected value of a functional F(η) of a Poisson process η can
be considered a function of its intensity measure µ . The paper surveys several re-
sults concerning differentiability properties of this functional on the space of signed
measures with finite total variation. Then necessary conditions for µ being a lo-
cal minima of the considered functional are elaborated taking into account possible
constraints on µ , most importantly the case of µ with given total mass a. These
necessary conditions can be phrased by requiring that the gradient of the functional
(being the expected first difference F(η + δx)−F(η)) is constant on the support
of µ . In many important cases, the gradient depends only on the local structure of
µ in a neighbourhood of x and so it is possible to work out the asymptotics of the
minimising measure with the total mass a growing to infinity. Examples include
the optimal approximation of convex functions, clustering problem, optimal search.
In non-asymptotic cases, generally it is possible to find the optimal measure using
steepest descent algorithms which are based on the obtained explicit form of the
gradient.

1 Preliminaries

Importance of Poisson point processes for modelling various phenomena is impossi-
ble to overestimate. Perhaps, being the simplest mathematically treatable model, it,
however, possesses a huge degree of flexibility since its the only parameter is a mea-
sure which describes the density of the process’ points. It is amazing how many in-
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triguing and deep properties such a seemingly simple model enjoys and new ones are
constantly being discovered, as this monograph readily shows. Because the distribu-
tion of a Poisson point process depends on a measure, altering the measure changes
the distribution which, in many cases, is a result of performing a certain transfor-
mation of the phase space or of the point configurations. Such approach is taken,
for instance, in perturbation analysis of point process driven systems (see, e.g.,
[Ho and Cao(1991)] and the references therein) or in differential geometry of con-
figuration spaces, see, e.g., [Albeverio et al(1998)Albeverio, Kondratiev, and Röckner]
or [Röckner(1998)].

Rather than considering a change of the parameter measure induced by transfor-
mations of the phase space or of configurations, we take a more general approach
by changing the parameter measure directly. A control over this change is made
possible by a linear structure of the set of measures itself as we describe in details
below.

The main subject of our study is a Poisson point process on a general locally
compact separable metric space X with its Borel σ -algebra X . Formally, a point
process is a measurable mapping from some probability space (Ω ,A ,P) to [N,N ],
where N is the set of locally finite counting measures on X called configurations
and N is the minimal σ -algebra that makes all the mappings ϕ 7→ ϕ(B) measurable
for any B ∈X . Any ϕ ∈ N can be represented as a sum of Dirac measures: ϕ =

∑i δxi , where δx(B) = 1B(x) for every B∈X and not necessarily all xi’s are distinct.
A point process η is Poisson with intensity measure µ on X , if for any sequence

of disjoint sets B1, . . . ,Bn ∈X , n≥ 1, the counts η(B1), . . . ,η(Bn) are independent
Poisson Po(µ(B1)), . . . ,Po(µ(Bn)) distributed random variables. The distribution of
the Poisson point process with intensity measure µ will be denoted by Pµ with the
corresponding expectation Eµ . The term intensity measure is explained by the fact
that, due to the definition, one has Eη(B) = µ(B) for any B ∈X . Notice that the
Poisson process is finite, i.e. all its configurations with probability 1 contain only a
finite number of points if and only if its intensity measure is finite: µ(X)< ∞.

In what follows, we study the changes in the distributional characteristics of func-
tionals of a configuration under perturbations of the intensity measure which we first
assume finite. To this end, we consider the set M̃f of all signed measures on X with
a finite total variation and define operations of addition and multiplication by set-
ting (µ + ν)(B) = µ(B)+ ν(B) and (tµ)(B) = tµ(B) for any B ∈X . Recall that
a signed measure ν can be represented as the difference ν = ν+−ν− of two non-
negative measures with disjoint supports (the Lebesgue decomposition) and that the
total variation of ν is defined as ‖ν‖ = ν+(X)+ ν−(X). Endowed with the total
variation norm, M̃f becomes a Banach space and the set Mf of finite non-negative
measures is a pointed cone, i.e. a set closed under addition and multiplication by
non-negative numbers, see, e.g., [Dunford and Schwartz(1988)].

Given a function F : N 7→ R of a configuration, its expectation Eµ F(η) with
respect to the distribution Pµ of a finite Poisson process η can be regarded as a
function of the intensity measure µ and hence as a function on Mf. Therefore there
is a reason to consider functions on M̃f and their analytical properties in general.
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2 Variational analysis on measures

Recall that a function f on a Banach space B is called strongly or Fréchet differen-
tiable at x ∈B if

f (x+ y) = f (x)+L(x)[y]+o(‖y‖), (1)

where L(x)[ · ] :B 7→B is a bounded linear functional called a differential. A function
f called weakly or Gateaux differentiable at x ∈ B if for every y ∈ B there exists a
limit

∂y f (x) = lim
t↓0

t−1[ f (x+ ty)− f (x)] (2)

which can be called the directional derivative along vector y. Strong differentiability
implies that all weak derivatives also exist and that ∂y f (x) = L(x)[y]. The converse
is not true even for B = R. The same definitions apply to functions of a signed
measure with finite total variation since M̃f is a Banach space. A very wide class of
differentiable functions of a measure possess a differential which has a form of an
integral so that

f (µ +ν) = f (µ)+
∫

X
g(x; µ)ν(dx)+o(‖ν‖), ν ∈ M̃f. (3)

for some function g( · ; µ) called a gradient function. This name comes from the
fact that when X = {1, . . . ,d} is a finite set, M̃f is isomorphic to Rd and g( · ; µ) =
(g1(µ), . . . ,gd(µ)) is a usual gradient, since

f (µ +ν) = f (µ)+ 〈g( · ; µ),ν〉+o(‖ν‖), µ,ν ∈Rd .

Inline with this, we shall use from now on the notation 〈 f ,ν〉 for the integral
∫

f dν .
Not all differentiable functions of measures possess a gradient function (unless X is
finite), but all practically important functions usually do. Notably, the expectation
Eµ F(η) as a function of µ ∈Mf does possess a gradient function, as we will see
in the next section. So it is not a severe restriction to assume that a differentiable
function of a measure possesses a gradient function, as we often do below.

The differentiability provides a useful tool for optimisation of functions. Neces-
sary conditions for a local optimum are based on the notion of a tangent cone.

Definition 1. A tangent cone to a set A⊂ M̃f at point ν ∈A is the set

TA(ν) = liminf
t↓0

A−ν

t
.

Recall that the liminf in the right-hand side is the set of possible limits for all the
sequences {ηn} such that eventually ν + tnηn ∈A or all n when tn ↓ 0. It represents
the closure of set of all admissible directions in which one can move from ν ∈ A
still staying inA.

A first order necessary condition for an optimum in a constrained optimisation
now takes the following form.
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Theorem 1. Assume A ⊆ M̃f is closed and convex in the total variation norm and
that f is continuous on A and strongly differentiable at ν∗ ∈ A. If ν∗ provides a
local minimum in the constrained optimisation problem

f (ν)→ inf subject to ν ∈A, (4)

then
L(ν∗)[θ ]≥ 0 for all θ ∈ TA(ν∗). (5)

The proof of this general fact can be found, e.g., in [Ben-Tal and Zowe(1982)]
for the case of a constraint set with non-empty interior. For the purpose of op-
timisation with respect to the intensity measure, the main constraint set is the
cone Mf of non-negative measures. However, Mf does not have interior unless
X is finite. The non-emptiness assumption on the interior was first dropped in
[Cominetti(1990)][Theorem 4.1.(i)]. The next result proved in [Molchanov and Zuyev(2000a)]
characterises the tangent cone to Mf.

Theorem 2. The tangent cone to the set Mf at µ ∈Mf is the set of signed measures
for which the negative part of their Lebesgue decomposition is absolutely continu-
ous with respect to µ:

TMf(µ) = {θ ∈ M̃f : θ
−� µ}.

Assume now that f possesses a gradient function and µ∗ provides a local min-
imum on the constrain set A = Mf. Applying necessary condition (5) with θ = δx
we immediately get that

L(µ∗)[δx] = g(x; µ
∗)≥ 0 for all x ∈ X .

Now setting θ =−1Bµ∗ for an arbitrary measurable B⊂ X leads to

L(µ∗)[δx] = 〈g( · ; µ
∗)1B,µ

∗〉 ≤ 0 .

Combining both inequalities, proves the following result.

Theorem 3. Assume that µ∗ ∈Mf provides a local minimum to f on Mf and that
f possesses a gradient function g( · ; µ∗) at µ∗. Then g( · ; µ∗) = 0 µ∗-almost every-
where on X and g(x; µ∗)≥ 0 for all x ∈ X.

By considering an appropriate Lagrange function, one can generalise this state-
ment to the case of optimisation over Mf with additional constraints. Before we
formulate the result, we need a notion of regularity.

Definition 2. Let Y be a Banach space and A ⊆Mf, C ⊆ Y be closed convex sets.
Let f : M̃f 7→R and H : M̃f 7→ Y be strongly differentiable. A measure ν ∈ M̃f is
called regular for the optimisation problem

f (ν)→ inf subject to ν ∈A, H(ν) ∈C, (6)
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if 0∈ core
(
H(ν)+LH(ν)[A−ν ]−C

)
, where LH is the differential of H and core(B)

for B⊆Y is the set {b∈ B : ∀y∈Y ∃ t1 such that b+ty∈ B ∀t ∈ [0, t1]}. For Y =Rd ,
core(B) is just the interior of the set B⊆Rd .

Consider the most common case of a finite number of equality and inequality
constraints. In this case Y =Rk and C = {0}m×Rk−m

− , m ≤ k, so that we have the
following optimisation problem:

f (µ)→ inf subject to (7)
µ ∈Mf

Hi(µ) = 0, i = 1, . . . ,m
H j(µ)≤ 0, j = m+1, . . . ,k

(8)

for some function H : Mf 7→Rk. The following result and its generalisations can be
found in [Molchanov and Zuyev(2000a)].

Theorem 4. Let µ∗ be a regular (in the sense of Definition 2) local minimum for the
problem (7) for a function f which is continuous on Mf and strongly differentiable
at µ∗ with a gradient function g(x; µ∗). Let H = (H1, . . . ,Hk) also be strongly differ-
entiable at µ∗ with a gradient function h(x; µ) = (h1(x; µ), . . . ,hk(x; µ)). Then there
exist Langrange multipliers u = (u1, . . . ,uk) with u j ≤ 0 for those j ∈ {m+1, . . . ,k}
for which H j(µ

∗) = 0 and u j = 0 if H j(µ
∗)< 0, such that{

g(x; µ∗) = ∑
k
i=1 uihi(x; µ∗) µ∗−a.e.,

g(x; µ∗)≥ ∑
k
i=1 uihi(x; µ∗) for all x ∈ X .

(9)

When the functions f and H possess gradient functions, as in Theorem 4 above,
the regularity condition becomes the so-called Mangasarian–Fromowitz constraint
qualification that is a linear independence of the gradients h1( · ; µ∗), . . . ,hk( · ; µ∗)

and the existence of a signed measure ζ ∈ M̃f such that{
〈hi,ζ 〉= 0 for all i = 1, . . . ,m;
〈h j,ζ 〉< 0 for all j ∈ {m+1, . . . ,k} for which H j(µ

∗) = 0.
(10)

Without inequality constraints, (10) holds trivially for ζ being the zero-measure
and we come to the following important corollary giving the first-order necessary
condition for optimisation with a fixed total mass.

Theorem 5. Let f be continuous on Mf and strongly differentiable at µ∗ ∈Mf with a
gradient function g(x; µ∗). If µ∗ is a local minimum in the constrained optimisation
problem

f (µ)→ inf subject to (11){
µ ∈Mf

µ(X) = a > 0,
(12)
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then there exists a real u such that{
g(x; µ∗) = u µ∗−a.e.,
g(x; µ∗)≥ u for all x ∈ X .

(13)

3 Analyticity of the expectation

The linear structure on the set of measures described in the previous section makes
it possible to put analysis of variations of the intensity measure in the general frame-
work of differential calculus on a Banach space. In this section we fix a functional
F : N 7→ R on the configuration space and reagard its expectation Eµ F(η) as a
function of a measure µ . To explain the idea, we first consider a bounded functional
F and the Banach space Mf of finite measures and then discuss extensions to a wider
class of functionals and to infinite measures.

It is a well-known fact that for a Poisson process η with a finite intensity mea-
sure µ , the conditional distribution of its points given their total number η(X) = n
corresponds to n points independently drawn from the distribution (µ(X))−1µ . This
observation after applying the total probability formula gives rise to the following
expression for the expectation:

Eµ F(η) = F( /0)+ e−µ(X)
∞

∑
n=1

1
n!

∫
Xn

F(δx1 + · · ·+δxn)µ(dx1) . . .µ(dxn), (14)

where /0 stands for the empty configuration.
Substituting µ ← (µ + ν) for a signed measure ν ∈ M̃f such that µ + ν ∈Mf

into (14),

Eµ+ν F(η) = e−µ(X)(1−ν(X)+o(‖ν‖))×[
F( /0)+ ∑

n=1

1
n!

∫
Xn

F(
n
∑

i=1
δxi)(µ +ν)(dx1) . . .(µ +ν)(dxn)

]
= Eµ F + e−µ(X)

∑
n=1

n
n!

∫
Xn

F(
n
∑

i=1
δxi)µ(dx1) . . .µ(dxn−1)ν(dxn)

−ν(X)e−µ(X)
∑
n=0

1
n!

∫
Xn

F(
n
∑

i=1
δxi)µ(dx1) . . .µ(dxn)+o(‖ν‖).

Thus
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Eµ+ν F(η)−Eµ F(η)

= e−µ(X)
∑
n=0

1
n!

∫
Xn+1

F(
n
∑

i=1
δxi +δx)µ(dx1) . . .µ(dxn)ν(dx)

− e−µ(X)
∑
n=0

1
n!

∫
Xn+1

F(
n
∑

i=1
δxi)µ(dx1) . . .µ(dxn)ν(dx) +o(‖ν‖)

= Eµ

∫
X
[F(η +δx)−F(η)]ν(dx)+o(‖ν‖).

Denoting by Dx the difference operator DxF(η) = F(η +δx)−F(η), we see that

Eµ+ν F−Eµ F = 〈Eµ D·F,ν〉+o(‖ν‖). (15)

Since F is bounded, so is Eµ D·F , hence Eµ F is strongly differentiable on Mf with
the gradient function Eµ DxF .

Using the infinite series Taylor expansion in ν(X), one can extend the above
argument to show not only differentiability, but also analyticity ofEµ F as a function
of µ . Introduce iterations of the operator Dx by setting D0F = F , D1

x1
F = Dx1 F ,

Dn
x1,...,xnF = Dxn(D

n−1
x1,...,xn−1

F) so that

Dn
x1,...,xnF(η) = ∑

J⊆{1,2,...,n}
(−1)n−|J|F

(
η + ∑

j∈J
δx j

)
, (16)

as it can be easily checked.

Theorem 6. Assume that there exists a constant b > 0 such that |F
(

∑
n
i=1 δxi

)
| ≤ bn

for all n≥ 0 and (x1, . . . ,xn) ∈ Xn. Then Eµ F(Π) is analytic on Mf and

Eµ+ν F =
∞

∑
n=0

1
n!

∫
Xn
Eµ Dn

x1,...,xnF
(
η +

n
∑

i=1
δxi

)
ν(dx1) . . .ν(dxn), (17)

where the term corresponding to n = 0 is, by convention, Eµ F(η).

The proof can be found in [Molchanov and Zuyev(2000b)]. Notice that the inte-
gral above is an n-linear form of the n-th product measure (the n-th differential) and
that

Eµ Dn
x1,...,xnF(η) =

n

∑
m=0

(−1)n−m
(

n
m

)
Eµ F

(
η +

m
∑

j=1
δx j

)
(18)

because of the symmetry with respect to permutations of x1, . . . ,xn.

3.1 Margulis–Russo type formula for Poisson process

An important case of perturbations of the intensity measure is when the increment is
proportional to the measure itself. So fix a µ ∈Mf and consider ν = tµ for a small
t ∈ (−1,1). Substituting this into (17) gives a power series in t:
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Eµ+tµ F =
∞

∑
n=0

tn

n!

∫
Xn
Eµ Dn

x1,...,xnF
(
η +

n
∑

i=1
δxi

)
µ(dx1) . . .µ(dxn). (19)

In particular,

d
ds
Esµ F(η) =

∫
X
Esµ DxF(η)µ(dx) =

∫
X
Esµ [F(η +δx)−F(η)]µ(dx). (20)

Let F(Π) = 1Ξ (η) be an indicator of some event Ξ . The integration in the last
expression can be restricted to the (random) set ϒ (η) = {x ∈ X : 1Ξ (η + δx) 6=
1Ξ (η)} leading to

d
ds
Psµ(Ξ)=Esµ

∫
X
1Ξ (η+δx)1ϒ (η)(x)µ(dx)−Esµ

∫
X
1Ξ (η)1ϒ (η)(x)µ(dx).

The last term is obviously Esµ1Ξ (η)µ(ϒ (η)). For the first one, we apply the Re-
fined Campbell theorem together with the Slivnyak–Mecke formula

Eµ

∫
X

f (x,η)η(dx) = Eµ

∫
X

f (x,η +δx)µ(dx) (21)

valid for any measurable f : X ×X 7→ R+ which characterises the Poisson pro-
cess, see, e.g., Prop. 13.1.IV and Prop. 13.1.VII in [Daley and Vere-Jones(2008)].
Using (21),

Esµ

∫
X
1Ξ (η +δx)1ϒ (η)(x)µ(dx) =

1
s

∫
X
1Ξ (η)1{x: 1Ξ (η)6=1Ξ (η−δx)}(x)η(dx).

Combining all together,

d
ds
Psµ(Ξ) =

1
s
Esµ1Ξ (η)NΞ (η)−Esµ1Ξ (η)VΞ (η). (22)

Here VΞ (η) = µ{x ∈ X : 1Ξ (η + δx) 6= 1Ξ (η)} is the µ-content of the set where
adding a new point to configuration η would change the occurrence of Ξ , so the
elements of this set are called pivotal locations for event Ξ in configuration η .
While NΞ (η) =

∫
X 1{x ∈ η : 1Ξ (η) 6= 1Ξ (η)}η(dx), in the case of non-atomic µ ,

is equal to the number of points in configuration η which removal would change
the occurrence of Ξ . Such configuration points are called pivotal points for event
Ξ in configuration η . This geometric interpretation is a key to usefulness of this
formula which is a counterpart of the Margulis–Russo formula for Bernoulli fields
first proved in [Margulis(1974)] and independently in [Russo(1981)]. Identity (22)
was shown in [Zuyev(1992)] in more restrictive settings.

Let us mention two useful implications of (22):

d
ds

logPsµ(Ξ) =
1
s
Esµ [NΞ (η) Ξ ]−Esµ [VΞ (η) Ξ ]

obtained by dividing both parts by Psµ(Ξ), and consequently,
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Ps2µ(Ξ) = Ps1µ(Ξ)exp
{∫ s2

s1

Esµ [s−1NΞ (η)−VΞ (η) Ξ ]ds
}

providing a way to control the change in the probability of an event in terms of
the control over the number of pivotal points versus the µ-content of the pivotal
locations.

3.2 Infinite measures

To extend the formula (17), or at least its first k-th term expansion, to infinite mass
measures one must put additional assumptions on the functional F as there are ex-
amples of a bounded functional which expectation is, however, not differentiable.
A notable example is the indicator that the origin belongs to an infinite cluster in a
Boolean model of spheres in Rd , d ≥ 2. Its expectation is the density of the infinite
cluster which is not differentiable at the percolation threshold.

One possible approach is to consider a growing sequence of compact sets {Xn}
such that ∪nXn = X and the corresponding restrictions ηn of the Poisson process
η onto Xn. Since these are finite processes, then if F(ηn) converges to F(η) (such
functionals are called continuous at infinity), then by controlling this convergence it
is possible to assure that the corresponding derivatives also converge. This approach
was taken in [Molchanov and Zuyev(2000b)] where, in particular, it was shown that
if F is bounded and continuous at infinity then (17) holds for a locally-finite µ and
a finite ν such that µ +ν is a positive measure, see [Molchanov and Zuyev(2000b),
Th.2.2]. Note that the indicator function that the origin is in an infinite cluster is not
continuous at infinity.

A more subtle method is based on the Fock space representation and it allows to
extend the expansion formula to square-integrable functionals. Consider two locally
finite non-negative measures µ and λ = µ +ν and another measure ρ dominating
their sum. Denote by hλ and hν the corresponding Radon–Nikodym densities. The
following result is proved in [Last(2013)].

Theorem 7. Assume that

〈(1−hν)
2,ρ〉+ 〈(1−hλ )

2,ρ〉< ∞.

Let F be such that Eρ F(η)2 < ∞. Then (17) holds, all the integrals there exist and
the series converges absolutely.

Perhaps, the most important case is when the increment measure ν is absolutely
continuous with respect to µ with the corresponding density hν . Then the above the-
orem implies that for F such thatEµ+ν F2(η)<∞, condition 〈hν(1+hν)

−1,µ〉<∞

is sufficient for (17) to hold.
Note an interesting fact on the validity of the expansion formula. Each general

increment measure ν can be represented as ν = ν1 + ν2, where ν1 is absolutely
continuous with respect to µ and ν2 is orthogonal to it. In order for (17) to hold
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for all bounded F , it is necessary that ν2(X)< ∞! This and other results on infinite
measure case can be found in [Last(2013)].

4 Asymptotics in the high-intensity setting

Consider the minimisation problem

f (µ) = Eµ F(η)→ inf subject to µ ∈Mf and µ(X) = a , (23)

where F is a functional satisfying the conditions of Theorem 6. For simplicity, we
consider only the case of the fixed total mass and refer to [Molchanov and Zuyev(2000b)]
for more general cases.

It is rearly possible to find analytic solution to (23), but Theorem 5 opens a pos-
sibility to use gradient descent type methods in order to numerically solve it as
described later in Section 5. However, when the total mass a is large, in many cases
it is possible to come up with asymptotic properties of the optimal measure that
solves the optimisation problem (23) for a that grows to the infinity.

The key idea is to rescale the optimal measure around some point x, so it looks
like proportional to the Lebesgue measure. In the case of a stationary point pro-
cesses, it is then easier to calculate the first difference in order to equate it to a
constant to satisfy the necessary condition (13) for the minimum.

Assume that X is a compact subset of Rd that coincides with the closure of its
interior and let γx

a(y) = x+a1/d(y−x) denote the rescaling around the point x ∈Rd ,
so that γx

aη consists of points γx
a−1xi for η = {xi}. Consider a solution to (23) which

we represent in the form aµa for some probability measure µa. In particular,

EaµaF(η) = Eµ̂x
a
F(γx

aΠ) ,

where µ̂x
a(·) = aµa(γ

x
a−1 ·). Assume that µa is absolutely continuous with density pa

with respect to the Lebesgue measure `d . Then µ̂x
a(·) has density pa(γ

x
a−1y) on γx

aX .
The key idea is that in some situations the expected first difference

EaµaDx(η) = Eµ̂x
a
Dx(γ

x
aη) ∝ g(a)Ep(x)`d

Γ (x;η)

for a function Γ (x;η) that depends on η locally in a possibly random neighbour-
hood of x. Then the gradient function used in Theorem 5 can be calculated for a
stationary Poisson process with intensity p(x) which is generally easier.

To make precise the local structure of Γ (x;η), we need the concept of a stopping
set that is a multidimensional analogue of a stopping time, see [Zuyev(1999)]. Let
AB be the σ -algebra generated by events {η(B) = n} for n ≥ 0 and a Borel set B.
A random compact set S is called a stopping set if {S ⊆ K} ∈AK for any compact
set K in Rd . The stopping σ -algebra is the collection of events A ∈ A such that
A∩{S⊆ K} ∈AK for all compact K.

The following result is proved in [Molchanov and Zuyev(2000b)].
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Theorem 8. Let aµa be a measure solving (11) for the fixed total mass a. Assume
that for an inner point x of X the following condition holds.

(M) For all sufficiently large a, µa is absolutely continuous with respect to `d with
densities pa, and there exists a finite double limit

lim
y→x, a→∞

pa(y) = p(x)> 0 . (24)

Furthermore, assume that for the same x, the first difference DxF satisfies the fol-
lowing conditions.

(D) For some positive function g(a), the random variable

Γa = Γa(x;η) = Dx(γ
x
aη)/g(a)

converges to Γ = Γ (x;η) as a→ ∞ for almost all realisations of the stationary
Poisson process η with unit intensity, and

0 < Ep(x)`d
Γ (x;η)< ∞ .

(L) There exist a family of stopping sets Sa = Sa(x;η) and a stopping set S(x;η)
such that Γa(x;η) is ASa -measurable for all sufficiently large a; Γ (x;η) is AS-
measurable; and for every compact set W containing x in its interior

1Sa(x;η)⊆W → 1S(x;η)⊆W as a→ ∞

for almost all realisations of a stationary unit intensity Poisson process η .
(UI) There exists a compact set W containing x in its interior such that

lim
a→∞, n→∞

Eµ̂x
z
|Γa(x;η)|1Sa⊆W = 0

and there exists a constant M = M(W,b) such that |Γa(x;η)| ≤ M for all suffi-
ciently large a and η such that Sa(x;η)⊂ γx

bW.

Then
lim
a→∞
|Eµ̂x

a
Γa(x;η)−Ep(x)`d

Γ (x;η)|= 0

and

lim
a→∞

EaµaDxF
Eap(x)`d

DxF
= 1 .

The uniform integrability condition (UI) can be efficiently verified for stopping
sets Sa and S that satisfy the condition `d(B)≥ α`d(Sa) for some fixed α and almost
all x, see [Molchanov and Zuyev(2000b), Th. 5.4]. We now show how this theorem
applies to various problems of a practical interest.
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4.1 Approximation of functions

Consider a strictly convex function f (x), x ∈ [a,b] ⊂ R, and its linear spline ap-
proximation s(x;η) build on the grid of points a ≤ x1 ≤ x2 ≤ ·· · ≤ xN ≤ b, where
{x1, . . . ,xN} form a Poisson point process η on [a,b]. Since the end-points are in-
cluded as the spline knots, the spline approximation is well-defined even if η is
empty. The quality of approximation is measured in the L1-distance as

F(η) =
∫ b

a
(s(x;η)− f (x))dx .

If instead of a Poisson process η one takes a set of deterministic points, the prob-
lem of determining the best locations of those points have been considered in
[McClure and Vitale(1975)] (in relation to approximation of convex sets), see also
[Schneider(1988)]. It is well known that the empirical probability measure gener-
ated by the best deterministic points converges weakly to the measure with density
proportional to f ′′(x)1/3.

If η is a Poisson process of total intensity a, then the optimisation problem aims
to determine the asymptotic behaviour of the intensity measure µ = aµa that min-
imises Eµ F(η). The key observation is that the first difference DxF(η) equals the
area of the triangle with vertices at (x, f (x)), (x−, f (x−)) and (x+, f (x+)), where
x− and x+ are left and right neighbours to x from η . Denoting r−x = x− x− and
r+x = x+− x, we arrive at the expected first difference (the gradient function) given
by

g(x; µ)=Eµ DxF =− f (x)[Eµ r−x +Er+x ]+Eµ r−x Eµ f (x+r+x )+Eµ r+x Eµ f (x+r−x ) .

If µ is an optimal measure, then the strict convexity and continuity properties imply
that (13) holds for all x ∈ [a,b]. It is easy to write down the distributions of r−x and
r+x in terms of µ . Then the requirement g(x; µ) = const turns into a sytem of four
differential equations. However, one is interested in the asymptotic solution when a
is large, so the high intensity framework is very much relevant in this setting. Notice
that here

Γ (x;η) =−1
4

f ′′(x)r+x r−x (r
+
x + r−x )

depends only on the stopping set [x−,x+] that shrinks to {x} as the total mass a of
the measure µ = aµa grows. If µ is proportional to the Lebesgue measure `1, then
it is easy to calculate the first difference explicitly as

Ep(x)`1Γ (x;η) ∝− f ′′(x)p(x)−3 .

By Theorem 8, if (24) holds, then it is possible to equate the right-hand side to
a constant, so that the density of the optimal measure µa is asymptotically pro-
portional to f ′′(x)1/3, exactly as it is in the deterministic case. The same argu-
ment applies to a strictly convex function f (x) for x from a convex compact sub-
set of Rd and leads to the asymptotically optimal measure with density propor-
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tional to K(x)1/(2+d), where K(x) is the Gaussian curvature of f at point x, see
[Molchanov and Zuyev(1997)]. The multidimensional optimal approximation re-
sults for deterministic sets of points (including also the Bezier approximation) are
also studied in [Molchanov and Tontchev(2007a)].

4.2 Clustering

Consider the data set {y1, . . . ,ym} in Rd . One of objectives in the cluster analysis
consists in determining cluster centres η = {x1, . . . ,xk} ⊂ Rd for some given k.
Each cluster centre xi is associated with the data points (also referred to as daughter
points) which are nearest to it, i.e. lie within the corresponding Voronoi cell Cxi

(see, e.g., [Okabe et al(2000)Okabe, Boots, Sugihara, and Chiu] for the definition
and properties of the Voronoi tessellations). The cluster centres can be determined
using the Ward-type criterion by minimising

F(η) = ∑
xi∈η

∑
y j∈Cxi

‖xi− y j‖2 ,

which is also the trace of the pooled within groups sum of squares matrix. In view of
this criterion function, the optimal set of k cluster centres is also called the k-means
of the data, see [Molchanov et al(2001)Molchanov, van Lieshaut, and Zuyev] for
further references on this topic. In most applications, the number k is predetermined
and then a steepest descent algorithm is employed to find the cluster centres. It
should be noted that the functional F(η) is not convex and so the descent algo-
rithms might well end up in a local rather than a global minimum.

Alternatively, if the cluster centres are regarded as points of a Poisson point pro-
cess with intensity measure µ and the mean of F(η) is taken as an objective func-
tion, then

Eµ F(η) = Eµ

∑
xi∈η

∑
y j∈Cxi

‖xi− y j‖2

=
m

∑
j=1
Eµ ρ(y j,η)2 ,

where ρ(y,η) is the Euclidean distance from y to the nearest point of η . Since η

can be empty, we have to assign a certain (typically large) value u to ρ(y, /0). Since
η is a Poisson process, it is easy to compute the latter expectation in order to arrive
at

Eµ F(η) =
m

∑
j=1

∫ u2

0
exp{−µ(B√t(y j)}dt , (25)

which is a convex functional of µ . Since taking the expectation in the Poissonised
variant of the clustering problem yields a convex objective function, the steepest
descent algorithm applied in this situation would always converge to the global
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minimum. The optimal measure µ can be termed as the solution of the P-means
problem.

In the asymptotic setting, it is assumed that the total mass a of the optimal mea-
sure aµa is growing to infinity and the data points are sampled from a probability
distribution with density pν , so that the empty configurations η are no longer rele-
vant and the objective function becomes

Eµ F(η) =
∫
Rd
Eµ [ρ(y,η)2]pν(y)dy .

Adding an extra cluster point x affects only the data points within the so-called
Voronoi flower of x, see [Okabe et al(2000)Okabe, Boots, Sugihara, and Chiu]. The
Voronoi flower is a stopping set that satisfies the conditions of Theorem 8. Since
Ea`d DxF is proportional to pν(x)a−1−2/d , the high intensity solution has the density
proportional to pν(y)d/(d+2).

A similar problems appears in the telecommunication setting, where the data
points y j represent the customers and x1, . . . ,xk are the locations of server stations.
If the connection cost of a customer to the server is proportional to the β -power
of the Euclidean distance between them (so that β = 2 in the clustering applica-
tion), then the density of the high intensity solution is proportional to pν(y)d/(d+β ),
see [Molchanov and Zuyev(1997), Molchanov and Zuyev(2000b)]. This problem is
also known in computational geometry under the name of the mail-box problem.
Another similar application is the optimal stratification in Monte Carlo integration,
see, e.g., XXX (ref needed!)

4.3 Optimal quantisation

The optimal server placement problem from the previous section can be thought of
as a representation of a measure ν on Rd (that describes the probability distribu-
tion of customers) by another (discrete) measure with k atoms. This is a well-known
optimal quantisation problem, see [Graf and Luschgy(2000), Gruber(2004)]. Apart
from finding the optimal quantiser, it is important to know the asymptotic behaviour
of the quantisation error, which is the infimum of the objective function. The clas-
sical quantisation theory concerns the case when the quantiser is deterministic. We
follow a variant of this problem for quantising points that form a Poisson point pro-
cess of total intensity a studied in [Molchanov and Tontchev(2007b)].

Let p(y), y ∈Rd be a Riemann integrable function with bounded support K that
is proportional to the density of the probability measure to be approximated by a
discrete one. The objective functional for the optimal Poisson quantisation problem
is then

E(p; µ) =
∫
Rd
Eµ ρ(y,η)β p(y)dy .

Denote
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Ea(p) = nβ/d inf
µ∈Mf, µ(Rd)=a

E(p; µ) .

Theorem 9. The limit of En(p) as n→ ∞ exists and

lim
n→∞

En(p) = I ‖p‖d/(d+β ) = I

(∫
Rd

p(y)d/(d+β )dy
)1+β/d

for a certain constant I that depends only on β and dimension d. If aµa is sup-
ported by K and minimises E(p; µ) over all measures with the total mass a, then µa
weakly converges as a→ ∞ to the probability measure with density proportional to
p(y)d/(d+β ).

The proof from [Molchanov and Tontchev(2007b)] does not rely on Theorem 8.
Theorem 9 is proved first for the uniform distribution p(y) ≡ const and then ex-
tended to a non-uniform case. The main idea is the firewall construction from
[Graf and Luschgy(2000)] that ensures the additivity of the objective functional for
indicators of disjoint sets. The main new feature in the Poisson case is that the fire-
walls constructed by adding extra cluster points in the stochastic case correspond to
the changes in the intensity and so may be empty. Bounds on the coverage probabil-
ities from [Hall(1985)] are used in oder to ensure that the firewalls are established
with a high probability. The constant I is the limit of the quantisation error for the
uniform distribution on the unit cube.

Note that laws of large numbers for functionals of point processes have been
considered in [Penrose and Yukich(2003)]. They make it possible to obtain the
limit of a functional of a Poisson process with intensity measure aµ for any given
µ as a → ∞. However, [Penrose and Yukich(2003)] does not contain any results
about convergence of minimal values and minimisers. By examining the proof of
[Penrose and Yukich(2003), Lemma 3.1] it is possible to justify the uniform conver-
gence of the rescaled functional of aµa for a measure µa with density pa (and so
arrive at the convergence results for minimal values) if

a
∫
‖y−x‖≤a−1/d

|pa(y)− pa(x)|dy→ 0 as a→ ∞ (26)

for all x ∈ Rd . If pa(x)→ p(x) as a→ ∞, (26) implies the validity of the double
limit condition (24).

4.4 Optimal search

Let Y be a random closed subset of Rd that is independent of the Poisson process
η . The aim is to determine the intensity measure µ that maximises the coverage
probability P{η(Y )> 0} meaning that at least one point of η hits Y . Equivalently,
it is possible to minimise the avoidance probability
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Eµ1η(Y )=0 = Eµ e−µ(Y ) .

The expected first difference is given by

g(x; µ) = Eµ DxF =−Eµ

[
e−µ(Y )1x∈Y

]
.

If Y is a subset of a countable space, it is possible to determine µ explicitly, see
[Molchanov and Zuyev(1997), Sec. 5.5]. Otherwise, the high intensity approach ap-
plies. For instance, if Y = Bζ (ξ ) is a random ball of radius ζ centred at an indepen-
dent ξ with probability densities pζ and pξ , then

Ep(x)`d
Γ (x;η)∝−κd pξ (x)

[
pη(0)(d +1)Γ (1+1/d)

(ap(x)κd)1+1/d +
p′η(0)(d +2)Γ (1+2/d)

(ap(x)κd)1+2/d + · · ·
]
,

where κd is the volume of a unit ball in Rd . Thus, the density of the asymptotically
optimal measure is proportional to (pξ )

d/(d+1) if pη(0) 6= 0, and to (pξ )
d/(d+2) if

pη(0) = 0 and p′η(0) 6= 0, etc.

5 Steepest descent algorithms

Algorithms of the steepest descent type are widely used in the optimisation litera-
ture see, e.g., [Polak(1997)]. The basic steepest descent algorithm consists in mov-
ing from a measure µn (approximate solution at step n) to µn+1 = µn + νn, where
νn minimises the directional derivative, which in our context becomes L(µ)[ν ] =
〈g( · ; µ),ν〉 with g(x; µ) = Eµ DxF(η).

The general description of the steepest descent direction from [Molchanov and Zuyev(2002),
Th. 4.1] in the case of optimisation over intensity measures with a fixed total mass
yields the following result.

Theorem 10. The minimum of L(µ)[ν ] over all ν ∈ M̃f with ‖ν‖ ≤ ε is achieved
on a signed measure ν such that ν+ is the positive measure with total mass ε/2
concentrated on the points of the global minima of g(x; µ) and ν− = µ|M(tε ) +
δ µ|M(sε )\ M(tε ), where

M(p) = {x ∈ X : g(x; µ)≥ p},

and

tε = inf{p : µ(M(p))< ε/2} ,
sε = sup{p : µ(M(p))≥ ε/2} .

The factor δ is chosen in such a way that µ(M(tε))+δ µ(sε)) = ε/2.

This result means that the mass of µ is eliminated at high gradient locations,
while µ acquires extra atoms at locations where the gradient is the smallest.
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In a numeric implementation, the space X is discretised and the discrete variant
of µ is considered. The corresponding steepest descent algorithms are used in R-
libraries mefista (for optimisation with a fixed mass) and medea (for optimisation
with many linear equality constraints) available from the authors’ web-pages. The
increment step size in these algorithms is chosen by either the Armijo method de-
scribed in [Polak(1997), Sec. 1.3.2] or by taking into account the difference between
the supremum and the infimum of g(x; µn) over the support of µn.

Numeric computations of an optimal measure relies on effective evaluation of
the gradient function which is possible to obtain in many cases as the next sections
demonstrate.

5.1 Design of experiments

The basic problem in the theory of linear optimal design of experiments [Atkinson and Donev(1992)]
aims to find positions of design (observation) points xi in order to minimise the
determinant of the covariance matrix of estimators of coefficients β j in the linear
regression model

yi =
k

∑
j=1

β jr j(xi)+ εi ,

where r = (r1, . . . ,rk)
> is a column vector of linearly independent functions and εi

are i.i.d. centred errors. If the design points are produced from a probability distribu-
tion µ(dx) reflecting the frequency of taking x as an observation point, the objective
function can be expressed as

f (µ) =− logdet
∫

M(µ) ,

where the covariance matrix M is given by

M(µ) = r(x)>r(x)µ(dx) .

For the optimisation purpose, it is possible to discard the logarithm, so that the
gradient function in this model becomes

g(x; µ) =−r(x)M−1(x)r>(x) ,

see [Molchanov and Zuyev(2000c), Molchanov and Zuyev(2004)]. It is also possi-
ble to consider the Poissonised variant of the optimal design problem. It should be
noted however that adding an extra design point has a non-local effect and so the
high-intensity approach from Section 4 does not apply in these problems.
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5.2 Mixtures

Let {px(·)} be a family of probability densities indexed by x ∈ X . For a probability
measure µ on X define the mixture

pµ(y) =
∫

X
px(y)µ(dx) .

The estimation of the mixing distribution µ is a well-studied topic in statistics. The
steepest descent algorithm in the space of measures yields a pure non-parametric
approach to the estimation of µ based on maximising the log-likelihood

f (µ) =
n

∑
i=1

log pµ(yi)

based on a sample y1, . . . ,yn. The gradient function is

g(x; µ) =
n

∑
i=1

px(yi)∫
px(y)µ(dx)

.

5.3 P-means

A direct computation shows that the gradient of the functional (25) is given by

g(x; µ) =−∑
y j

∫ u2

‖x−y j‖β
exp{−µ(B√t(y j))}dt .

5.4 Maximisation of the covered colume

Let η be a Poisson process in X ⊂Rd with intensity measure µ . If Br(x) is a ball of
radius r centred at x, then

Ξ =
⋃

xi∈η

Br(xi)

is called a Boolean model, see [Molchanov(1997), Stoyan et al(1995)Stoyan, Kendall, and Mecke].
The ball of radius r is referred to as the typical grain, which can be also a rather gen-
eral random compact set. Then

P{x /∈ Ξ}= exp{−µ(Br(x))} .

Fubini’s theorem yields that the expected uncovered volume is given by
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f (µ) =
∫

X
P{x /∈ Ξ}dx =

∫
X

exp{−µ(Br(x))}dx .

A minimiser of f (µ) yields the intensity of a Poisson process with the largest cov-
erage. The gradient is directly computed as

g(x; µ) =−
∫

Br(x)
exp{−µ(Br(z))}dz .

Further related problems are discussed in [Molchanov et al(2000)Molchanov, Chiu, and Zuyev]
in relation to design of materials with given properties. This problem does not ad-
mit the high-intensity solution, since adding an extra ball affects the configuration
within distance r which does not go to zero as the intensity of the Poisson process
grows.
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