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Coverage Properties of the Target Area in Wireless
Sensor Networks

Xiaoyun Li, Member, IEEE, David K. Hunter, Senior Member, IEEE, and Sergei Zuyev

Abstract—An analytical approximation is developed for the
probability of sensing coverage in a wireless sensor network with
randomly deployed sensor nodes each having an isotropic sensing
area. This approximate probability is obtained by considering
the properties of the geometric graph, in which an edge exists
between any two vertices representing sensor nodes with over-
lapping sensing areas. The principal result is an approximation
to the proportion of the sensing area that is covered by at least
one sensing node, given the expected number of nodes per unit
area in a two-dimensional Poisson process. The probability of a
specified region being completely covered is also approximated.
Simulation results corroborate the probabilistic analysis with
low error, for any node density. The relationship between this
approximation and non-coverage by the sensors is also examined.
These results will have applications in planning and design tools
for wireless sensor networks, and studies of coverage employing
computational geometry.

Index Terms—coverage, dimensioning, Poisson process, sensor
networks, geometric graph.

I. INTRODUCTION

A wireless sensor network (WSN) monitors some specific
physical quantity, such as temperature, humidity, pres-

sure or vibration. It collates and delivers the sensed data to
at least one sink node, usually via multiple wireless hops.
To ensure sensing coverage, the subject of this paper, the
WSN must sense the required physical quantity over the
entire area being monitored — while doing this, both power
consumption and the efficiency of data aggregation are crucial
considerations.

We assume ideal conditions where each sensor node has an
isotropic sensing area defined by a circle of radius R, although
in practice it may be directional to some extent because of
physical obstacles. Although the analysis could be extended
to cope with scenarios where a node’s sensing range depends
on the environment, the results in this paper nevertheless have
practical significance for many deployments. They will be
useful when estimating the sensor density required, or when
determining the likelihood of holes in the sensing coverage.
It is also assumed that the distribution of sensor nodes over
the target sensing area is described by a homogeneous Pois-
son process, suggesting that the results are most relevant to
applications with randomly scattered nodes.
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A point in the plane is said to be tri-covered if it lies inside
some triangle formed by three edges in the geometric graph. In
this graph, each active sensor node is represented by a vertex,
and an edge exists between any two vertices representing
nodes with overlapping sensing areas; with the isotropic cover-
age assumed here, this happens when the corresponding nodes
are less than 2R units apart (Figure 1). The clustering and
graph partitioning properties of geometric graphs have already
been investigated [1]–[3], with applications for example in
the design of frequency partitioning algorithms for wireless
broadcast networks. Furthermore, an area is said to be tri-
covered if every point within it is tri-covered. A bound is
determined for the probability that all points in the target
area which are further than R units from its boundary are
tri-covered.

Fig. 1. A portion of the target area with λ = 1 and R = 1; nodes closer
than 2R units to one another are connected by edges, and the shaded areas
contain only points which are tri-covered. The circular sensing range of each
sensor node is also shown.

Tri-coverage is closely related to sensing coverage. If an
area is not tri-covered, there must be points inside it which
are not covered by the sensing area of any node (white space
in Figure 1); see the proof in Section IV. The connected
components of areas which are not tri-covered are called
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large holes. However, a point may still be tri-covered, but
nevertheless not be covered by any node’s sensing area, as
in Figure 2. Such points are said to lie inside a trivial hole.
An estimate obtained below shows that the proportion of
space in homogeneous systems occupied by trivial holes is
less than 0.03% regardless of the sensor node density, so
they can in practice be ignored when calculating coverage.
Hence the analytical calculations for the probability of full
tri-coverage proposed here provide a good approximation to
the real probability of sensing coverage, albeit in an idealised
scenario, although no assumptions are made about the shape
of the overall area to be covered. This will be a useful guide
for making network planning and design decisions, especially
as our analytical method generates results much more quickly
than can be achieved by simulation.

Fig. 2. A trivial hole; the central shaded area lies inside a triangle defined
by the graph but is nonetheless not covered.

The coverage problem for sensor networks has been investi-
gated in previous studies [4], [5], [6], with mathematical meth-
ods having been developed for the calculation or estimation
of sensing coverage [7], [8], [9], [10]. Although tri-coverage
provides a useful way of approximating overall coverage, the
analysis presented here using the geometric graph is also
directly relevant to a general class of distributed algorithms
which use only local connectivity information in order to
determine the extent of coverage; for examples see [11] and
[12].

II. PROBABILISTIC MODEL

The usual assumption is made that the sensor nodes are
distributed in the plane according to a homogeneous Poisson
process with intensity λ so that on average there are λ nodes
per unit of space. Because of homogeneity, each point in space
has an equal chance of being tri-covered, so the probability that
the origin O is tri-covered will be considered. This probability
in a homogeneous setting equates to the proportion of the
space which is tri-covered, which is a key parameter to be
considered when designing WSNs.

Because the lengths of each edge of the triangle covering
O must be at most 2R, only the nodes within 2R units from
the origin can contribute to tri-coverage of O. Hence this
probability depends, in fact, on the restriction of the Poisson
process onto the closed ball b(O, 2R) of radius 2R centered
at the origin which is also a finite homogeneous Poisson
process with intensity λ; this process is denoted by Π. It is

convenient to treat Π as a counting measure, so that Π(B)
denotes the number of nodes in a set B. Because zooming
into the realisation a times increases the sensing radius a
times while decreasing the node density by a factor of a2,
without changing the geometry and hence the property of tri-
coverage, the probability of tri-coverage is a function only of
the dimensionless parameter λ/R2. For this reason, R = 1 is
assumed below, remembering that the bounds derived below
(which are functions of λ) should be applied to λ/R2 if R 6= 1.

III. BOUNDS ON PROBABILITY OF TRI-COVERAGE

Denote by T (x, y, z) the property that three points x, y, z
are at a distance not exceeding 2 (= 2R) from each other, and
the triangle with these points as vertices covers the origin. With
a slight abuse of notation, when x0, x1, x2 are nodes in the
process Π, T (x0, x1, x2) is also written to denote the event
that the nodes x0, x1 and x2 cover the origin with a triangle.

Let ξ0 = ξ0(Π) be the node within configuration Π which
is closest to the origin. With the convention that the union is
empty if there are fewer than three nodes in the process Π,
the following can be written:

p(λ)
def
= P{O is tri-covered}

= P
{ ⋃
{x0,x1,x2}⊆Π

T (x0, x1, x2)
}

> P
{ ⋃
{x1,x2}⊆Π\{ξ0(Π)}

T (ξ0, x1, x2)
}
.

Although it is possible that ξ0 does not contribute to the tri-
coverage of O, as exemplified in Figure 3, these configurations
are rare (simulations show that this happens in less than 0.5%
of realisations, see Table I), so the lower bound above is
actually quite accurate.

O
x1

2

ξ0

x3

x2

2

Fig. 3. Example of a configuration when the node closest to the origin ξ0
does not contribute to tri-coverage because the distance to node x2 exceeds 2
and the triangle T (ξ0, x1, x3) does not cover O. In contrast, T (x1, x2, x3)
does cover O.

Now rotate the axes so that the closest node ξ0 lies on
the negative abscissa axis and thus has the new coordinates
(−ρ0, 0). The distance ρ0 to the closest node is a random
variable with the distribution

Fρ0(r0) = P{ρ0 ≤ r0} = 1− e−λπr
2
0
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because the event ρ0 > r0 is equivalent to the ball b(0, r0) not
containing any nodes from the process, and is thus given by
the Poisson probability exp{−λ|b(0, r0)|}, where |B| stands
for the area of the set B. Hence, the above lower bound can
be written as

P
{ ⋃
{x1,x2}⊆Π\{ξ0(Π)}

T (ξ0, x1, x2)
}

=

∫
P
{ ⋃
{x1,x2}⊆Π′r0

T ((−r0, 0), x1, x2)
}
Fρ0(dr0) .

Π′r0 above is the restriction of Π into b(0, 2) \ b(0, r0) which
is again a Poisson process with intensity λ restricted to this
domain. The strong Markov property of Poisson processes was
used here; the random ball b(0, ξ0) is a stopping set, hence
conditioning on its geometry (i.e. on its radius ρ0 = r0)
implies that the process outside the stopping set is again
Poisson, independent of the restriction of the process onto
the stopping set. For details on stopping sets in the Poisson
framework, see, e. g., [13] and [14].

If the origin is tri-covered with one of the nodes being ξ0 =
(−ρ0, 0), then the other two nodes necessarily lie in different
half spaces: one in H+ = R × (0,∞) and the other one in
H− = R× (−∞, 0). Moreover, because the distance to ξ0 is
less than 2, they both lie in the ball b(ξ0, 2) and they miss the
ball b(0, ρ0) which must not contain any nodes by definition
of ξ0. The nodes in H+ ∩ b(ξ0, 2) \ b(0, ρ0) are written in
polar coordinates and ordered by increasing polar angle so
that ξ1 = (ρ1, ϕ1) has the smallest polar angle ϕ1, the next
one is ξ′1 = (ρ′1, ϕ

′
1) with ϕ′1 > ϕ1 and so on until all the

nodes are listed (Figure 4).
If the node ξ1 participates in the tri-coverage together with

ξ0 and some ξ2 ∈ H− ∩ b(ξ0, 2) \ b(0, ρ0) then this ξ2 must
lie to the right of the line passing through ξ1 and O, i.e. in
the half-plane H+(ϕ1) which consists of the points having the
polar coordinates (r, ϕ) with ϕ ∈ (ϕ1 − π, ϕ1). In addition,
‖ξ1 − ξ2‖ ≤ 2 so that ξ2 lies in the figure

G−(ξ0, ξ1) = G−(ρ0, ρ1, ϕ1)

= H− ∩ b(ξ0, 2) \ b(0, ρ0) ∩H+(ϕ1) ∩ b((ρ1, ϕ1), 2) .

It is easy to express the density of node ξ1. The intensity
measure of the Poisson process points in polar coordinates is
λrdrdϕ, and because of the way ξ1 was defined, there should
be no nodes with a polar angle less than ϕ1, i.e. no nodes in
the set

G+(ξ0, ξ1) = G+(ρ0, ϕ1)

= H+ ∩ b(ξ0, 2) \ b(0, ρ0) ∩H+(ϕ1) .

Therefore, the density Fξ1 of ξ1 in polar coordinates has the
form

Fξ1(dr1, dϕ1) = λr1 exp{−λ|G+(ρ0, ϕ1)|}dr1dϕ1 . (1)

This is not a probability density; it integrates to 1 −
exp{−λ|H+∩b(ξ0, 2)\b(0, ρ0)|} which is complement of the
probability that no nodes in H+∩b(ξ0, 2)\b(0, ρ0) are present,
hence no ξ1 is defined and tri-coverage is not possible. The
integration domain D(ρ0) in the space of parameters (ρ1, ϕ1)

G−

G+

z(ρ0)

ξ′′1

ϕ1

O

ξ0

2

ξ1

x2

ξ′1

2

G+

G−

z(ρ0)

ξ0

ξ1

x2

O

Fig. 4. Tri-coverage of the origin; there are no nodes in the area G+ and
there is at least one node in the area G−.

depends on ρ0; if ρ0 ≤ 1 then the ball b(0, ρ0) is entirely inside
b(ξ0, 2) (the upper diagram in Figure 4), and so 0 ≤ ϕ1 ≤ π
and ρ0 ≤ ρ1 ≤ R1, where

R1 = R1(ρ0, ϕ1) =

√
4− ρ2

0 sin2 ϕ1 − ρ0 cosϕ1 . (2)

If 1 < ρ0 ≤ 2/
√

3 (the lower diagram in Figure 4) then
2 arccos(1/ρ) ≤ ϕ1 ≤ π and it is still the case that ρ0 ≤
ρ1 ≤ R1. It is easy to see that G−(ρ0, ρ1, ϕ1) degenerates
into a single point when ρ0 = 2/

√
3 and becomes empty for

larger ρ0. So tri-coverage is not possible if ρ0 > 2/
√

3.

Now a lower bound for the probability of tri-coverage can
be expressed in an integral form. Noting that

P
{ ⋃
{x1,x2}⊆Π′r0

T ((−r0, 0), x1, x2)
}

>

∫∫
D(r0)

P
{ ⋃
x2⊆Π′r0

∩
G−(r0,r1,ϕ1)

T
(
(−r0, 0), (r1, ϕ1), x2

)}
Fξ1(dr1, dϕ1)

(3)

=

∫∫
D(r0)

P{Π′r0
(
G−(r0, r1, ϕ1)

)
> 0}Fξ1(dr1, dϕ1)
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the following inequality may be derived:

p(λ) > p0(λ)

def
= 2πλ2

∫ 2/
√

3

0

r0dr0

∫ π

z(r0)

dϕ1

∫ R1(r0,ϕ1)

r0

e−λπr
2
0 (4)

× e−λ|G
+(r0,ϕ1)|(1− e−λ|G−(r0,r1,ϕ1)|) r1dr1

where R1(r0, ϕ1) is given by (2) and z(r0) = 0 when r0 ≤ 1,
but z(r0) = 2 arccos(1/r0) when 1 < r0 ≤ 2/

√
3.

When writing the above bound, Eq. (3) has been limited to
tri-coverage involving node ξ1 only. However, in principle the
bound can be refined by including the situations where ξ1 does
not contribute to the tri-coverage, but the node ξ′1 = (ρ′1, ϕ

′
1)

with the next smallest polar angle ϕ′1 > ϕ1 does (and even
when ξ′′1 does, and so on). This situation is exemplified in
Figure 5. If there is no node present in G− there is still tri-
coverage using ξ′1 provided there is a node x2 in the set

G′−(ρ0, ρ1, ϕ1, ρ
′
1, ϕ
′
1) = G−(ρ0, ρ

′
1, ϕ
′
1) \G−(ρ0, ρ1, ϕ1) .

G′−

G−

ξ′′1

O

2

x2

ξ1

2ξ0

2

ξ′1

Fig. 5. The point ξ1 with the smallest polar angle does not contribute to
tri-coverage of the origin, but ξ′1 does; there is no node in G− but there is a
node in G′−.

The density of the pair (ξ1, ξ
′
1) is given by

F(ξ1,ξ′1)(dr1, dϕ1, dr
′
1, dϕ

′
1)

= λ2r1r
′
1 exp{−λ|G+(ρ0, ϕ

′
1)|}dr1dϕ1dr

′
1dϕ

′
1

and the right-hand side of the inequality (4) is complemented
by the integral with respect to the following density:

e−λ|G
+(r0,ϕ1)|e−λ|G

−(r0,r1,ϕ1)|(1− e−λ|G′−(r0,r1,ϕ1,r
′
1,ρ
′
1)|) .

For most configurations the set G′− is empty, therefore in-
cluding such a term yields only a marginal improvement, so
the bound (4) will be used from now on.

Although analytical expressions for |G+| and especially
|G−| are rather cumbersome, they do not represent any prob-
lem for numerical evaluation of the integrals in (4) and it
takes only a few seconds on an average laptop to compute the
results with an accuracy of the order of 10−7, compared to
about an hour required for 106 simulations to obtain an order
of 10−3 accuracy for the probability. Furthermore, this method
for obtaining an analytic bound could be successfully adapted

to more complex situations where, for example, nodes could
adapt their sensing range depending on the environment.

All the computations and simulations were performed with
the help of R, a software environment for statistical computing
[15]. Technical details of the computation are not presented
here, but they can be found in the R-code available from
one of the authors’ web-pages1. The idea is to represent
the areas as a sum of sectors centered at the origin and
spanned by the different points where balls b(0, ρ0), b(ξ0, 2)
and b(ξ1, 2) intersect. For instance, the area |G+(r0, ϕ1)| in
polar coordinates is expressed as the integral∫ ϕ1

z(r0)

dϕ

∫ R1(r0,ϕ)

r0

r dr

=
1

2

∫ ϕ1

z

R2
1(r0, ϕ) dϕ− 1

2
r2
0(ϕ1 − z(r0)) .

The first integral represents the area of the sector extending to
the boundary of b(ξ0, 2) while the second represents the area
of the sector extending to the boundary of b(0, r0). Also, the
sectors are bounded by the ray ϕ1 and z. z is either 0 as in
the upper diagram in Figure 4, or 2 arccos(1/r0), which is the
polar angle of the intersection of circles b(0, ρ0) and b(ξ0, 2)
in the upper half-plane as in the lower diagram. Similarly, the
area of G− can be computed, although additional cases having
different geometries must be considered in addition to those
shown in Figure 4; see Figure 6.

All these cases involve integrals of the type∫ α2

α1
R2
s0,α0

(ϕ) dϕ, where

Rs0,α0
(ϕ) =

√
4− s2

0 sin2(ϕ− α0) + s0 cos(ϕ− α0)

is the equation of the circle of radius 2 centered at the point
with polar coordinates (s0, α0). In this case the point (s0, α0)
is either (−r0, π) or (r1, ϕ1). This integral has explicit form
I(α2 − α0)− I(α1 − α0), where

I(α) =
1

2
s2

0 sinα cosα+ 2α+ 2 arcsin
(1

2
s0 sinα

)
+

1

2
s0 sinα

√
4− s2

0 + s2
0 cos2 α .

From this expression, and expressions for the angles of in-
tersection of the different balls involved, explicit expressions
follow for |G+| and |G−|. Numeric evaluation of the triple
integral yields the results presented in Table I and Figure 7.
The simulation results presented in the table show that the
difference between the bound (4) and the estimated probability
of tri-coverage does not exceed 4% in absolute terms and 7%
of the relative error, which is more than adequate for practical
applications.
Remark 1. Motivated by sensor network applications, this
paper has concentrated on obtaining a lower bound on the
probability of tri-coverage, which enables estimation of the
sensor node density necessary to guarantee acceptable sensing
performance. However, an upper bound can easily be obtained
through the following observation. Consider a triangle with
edges not exceeding 2 units. The distance from any point

1www.math.chalmers.se/̃ sergei
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G+

G−
O

ξ0

ξ1

G−

G+

O

ξ1

ξ0

Fig. 6. Cases of different geometry of the set G−.

inside this triangle to any vertex is at most 2, so the ball
b(O, 2) contains at least three nodes when the origin is tri-
covered. Therefore

p(λ) < 1− (1 + 4πλ+ 8π2λ2) e−4πλ (5)

However, further estimation of the probability of tri-coverage
from the above equation is not pursued in this paper.

IV. ESTIMATE OF THE PROBABILITY OF EXISTENCE OF AN
AREA WHICH IS NOT TRI-COVERED

In this section bounds are derived on the probability that
the whole of a ‘large’ sensing area B is tri-covered.

The sensing coverage of a convex set BR = B + b(O,R)
by disks of radius R implies tri-coverage of B provided at
least three disks are needed to cover B, as alluded to in
the Introduction. Indeed, consider the Delaunay triangulation
generated by the nodes in BR. Because the centres of the
Delaunay triangles are also covered, the edges of all Delaunay
triangles are at most 2R units long, so they form part of
the geometric graph we considered previously. So already
the Delaunay triangulation, being a tessellation, tri-covers B.
The converse is true only if trivial holes can be ignored.
Formally, let U = U(B) denote the event that a given convex
set B is fully covered by disks, T be the event that B is
fully tri-covered, and L and V – that there are points in B
belonging to a large hole or a trivial hole, respectively. Then

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

node density

tr
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ag
e 
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ob

ab
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Fig. 7. Monte-Carlo estimated probability of tri-coverage (upper curve) and
the lower bound given by (4) (lower curve).

U(BR) ⊂ U(B) ⊂ T (B) and T \ U = V . Therefore

P(U(BR)) ≤ P(T ) ≤ P(U) + P(V ) . (6)

Consider the case when B is a square of area b2 and denote
a = πR2. As it follows by trivial scaling arguments from [9,
Theorem 3.11], for any λ > b−2 and all 0 < R < b/2

0.05F (a, b, λ) < P(Uc) < 4F (a, b, λ) , (7)

where2

F (a, b, λ) = min
{

1, (1 + ab2λ2)e−aλ
}
.

We are interested in the case where probability of full tri-
coverage is close to 1, so it follows that the upper bound is
of greatest importance for network design:

P(T c) ≤ P(Uc(BR)) ≤ 4F (a, b+R, λ) . (8)

Thus if λ = λ(B) is the density of nodes adjusted to B, then
b2λ2e−aλ → 0 with λ → ∞ guarantees that the probability
of finding a non-triangulated area in B also vanishes.

One can improve the bound (8) by noting that T c means
that there are points in B belonging to a large hole. Every
such hole can be either formed by an isolated sensing area
centred in BR (i.e. not intersecting with any other such disks)
or two intersecting disks isolated from the others, or it contains
at least four exposed points (i.e. not covered by other disks)
which lie at intersections between sensing disk boundaries
(these are the corners of the white areas on Figure 1).

2There seems to be a small error in the original proof on p.181: the disks
with centres less than 1 from the centre of T also contribute to variable M ;
this implies the constant 4 rather than 3 in the upper bound in (7).
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TABLE I
ESTIMATED PROBABILITY OF TRI-COVERAGE p(λ) FROM 106

MONTE-CARLO SIMULATIONS FOR DIFFERENT VALUES OF THE NODE
DENSITY λ. THE ESTIMATED STANDARD ERROR IS 3.7 × 10−4 . ALSO

ESTIMATED IS THE PROBABILITY THAT THERE IS TRI-COVERAGE
INVOLVING THE CLOSEST NODE ξ0 (PROB.0), AND THE PROBABILITY OF
A TRIVIAL HOLE (TRIV.HOLE). THE ANALYTICAL BOUND (4) IS GIVEN IN

THE COLUMN p0(λ).

λ p(λ) prob.0 triv.hole p0(λ)

0.1 0.005329 0.005327 0.000007 0.005735
0.2 0.033261 0.033203 0.000036 0.034677
0.3 0.087907 0.087678 0.000076 0.089330
0.4 0.164243 0.163722 0.000101 0.163168
0.5 0.253085 0.252174 0.000169 0.247864
0.6 0.346224 0.344848 0.000243 0.336143
0.7 0.437580 0.435858 0.000248 0.422615
0.8 0.525560 0.523393 0.000256 0.503749
0.9 0.605189 0.602860 0.000262 0.577533
1.0 0.674162 0.671494 0.000290 0.643079
1.1 0.734671 0.731986 0.000272 0.700268
1.2 0.785297 0.782631 0.000201 0.749469
1.3 0.828210 0.825595 0.000228 0.791327
1.4 0.863905 0.861508 0.000209 0.826625
1.5 0.892595 0.890303 0.000175 0.856179
1.6 0.915481 0.913352 0.000163 0.880786
1.7 0.934486 0.932563 0.000134 0.901181
1.8 0.948534 0.946837 0.000094 0.918028
1.9 0.960393 0.958836 0.000082 0.931907
2.0 0.969311 0.968036 0.000075 0.943322
2.1 0.976780 0.975663 0.000054 0.952699
2.2 0.982166 0.981225 0.000045 0.960399
2.3 0.986351 0.985527 0.000045 0.966721
2.4 0.989803 0.989114 0.000033 0.971915
2.5 0.992092 0.991509 0.000023 0.976188
2.6 0.994199 0.993721 0.000028 0.979709
2.7 0.995596 0.995185 0.000016 0.982616
2.8 0.996572 0.996244 0.000009 0.985023
2.9 0.997418 0.997151 0.000015 0.987021
3.0 0.998211 0.998014 0.000012 0.988686
3.1 0.998592 0.998426 0.000015 0.990079
3.2 0.998919 0.998792 0.000007 0.991248
3.3 0.999259 0.999154 0.000003 0.992235
3.4 0.999443 0.999355 0.000005 0.993072
3.5 0.999569 0.999504 0.000004 0.993785
3.6 0.999680 0.999625 0.000003 0.994396
3.7 0.999772 0.999728 0.000001 0.994921
3.8 0.999845 0.999812 0.000002 0.995377
3.9 0.999877 0.999845 0.000000 0.995773
4.0 0.999905 0.999888 0.000001 0.996120

The probability of existence of an isolated disk centred in
BR is at most the expected number of such disks. Therefore,
by the Refined Campbell theorem,

E
∑

x∈Π∩BR

1IΠ(b(x,2R))=1

= λ

∫
BR

Px{Π(b(x, 2R)) = 1} dx = λ(b+R)2 e−4λa ,

where Px is the local Palm distribution of Π, see, e. g., [16],
(roughly speaking, the conditional distribution ‘given there is
a Π-point at x’). Similarly, for two isolated disks the bound

is
1

2
E

∑
x∈Π∩BR

1IΠ(b(x,2R))=2 = 2λ2a(b+R)2 e−4λa .

Both bounds do not exceed e−aλ for sufficiently large λ.

2R

y x

u

Fig. 8. Adding a ball with centre z inside the shaded zone would make a
trivial hole, provided u is not covered by other balls not shown here.

In the third situation, the exposed intersection point
u = u(x, y) of two disks b(x,R) and b(y,R) has a zone
H(x, y,R) = b(x, 2R) ∩ b(y, 2R) \ b(u,R) (shown shaded in
Figure 8) which is free from nodes, otherwise such a node
together with x and y would form a trivial hole rather than
a large hole. Thus the existence of a large hole in the third
situation implies that M , the number of exposed boundary
intersection points with the above property, is at least 4,
implying that

P{M ≥ 4} ≤ 1

4
EM =

1

4
λ(b+R)2

×
∫
b(0,2R)

P0{Π
(
b(u(0, y), R) ∪H(0, y, R)

)
= 0}λdy

(When two disks intersect, they do so at two points, moreover
each such point is counted twice when summation is carried
out over all nodes). The area of H(0, y, R) depends only on
r = ‖y‖ < 2R and is equal to R2 times

h(r) =
r

2

[√
1− r2/4−

√
4− r2/4

]
+ 3 arcsin(r/2)− 4 arcsin(r/4) ≥ r4/48 .

Upon converting to polar coordinates, the integral above is
smaller than

2a
√

3πλ erf(
√
λ/12) e−aλ ,

where erf(x) = 2√
π

∫ x
0
e−t

2

dt < 1. Combining everything,
we see that for a fixed R and sufficiently large λ we have that

P(T c) ≤
[
1 +

√
3π

2
a(b+R)2λ3/2

]
e−aλ . (9)

Comparing this with (8), even b2λ3/2e−aλ → 0 as above is
sufficient to ensure that B has a high probability of being
triangulated. The difference reflects the occurence of trivial
holes which do not affect tri-coverage T , although they affect
sensing coverage U .



7

V. SUMMARY AND CONCLUSIONS

In this paper, the concept of tri-coverage was used to
approximate the proportion of sensing coverage in a wireless
sensor network, assuming a two-dimensional Poisson process
as a model of sensor node positioning. The principal analytical
results require no assumptions to be made about the shape of
the overall sensing area to be covered, and agree with the
simulations very well, with a difference of just a few percent
for all node densities. The bounds on the probabilities of
both tri-coverage and also coverage of the whole target region
are the key results of this paper because of their practical
importance; in many deployment scenarios they will assist a
network planner in estimating both the sensor node density
which guarantees that at least a given proportion of the target
sensing area is tri-covered, and also the order of sensor node
density which ensures full sensing coverage. Furthermore,
the concept of tri-coverage itself is directly relevant to the
performance of a general class of distributed algorithms which
run on the sensor nodes themselves, and which only require
local connectivity information.

In order to provide full sensing coverage of a large area, the
proportion of space which is tri-covered should be very close
to 1, i.e. the sensor density λ should be large. Because of the
computing time required, evaluating the sensing coverage for
high λ through simulations becomes impractical. In contrast,
our analytical bound presents no major technical difficulties
and is very accurate.

To the best of the authors’ knowledge, this is the first
time that bounds on the probability of sensing coverage have
been calculated analytically, without assumptions being made
about the target area. These calculations suggest a fundamental
framework for probabilistic coverage-based analysis using
stochastic geometry, especially when seeking to evaluate the
extent and quality of sensing coverage.

Finally, this paper also explored the relationship between
tri-coverage and non-coverage, which is expressed by the
probability of a trivial hole. Trivial holes account for only
a tiny fraction of the total uncovered area, and hence may be
ignored in practice when calculating coverage probabilities.
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