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Preface

These are the lecture notes from a course given at CTH. The main purpose of the course was to
introduce the basic ideas of the weighted L2-estimates for the d-equation in domains in C", and
then go on to the analogous invariant formalism on complex manifolds. Here is an overview of the
content:

In the first chapter we treat the d-equation for (0, 1)-forms in domains in €, following Hérmander
[1]. This approach is technically more complicated than the one used in Hérmander’s book [2],
but it is probably conceptually easier to understand. The main technical difficulty is the proof of
the approximation lemma in Section 1.5. After having proved the main existence theorem using
this method, we also show how the use of the approximation lemma can be avoided, following [2].

In Chapter 2 we set up and solve the 9-Neumann problem. The presentation differs from e.g.
Folland-Kohn [6] in that we establish solvability without proving regularity first. Again, the main
point is the approximation lemma from Chapter 1, Section 1.5. After that we discuss regularity
very briefly, using a fundamental theorem of Kohn-Nirenberg, [7], that we do not prove.

Chapter 3 is devoted to the d-equation on complex manifolds. We treat only the case of Kéhler
manifolds, and the first object is to set up the K&hler identities. We do this in a pedestrian
way, using calculations in normal coordinates. Then we prove the Lefschetz decomposition of
differential forms which is later used for the so-called “Hard Lefschetz theorem”. But, the most
important formula in this chapter is the Nakano identity, Theorem 3.7.3. This formula implies
the fundamental identity, Theorem 1.4.2, and its generalizations to vector bundles over Kahler
manifolds. This far, Chapter 3 consists basically of linear algebra, but then we use these formulas
to prove vanishing theorems, i.e., existence theorems for the d-equation. Apart from the case
of compact manifolds, we treat non-compact manifolds with a complete Kahler metric, basically
following Demailly [5].

There is nothing original in this presentation (except for the errors, and perhaps not even all of
them). These notes were written to serve as an easy reference for myself. Maybe they can serve
the same purpose for someone else.

Finally I would like to thank Yumi Karlsson for helping to type the manuscript.
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Chapter 1

The d-equation for (0, 1)-forms in
domains in c"

If u is a function defined in a domain € in C”, the differential Ou is defined by

ou = —dz;
1 8zj J
where
ou 1] Ou . . O0u
— = +iz—].
82]- 2 é)xj 3yj
In general, a (0,1)-form f is a formal combination
f=>_fdz
1
where the f;:s are functions. The equation
ou=f (1.1)
is thus just a compact way of writing the system of differential equations
Ju
— = f; i=1,...,n.
85j fj J "
For the equation (1.1) to be solvable it is necessary that f satisfy the compatibility conditions
af;  Ofy .
—= = _—— 1<4, k<n. 1.2
0z, 0z = E=n 12

If we introduce
of = En ofi Ndz; = §n %dék/\dz-:
J i EEA J
1 J.k=1
— E (%,%)dgk/\dgj7

0z 0Z;
k<j k J

the equations (1.2) can be written

af = 0. (1.3)



The O-problem is thus to solve the equation Ou = f where 9f = 0.

The same problem can be posed when f is a differential form of higher degree. In the first chapters,
however, we will consider only the case when f is a (0, 1)-form since it shows the basic ideas in their
simplest form. The general problem will appear in Chapter 3 when we consider the d-equation on
complex manifolds.

[12pt,adpaper]report

times,adwide,cmbb,amssymb,dot-theorem [12pt,adwide,amssymb,cmbb,dot-theorem,leqnol]report

1.1 Formulation of the main result

The main result of this first chapter is Hormander’s weighted L?-estimate for the J-equation. To
state it we first need to introduce a few basic concepts.

Let ¢ — [—00,00) be an (extended-) realvalued function in Q. We say that ¢ is plurisubharmonic
if ¢ is upper semicontinuous, and has the property that for each a € 2 and each w € C", the
function ¢ — ¢(a + (w) is a subharmonic function of the complex variable {, for ¢ near 0. In
other words, we require that the restriction of ¢ to each complex line is subharmonic. In case ¢ is
smooth (of class C?) we can check this by computing the Laplacian with respect to (:

82
9¢a¢

d(a+ Cw) = Z b5 (a + Cw)w;wg.

. 2
Here we have used the notation ¢,z = 6;?76m¢'
0z

Since a smooth function of one complex variable is subharmonic if and only if its Laplacian
is nonnegative, we see that ¢ is plurisubharmonic if and only if the matrix (¢,) is positively
semidefinite. We also say that ¢ is strictly plurisubharmonic if this matrix is positively definite.

Plurisubharmonicity can be thought of as a (or one possible) complex notion of convexity for
functions. The corresponding concept for domains is pseudoconverzity.

To define it we shall first assume that our domain 2 has smooth boundary. Then 2 can be given
as
Q={zeCp(x) < 0},

where p is a smooth (“defining”) function satisfying dp # 0 on 9. Let p be a point on 9. The
tangent plane to 9 at p is the set of vectors a such that dp|,.a = 0. Here, if a = a + i3,

dp Jdp
dpl,.a = E — ——(p).
P|p a Qi &Ej (p) + Bj ayj (p)
This can be written as

0
2R0p|p.a = 2%2 aja—j(p).
J

The complex tangent plane of 0N at p is now defined as
700 = ;Y 0, 22 () = 0.
p ’ J 82]‘

Note that T,Sl’o) is a (n — 1)-dimensional complex subspace of C™ which is contained in the

)

real)tangent plane. Clearly, this property also determines Lo uniquely.
g Y. Yy P Y



Definition: € is pseudoconvex if for all p € 99 the quadratic form
L(p, p)(a) =Y pji(p)ajar,

defined for a € T, ;1’0), is positively semidefinite.

Note that, in particular, if we can choose p plurisubharmonic, the domain must of course be
pseudoconvex.

It may seem that this definition depends on the choice of defining function p but in reality it does
not. Namely, if p is another choice of defining function, then g can be written as p = gp, where

g > 0 on 09). Remembering the definition of ngl’o) we see that

L(p,p)(a) = gL(p, p)(a),
so the definition of pseudoconvexity is indeed independent of the choice of p.

It is worth remarking that when n = 1, 7(19) = {0}. Therefore any domain in C is pseudoconvex
(just like any domain in R is convex).

One can prove that a smoothly bounded domain in C™ is pseudoconvex in the sense we just
have described if and only if there is some smooth and plurisubharmonic function ¢ defined in €2
which tends to co at the boundary. (Such a v is called an ezhaustion function.) This property
makes sense whether the boundary is smooth or not, and can be taken as the general definition
of pseudoconvexity.

Note that this second definition implies that any pseudoconvex domain ) can be written as an
increasing union of relatively compact subdomains, Q. that are (strictly) pseudoconvex and have
smooth boundaries. This follows since we can take

Qk = {w < Ck},

where C}, is a sequence that tends to oo sufficiently rapidly, for by Sard’s theorem these domains
will be smoothly bounded for almost all choices of Cj.

We are now ready to state one version of the main theorem of this chapter.

Theorem 1.1.1 Let Q2 be a pseudoconver domain in C", and let ¢ be smooth and strictly plurisub-
harmonic in Q. Suppose f is a (0,1)-form with coefficients inileoc, satisfying Of = 0, in the sense
of distributions. Then there is a solution, u, to the equation Ou = f, satisfying the estimate

L\UI26_¢SAZ¢jEfjfk€_¢,

provided the right hand side is finite. Here (¢%) = (f;5)" "

1.2 The one-dimensional case.

Throughout this section we shall identify functions and (0, 1)-forms, so we make no distinction
between f and fdz. Let us first repeat what Theorem 1.1.1 says in the case when n = 1. Then (2
is allowed to be any domain in C, and ¢ is any function satisfying

82



The compatibility condition df = 0 is also always satisfied (here we have to consider f as a
(0,1)-form!), and the conclusion is that we can solve

ou

==

/||27¢>< |f|2

Even this one variable case is a very precise and useful result, and it is quite surprising that it
was discovered in several variables first. Moreover, the proof when n = 1 is considerably more
elementary than the general case, and we shall therefore treat it separatedly.

with a function u satisfying

We begin by giving the problem a dual formulation. Remember that, interpreted in the sense of

distributions, the equation %u = f means precisely that

/u—a—/fa (1.4)

for all « € C2(Q) . To introduce the weighted L?-norms of the theorem we substitute for o, ae=%.

The equality (1.4) then says
/ué{’;?e*d’ = /fo?e*(z’, (1.5)

(e_¢a),

where

8¢a— —e? e

is the formal adjoint of the O-operator with respect to our weighted scalar product

< fog>e= /fge*¢-

Proposition 1.2.1 Given f there exists a solution, u, to %u = f satisfying

/|u\2e—¢ <, (1.6)

if and only if the estimate
|/fde_¢|2 SC/|5;a\26_¢ (1.7)
holds for all a € C%(Q)). On the other hand, for a given function p > 0, (1.7) holds for all f

satisfying ,
/ ﬂeﬂﬁ <C (1.8)

7
[lapee < [15;ape. (1.9)

Proof: It is clear that if (1.5), and (1.6) hold, then (1.7 ) follows. Suppose conversely that the
inequality (1.7) is true. Let

if and only if

holds for all o € C2(1).

E= {(ﬁa;a € C*(Q)},



and consider E as a subspace of
e ) =g € s [ lofPe® < o)
Define an antilinear functional on E by
L(350) = / fae?.
The inequality (1.7) then says that L is (well defined and) of norm not exceeding C. By Hahn-
Banach’s extension theorem L can be extended to an antilinear form on all of L?(e~%), with

the same norm. The Riesz representation theorem then implies that there is some element,u, in
L?(e~?), with norm less than C, such that

L(g) = /uge*‘i’v

for all g € L?(e~?). Choosing g = (’f):;m we see that
/ué:i?eﬂﬁ = /f@eﬂﬁ,

The first part of the proposition is therefore proved. The second part is obvious.

o calune D0
so u solves zu = f.

To complete the proof of Hérmander’s theorem in the one-dimensional case it is therfore enough to
prove an inequality of the form (1.7). This will be accomplished by the following integral identity.

Proposition 1.2.2 Let Q be a domain in C and let ¢ € C*(Q). Let a € Dy 1(Q). Then
0 _
Adlal?e® /—2*¢:/a*2*¢ 1.10
[ aslapee s [ aPe? = [18;02¢ (110
Proof: Since a has compact support we can integrate by parts and get

/|5;O&‘267¢ = /55204 ~ae?.

- P
O = —aa + ¢,

Next note that

so that 5 9
55:@ = —-Aa+ gbz8—a + Aga = 5(’;)%0[ + Ada.

z
Ok — — a —
/|8¢a|26 ¢:/A¢|a|2e ¢+/‘£Ol|2€ ¢

Combining the last two propositions we now immediately conclude

Hence

and the proof is complete.

Theorem 1.2.3 Let Q be a domain in C and suppose ¢ € C?(Q) satisfies Ap > 0. Then, for any
[ in LE Q there is a solution u to Biu = [ satisfying

z

2
2~ < |f] —¢
/|u| e ?< —¢e .



1.3 Dual formulation in higher dimensions

Now we turn to the case of dimensions larger than 1. Denote by D(g 1) the class of (0, 1)-forms
whose coefficients are, say, of class C? with compact support in €. If f and « are (0, 1)-forms we
denote by f - & their pointwise scalar product, i e

fra=> fia;.
The equation Ou = f, in the sense of distributions, means that
80[j
o= — —7 1.11
Jra=-[u 52 (111)

for all @ € Dg1). Just like in the one-dimensional case we replace a by ae~? (where ¢ is a
C?-function which will later be chosen to be plurisubharmonic). The condition (1.11) is then

equivalent to
/f cae”? = /11('5(;76_‘15 (1.12)
for all @ € Dg,1), where
- o
Oy = —e? Z 5(6 %a;).
J

Assume now that we can find a solution, u, to du = f, satisfying

/|u\2e_¢ <C.

|/foc_ve*¢\2 §C/|5(}’;a|26*¢.

The next proposition says that the converse of this also holds.

Then (1.12) implies

Proposition 1.3.1 There is a solution, u, to the equation Ou = f satisfying

/|u\26—¢ <c (1.13)
if and only if the inequality
|/f~d6_¢\2 < C/|5;a|26_¢. (1.14)
holds for all o € Dg,1)-

Proof: It only remains to prove that (1.14) implies that there is a solution to the d-equation
satisfying (1.13). This is done precisely as in the one-dimensional case (cf Proposition 1.2.1 ).

To prove inequality (1.14) one might first try to prove an inequality of the form

/|a|26_¢ SC/|5;a\26_¢.

The main problem in higher dimensions (as compared to the one-dimensional case), is that no such
inequality can hold. Indeed, if it did, then by Proposition 1.3.1 , we would be able to solve du = f,
even when f does not satisfy the compatibility condition Of = 0. Thus we must somehow feed
this information, Of = 0, into the method. This requires a little bit more of functional analysis.



First we introduce the weighted Hilbert spaces
L*(Q,e %) ={ue L}, / lul?e™? < oo},
and
Lo(@e ) =1 = 3 fssify € L [ 1P < )
(Here of course |f[> =>"|f;].)

In the sequel, as long as the domain  under consideration is kept fixed, we will write simply
L?(e=?) ete, for the weighted L*-spaces. We also let

N={fe L(20,1)(67¢)§5f =0}

Here the condition 0f = 0 means that
ofj _ Ofk

oz 0z
in the sense of distributions. It follows that IV is a closed subspace of L%O 1)(€_¢).

We can then extend the definition of d by allowing it to act on any u € L?(e~?) such that du (in
the sense of distributions) lies in L%O 1)(e_¢). This way we get a densely defined operator

T: L) — 12 ) (e7).
T has an adjoint
T : L%()’l)(e*(b) — L2(67¢)
defined by
<u, T a>pae-oy=<Tu,a>p2 (o) -

This means that & € Dom(T*) and T*a = v if and only if
<u,v >L2(e*¢):< Tu, >L?011)(e*¢) .
for all v in the domain of T. Recall that « lies in the domain of 7™ if and only if the inequality

| < Tu,a >L? -9) | < CH“’HL"’(@*@

(e
0,1)
holds for all u in the domain of T. Observe that if « lies in the domain of T™*, then

T o = 5(;@.
(The difference between T and 5;} is that T has a specified domain. Thus we may apply 5;@ to
forms that are not in the domain of 7*)

Let us now return to our testform « in D(g ;). Clearly o € L%O’l)(e_‘b), so we can decompose
a=a'+ a2,

where o' lies in N and o2 is orthogonal to N. This implies in particular that a? is orthogonal to
any form Tu, so we see that o? lies in the domain of T* and T*a? = 0. Since clearly « lies in the
domain of T* (why?), it follows that T*a = T*al.

In the proofs below, we will need a simple generalization of Cauchy’s inequality when we estimate
pointwise scalar products. It says that if u = (uj,;) is any positively definite hermitean matrix,

and (%) denotes the inverse matrix, then

f-af? < Zujkfjfk Zﬂj;}%‘@k-
This is easily seen since we may diagonalize 1 by a unitary transformation. We are now ready to
give the dual formulation of the 9-problem.



Proposition 1.3.2 Let y = (u1;5) be a continuous function defined in Q whose values are her-
mitean n X n matrices. Assume that p is uniformly bounded and uniformly positive definite on Q.
Suppose that for any a in Dom(T*) N N it holds

/Z,uj,;ajdke_d’ < /|T*a|26_¢.
Then, for any f € L%071)(e_¢) satisfying Of = 0, there is a solution, u to Ou = f satisfying
/\UI2€*¢ < /Zujkfjfkf#
If pu is a constant multiple of the identity matriz, the converse to this also holds.

Proof: To prove the first part, according to Proposition we need to verify the inequality

|/f-o‘ze*¢\2 SC/|5;Q|267¢.

/f~de*¢:/f~dle*¢,

and since a! lies in N intersected with the domain of T*
I/fﬂe_(bl2 = /Z”j%a}di€_¢/zﬂjkfjfk€_¢ <
< it [ St bt [T

The first part therefore follows from Proposition 1.3.1.

But if f € N,

For the converse we note that if & € IV, and the conclusion of the Proposition holds, we can write
« = Tu. Then, if moreover « lies in the domain of T,

/|a|26_¢ =<Tu,a >=< u, T a >< ||ul|||T* ||,

from which the converse follows. | |

The condition that p be uniformly bounded and positive definite is not a very serious restriction.
One main feature of the conclusion of the proposition is that the constant (= 1!) in the estimate
for w is uniform, and we shall see in section 1.6 that this permits us to treat much more general
growth conditions by simple limiting arguments.

We shall finally give somewhat more general versions of Propositions 1.3.1 and 1.3.2, which allow
us to vary the estimate of the solution, as well as of the right hand side, of du = f.

Proposition 1.3.3 Let w be a continuous function which is uniformly bounded and uniformly
positive in 2. Then there is a solution, u, to the equation Ou = f satisfying

2
/Meﬂl5 <C. (1.15)
w

if and only if the inequality
|/f~6¢e*¢|2 < C’/\é;aﬁwe*‘i’. (1.16)

holds for all o € Dg,1)-



Proof: The proof is virtually identical to the one of Proposition 1.3.1. Assuming 1.16 holds we
find that there is a function v such that

/|v|2w6_¢ <C,

/f cae”? = /v%we_‘b,

for all & € D(g,1). Letting u = vw we see that u solves Ou = f, and satisfies 1.15. |

and

Just like before this implies

Proposition 1.3.4 Let p = (uj,;) be a continuous function defined in Q) whose values are her-
mitean n X n matrices. Assume that i is uniformly bounded and uniformly positive definite on S.
Let w be a continuous function which is uniformly bounded and uniformly positive in . Suppose
that for any o in Dom(T*) N N it holds

/Z,uj,;ajdke_d’ < /|5:;a\2we_¢.
Then, for any f € L%O 1)(e_‘b) satisfying Of = 0, there is a solution, u to Ou = f satisfying

/fed’ < /Zﬂjkfjfk(#

If 1 is a constant multiple of the identity matriz, the converse to this also holds.

Proof: By Proposition 1.3.3 we just need to verify that

|/f.5ée*d>|2 S/Zﬂjlgfjfkeﬂﬁ/|(§;a‘2we7¢v

for all o in D(g 7). Following the proof of Proposition 1.3.2 we decompose a = al! 4+ o2, where
a' € N and o? is orthogonal to N in L?(e~?). Then

/f.@e—¢:/f.dle—¢’

since f € N. Since o' lies in NV and in the domain of T*, by our hypothesis
|/f . d16—¢|2 < /Zujkfjfk€_¢/|(§;Ozl|2w€_¢~

On the other hand 5:;041 = 52;a, so the proof is complete. |

We will have use for the last two propositions in section 1.8.

1.4 The basic (in)equality

Notice what we have gained through Proposition 1.3.2. To prove an estimate for solutions to the
J-equation it is now enough to be able to control a form a in N, i e a form satisfying da = 0 by
5;& But we have also lost something. Before we were dealing with forms that were smooth and
had compact support. This information we have now lost, the only additional information we have



on « is that a €Dom(T*). The strategy is to first prove the estimate we are looking for assuming
that o is smooth up to the boundary, and then remove this assumption by an approximation
lemma. To do this we shall first investigate what it means for a smooth form to lie in Dom (7).

Let p be a function of class C? in a neighbourhood of €2 such that

N=|zeU;p(z) <0} and Vp=0on 0N
We then have

Lemma 1.4.1 Suppose a is a (0,1)-form of class C* on Q, and that o € Dom T*. Then

Zaja—zj =0 on OO (1.17)

Proof: First note that the divergence theorem on €2 takes the following form in complex notation:

if a,b € C1(Q) then
ob ap ds

Now let u be of class C! on . Then
- ou
<Ou,a> = /Qzazjaje LA\ =

= _ Jp _,dS
= ud}oe “"d)\—F/ ug aj—e P =<u, T a >
/Q v oQ !0z |0p]

if @« € Dom T*. By first taking u with compact support in 2 we see that

T o = 5:204

(which we already knew). But this means that
8p ds
” P
/ 2.0 |0p]
must vanish for any u. Clearly this means that

E aj@:0 on Of).
6zj
[ |

If n =1, (1.17) just means that « vanishes on 9Q2. In higher dimensions it says that the component
of a in the direction of the complex normal vanishes. Actually the converse to Lemma 1 also holds;
if a-0p =0 on 0N then a € Dom T*. The proof of this follows from the same calculation we have
just done but it requires an approximation of a general element in Dom T by smooth functions,
and since that is the object of the next section we omit it.

The following identity is basic for everything that follows.

Theorem 1.4.2 Assume that o € Dom T* and is of class C?()). Assume also that p, p € C%(Q).
Then

2
_ 0 _ _, as me 12— 5 19 _
©EOQge “"—|—/ Lle ‘p—|—/ Pin0Oe “"—:/ |0Cal“e ‘p—i-/ [Oal“e%.
[ e [ ¥ [ S oesaneigr= [ 050+ [

9%
0z,
(1.18)

10



Here )

Oaj  Oay,

0z, an

Baf* =

i<k

Proof. Consider the expression
I = /Q ‘5:;04267@61)\ =< 5:,0175;04 > .

Since o € Dom T
I = /owgé;ae_“".

Now 5
=2, T =2 00
where 5 5 5
- '
o Y e Y Y
0 =¢ azje dz; 0z
Thus

0 -
— Z aizk(sjoldek.

) 02 dp 0a; D%

S — ,
02 1 T 95,02, 0 0z 05 02,07,

Observe that

On the other hand
5. 0 _ Oy OpOa;
j@ik T 8zj82‘:k 82]' 0z,

s0
— Oaj _
Qo = — Z §; 8—2;de + Z Qi dZy.
Note also that if a,b € C(Q) then

— — __0p dS
—be Yd\ = — /a5-be “"d)\Jr/ abe™f — ——. 1.19
/3Zk a ’ o0 0z |0p| (1.19)

Collecting we have
1= / agés’;aef‘pd)\ =
Q

= / Z Pirejae” YdA +/ Zaké —e_spd)\ =1 + L.
Q
By (1.19)
Doy, Do da; ap _, as
I = —Leedr— J ey A
? /QZ 0z; 3?«% /@92 Yoz, 0z, 823 |0p| 374
Let us first consider the boundary term I,: We know that

» ajo—=0 on 0Q. (1.20)
J

This means that this expression still vanishes on 02 if we apply a tangential operator to it. So let
us apply the operator
0
v ——
> g

11



((1.20) means precisely that this operator is tangential.) If we first take conjugates, we find

o ,_ Op
Zo‘kajk(%a?j)—o
S0 —
OJa; Op _
o e DTS
Thus s
-1 :/ pikajage ¥ —. 1.21
07 o 2rmestie 20

It now remains to compute I3. This is done by verifying the identity

2

I3:/ _712 +Z e_‘0:_71/|5a|2e_"+/z

which can be done e g by expanding the expression within the brackets in the middle term.

2
aak

0z;

Ooy, 0oy

8Zj 0z,

2
e %,

Jak
0z,

Collecting we find

I= / |5Z,a|2e_“°d)\ =hL+1,= / Zgoj;;ozjdke_‘od)\ +I3—1, =
Q Q

2

da; 1 - ds
piraiare” PdN + / —L| e7¥PdN— = / dal?e ¥ + / pipoiage ¥ —.
/QZ Ik QZ 0z, 2 Q| | aQZ I |0p]
This is precisely the formula in the theorem. |

Assume now that ) is pseudoconvex. Then it follows from Theorem 2 that

/Zapj,;ajdke_“"d)\g/ |(‘§;a|26_‘/’
Q Q

if o is sufficiently smooth, € Dom T* and da = 0. If moreover ¢ is plurisubharmonic, this is
precisely the kind of inequality we need to apply Proposition 1.3.2 . The problem that remains to
take care of is to avoid the assumption that a be smooth up to the boundary. This is the object
of the next section.

1.5 Approximation of L?-forms by smooth forms

The basic tool for the approximation is of course convolution with a smooth approximation to the
identity. Since the first part of the argument has nothing to do with the complex structure, we
will start our discussion in R.

Let ¢ > 0 be in C2°(RY) and assume

Let also

12



2 5
If v € L{ ., we consider

Pex () = /v(l’ —Y)pe(y)dA(y) = /v(x —€y)p(y)dy.
Then it is well known that
pexv—v in LE., as e—0.

Moreover, ¢, * v is a smooth function.

Lemma 1.5.1 Let a € C! and v € L? and assume v has compact support. Define

0 0
A= a@xi (v*pe) — (aaxiv) * D

Then A, — 0 in L? as e — 0.

Proof. If v € C°(RY), the result is clear since we even have uniform convergence. We will show
that for some C'
[Aellzz < Cllv]l 1, (1.22)

which gives the claim in general since we can approximate L2-functions by smooth ones.

Aln) = o) [ 5o - epl)ir— [ ate - )5 o - @)ew)ix
0

=~ [late) ~ ata ~ el oo — en) el =

= / aia(w —ey)v(z — ey)p(y)dA +

n /wv(mwawdh&%,
€ 0y

Since a € C1, da/dz; is uniformly bounded on compacts. Hence

A< 0| [ vlo - et

where C' can be taken uniform for all v with support in a fix compact. Hence
[A1][z2 < Cljvl|Le.

On the other hand
a(z) —a(z — ey)
€

< C'ly]

where C’ also is uniform for x and y in compact sets. Therefore As can be estimated in the same
way.

We will also have use for a more general version of the lemma. Let ¢ be a function satisfying the
same conditions as ¢ but defined on RV ~!. We can use 9 to define a partial regularisation by

Ve N = /}RN?1 vz’ — ey, zn)Y(y')dA (1.23)

where we write z = (2/, zy). We note for later use that if we define A, using this operation instead
of convolution with ¢, Lemma 1 still holds, provided we only consider derivatives 9/dx; where
i< N.

13



Next, we consider a linear differential operator of first order with variable coefficients of the form

0
v=(V1,...,0m) —: Lv = Zafa—xivk, (1.24)
i,k
where we assume that af € C?. We can then use Lemma 1 to prove the following important

Proposition 1.5.2 Assume that v € L? and that moreover Lv (in the sense of distributions) also
lies in L2 .. Then

loc*
2

loc*

Llvxp)—Lv as e—0 in L

It also holds that
LwAve) — Lv ase—0in LY,

provided a%; is constant.

The important feature of the proposition is that we assume only that Lv € L120(:7 not that this
holds for all the derivatives of v separately. We will have use for this later on when we deal with

forms satisfying e.g. 0*a € L?, whereas we know nothing about other derivatives of a.

Proof. We may assume that v has compact support since otherwise we can multiply v by a
smooth function with compact support. Since Lv € L? we have

0
Z(afax.vk) xpe— Lv as € — 0.

Now Lemma 1.5.1 tells us that

a¥ 8axi (vg * @) — (aF aii vg) e — 0 as € — 0. (1.25)

Hence
L(v* @) — Lv

so we are done. To see the second statement, we note that according to the comment after Lemma

1.5.1, (1.25) still holds if we change convolution with ¢, to convolution with 1. with respect to

o', provided that i < N. But if i = N, (1.25) is trivial since we have assumed a¥; are constant.

Hence the same proof works. |
Before proceeding, we also note that the proposition is till valid if we add lower order terms

Z brvk
to the definition of L, where say b, are continuous.

Let us now return to our forms living in a domain Q in C”. We assume that €2 is smoothly
bounded and is relatively compact. Denote

E= L?o,l)(ﬂ’ ¢) N Dom d N Dom T*.

Proposition 1.5.3 Assume o € E. Then there are o¥ € EN CE’S’I)(Q) k=1,2,... such that
lo” — all = o” — ol + |T"(a” — )| + [9(a” — )|

tends to zero as v goes to infinity.

This is the main result of this section and its proof requires some more preparations. The first
step is to localize the problem.

14



Lemma 1.5.4 Assume a € E and x € C®(Q). Then xa € E.

Proof. This is easy. It is obvious that yo € L? and that Oya € L?. If u € Dom T then

< Tu, xa >=< xTu,a >=< Txu,a > — < udy,a > .

But
| <Txu,a>] < |[xulllT"al and
| <udx,a>] < Cluflall
Hence
| <Tu,xa> | < Cllull
where C' is independent of u, which shows that ya € Dom T*. |

Take a partition of unity {x;} in Q so that

a= ija.

It is enough to prove Proposition 1.5.3 for all x;c«. If x; has compact support in €2, the proof is
very simple since we just approximate x ;o with

(onz) * Qe

and apply the first part of Proposition 1.5.2 (in a very simple form since all the coefficients of
first order terms in 0 and T* are constant). So consider a X; whose support intersects 0f2, and
write for simplicity o for x;a. That is, we have reduced the problem to a situation where a has
its support in a small neighbourhood, U, of a boundary point. Let this boundary point be 0 and
assume the tangent plane to 92 at 0 is {Im z, = 0}. Let K be a truncated open cone with vertex
at 0 that contains the positive Im z,-axis. By taking K and U small enough, we may assume that

Q° and
Q forall p e UnNoA.

p+ K

c
p—K C

Choose a function ¢ € C>°(K) such that

T >0 and / ot =1,

and let
¢ (2) = T (=2),
these two functions will be used as convolutors to approximate a.

Remember that our form « is defined in 2 and has its support in U. We can extend « to a form in
L% . by letting it be identically 0 in the complement of 2. Somewhat abusively we call this form
xao, where xq is the characteristic function of 2.

Lemma 1.5.5 a € Dom T* iff
5:7)(904 = Xgé;ga and 5:204 e?

in the sense of distributions.
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Proof. Let u € C°(C™). Then o €Dom(T*) if and only if,

/5u “xqae fd\ = / ou-ae ¥ =< u,T*a >=
Q

/ uer0*e~vae Pd.
Q
This means precisely the same as the statement in the lemma. |

Lemma 1.5.6 Assume o € Dom T*, and that « is supported in U. Let a° = xqo * p_. Then
a® € DomT*, o — « in L%O_l)(Q,go) and T*a® — T*a in L*(Q, p). Moreover o = 0 in QF.

Proof. By general properties of approximate identities a¢ € C* and a¢ — Xqa in L?. Moreover,
Ak € Ok
0yaf — O a

by Lemma 1.5.5 and Proposition 1.5.2 (still in its simple form where all first order coefficients are

constant). We need therefore only prove the last statement since a® € Dom T™* follows from this.
But

o = [ alz = 0 (OIAQ)
so if z € Q¢ and ¢ € supp ¢, the integrand is zero. |

The lemma says that it is easy to approximate « and T*« if we do not care about what happens
to da. On the other hand, we can also approximate da if we regularize with T instead of ¢,
but then we lose control over 7*a. What we will do is then to decompose « into one normal
and one tangential part and use ¢~ for the normal part and ¢+ for the tangential one. This
however requires that all partial derivatives of (coefficients of) a be in L? and to obtain this, we
first perform a preliminary regularization “in the tangential direction”. This is basically the crux
of the proof.

We may assume without loss of generality that we can choose real coordinates x1,...,zy (N = 2n)
in U so that zx = p. By the Gram-Schmidt process we can obtain (1,0)-forms w; ...,w, that
form an orthonormal basis for the (1,0)-forms of each point in U (possibly after shrinking U),
where moreover w,, = dp. Then @1, ..., w, form a basis for the (0, 1)-forms. If u is a function, we
define the differential operators 9), and 0, by

ou = Zakuwk, ou = Zékuwk.

It is not hard to check that if we express a form

o = Zakdzk
o= ZAk'LDk

in this basis as

then
Oy = =) OhAp+... and (1.26)
O = Y 0;Axw; A+ ... (1.27)
where the dots indicate terms that contain no derivatives of the Ay:s.
Express the operators d), and ) in the real coordinates z1,...,zy as
Y9 i)
O = i— Op= )Y Grj—— 1.28
' 21:% Ouj " zljakja%' )
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Then
arN = O,

and since
wy, = 0p = 0xy = Z@kwak

we see that
apy =1 and ary =0 for k<n. (1.29)

In particular, all the derivatives with respect to ) that occur in 7% and 0 (when expressed in
the basis w;) are constant. This means that we are in a positition to apply Proposition 1.5.2.

Regularizing the coefficients Ay with respect to the variables z1,...,xx_1 as in the last part of
Proposition 1.5.2 we obtain a sequence of forms «'” such that

o’ — a, 5'220/” — 8;*04 and 0a’” — Oa

in L?(u,e™%). We claim that moreover the a”:s still lie in Dom T*. To see this, recall Lemma
1.3.5, which after our change of basis says that o € Dom T iff

0 A 04,
N XQAn = XQ N’
and note that this property evidently is unchanged by regularization in the x1, ...,z y_1 variables.
Our next claim is that all partial derivatives
8A/l/
b e L2(UNQ).
8xj

This is evident if 5 < N and follows for j = N since
o € L and o € L?

because derivatives with respect to Xy can be expressed in terms of these operators and derivatives
with respect to z; for j < N, using (1.26), (1.26), (1.28) and (1.29).

The conclusion of all this is that we may assume that the form we wish to approximate by smooth
forms has all its partial derivatives in L?(U N Q).

We are now finally able to define the sequence o”:

Let
A”uk:Ak*gaju if k<n
and
ATVL = (XQAn) * ()0;7
and let
n
o’ =" Ay
1
Then
le” —aff =0
since all derivatives of components of a” converge to the corresponding expression for a. |
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1.6 Existence Theorems
We first prove

Theorem 1.6.1 Let ¢ be a strictly plurisubharmonic function in C>(Q), where Q is a smoothly
bounded pseudoconvexr domain in C™. Let f be a 0-closed (0,1)-form in L?(]yl)(e_‘#). Then there

is a solution, u to Ou = f which satisfies
/ u?e™? < / > ¢ fifre?.
Q Q

Proof: By Proposition 1.3.2 we need only verify the inequality

/Z¢j,;aj6zke_¢ < /|52a\26_¢

for all & €Dom(T*) N N. If moreover « is smooth up to the boundary, this inequality follows
immediately from Theorem 1.4.2 (remember that 0o = 0 since « lies in N, and note that the
boundary integral is nonnegative since 2 is pseudoconvex.)

In the general case we apply Proposition 1.5.3. Since the inequality we look for holds for each a,,
in the approximating sequence, it also holds for a general « in Dom(7T*) N N. |

Next we will eliminate some of the smoothness assumptions in the theorem.

Lemma 1.6.2 Let ¢ be a sequence of continuous functions in ) decreasing to ¢. Let f be a
0-closed (0,1)-form in Q, and let uy be the solution to Ou = f which is of minimal norm in
L%(e=%%) =: L?. Assume (the increasing sequence)

Ap = [Jug| 2

is bounded.

2

oc- The limit function

Then the sequence {uy} converges weakly in each L,, to a function u in L
u solves Qu = f, u € L*(e~%) and

Hu| |L2(e*¢) S lzmAk

Furthermore, u is the solution to Ou = f which is of minimal norm in L*(e=?).

/|uk|2e*¢’" < /|uk|26*¢k = A3

If A is bounded we can therefore select a subsequence converging weakly in L?(e~%m). By a
diagonal argument we may even find a subsequence converging in L?(e~%m) for all m. To avoid
using too many indices, we still denote the subsequence u;. Then in particular u; converges
weakly in L? . Call the limit function w.

loc*

Proof: If k£ > m clearly

Clearly Ou = f. Since weak limits decrease norms we have for any m
/|u|2€_¢m < liminf/ lug|?e= %™ < lim AZ.
By monotone convergence

/|u|26_¢ < lim A%.
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On the other hand , if u is the solution to du = f of minimal norm in L?(e~?), then

/|um\26_¢m §/|UO|2€_¢M §/|U()|26_¢ §/|u|26_¢ < lim AZ.

Letting m tend to infinity we see that

/|Uo|2€7¢ =/|U|267¢ = lim A%.

Since the minimal solution is unique, we see that ug = u. Therefore any convergent subsequence

converges to the minimal solution, so the entire sequence must converge, and the lemma is proved.
|

We will also need an analogous statement when the domain varies.

Lemma 1.6.3 Let Qy, be an increasing sequence of domains in C" with union 2, and let ¢ be a
plurisubharmonic function in Q). Let f be a O-closed (0,1)-form in €2, and let uy be the solution
to Ou = f of minimal norm in L*(,e~?). Suppose

A2 = / |Uk‘2€_¢
Qp

is a bounded sequence. Then {uy} converges weakly in all L*(Q,e~?), to a function, u, in L}, ().
The limit function is then the L?(2,e~?)-minimal solution to Ou = f and

ul?e”® = lim A2.
k
Q

Proof: As in the proof of the last lemma we can select a subsequence, still denoted wy, that
converges weakly in all L2(Q,,,e™%).

2
loc

/ lul?e™? < liminf/
(975 Q

Letting m tend to infinity we get

The limit function then lies in L? = and solves du = f. Since,again, weak limits do not increase

norms
lug|2e™? < lim/ lug|2e™? = lim A2.
Qp

m

/ lul2e™® < lim AZ.
Q

On the other hand, if uo denotes the solution of minimal norm in L?(e~?), then

/ \um\26*¢§/ \u0\26*¢§/|u0|2e*¢§/ lu|?e=?.
Q Q Q Q

m m

Letting m tend to infinity again we see that

/|u|26_"5 :/|u0|26_¢ = lim A3.

In particular, by the uniqueness of the minimal solution u = ug, so the entire sequence is convergent
and the proof is complete.

With the aid of these two lemmas we can prove a more general version of Theorem 1.6.1.
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Theorem 1.6.4 Let Q be a pseudoconvexr domain in C™, and let ¢ be plurisubharmonic in 2.
Suppose ¢ =+ &, where § is an arbitrary plurisubharmonic function, and v is a smooth, strictly
plurisubharmonic function. Then for any f, a 0-closed (0,1)-form in Q, we can solve du = f,

with w satisfying
/|u|26_¢ S/Z¢jkfjfk€_¢,

provided the right hand side is finite.

Proof: We can write () as an increasing sequence of compactly included, smoothly bounded
pseudoconvex domains £, (see section 1.1). In each ; we can write £ as the limit of a decreasing
sequence of smooth plurisubharmonic functions. By Lemma 1.6.1 the theorem will hold in each
Q, and by Lemma 1.6.2 it will also hold in . |

Assuming  to be bounded we may choose 1) = |z|2. This gives the next Corollary.

Corollary 1.6.5 Let Q2 be a pseudoconvex domain contained in the ball with radius 1, and let ¢
be plurisubharmonic in Q. Then, for any 0-closed (0,1)-form f we can solve Ou = f with

/ e < o / FPe?,

provide the right hand side is finite.

1.7 The method of three weights

The technically most complicated part of the proof of the existence theorems in the previous
section was the proof of the approximation lemma, Proposition 1.5.3. The main difficulty there
comes from the regularization of a form near the boundary, where we need to respect the boundary
conditions implicit in the condition ov € Dom(T™). There is one case in which this difficulty does
not appear, namely when there is no boundary, i e when 2 = C". In that case it is not hard to
see that compactly supported forms are dense in the domain of 7%, and regularization is achived
by a trivial convolution with an approximate identity. With more work, the same situation can be
arranged in general domains, by choosing weight functions that explode near the boundary. This
is the approach taken in [2], and in this section we shall give a brief indication of how it works.

Let as before ¢ be a weight function which is smooth inside €2, and let in addition ¥ be another
smooth function in €2, which will be specified later. We shall use the following three weighted
L2-spaces, consisting of functions, (0, 1)-forms and (0, 2)-forms respectively.

L* e ?) ={uc leoc;/|u\2<fq5 < oo} =: Hy,

12,1, () = {f; £(0,1) — form, / PtV < oo} = Ha,

and
12, (%) = {g;9(0,2) — form, / lg2e=#2% < oo} =: Hj.

As before we get a densily defined operator, T', from H; to Ha by letting Tu = Ou, for any v such
that Ou in the sense of distributions lies in Hs. We then have the following analog of Proposition
1.3.2
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Proposition 1.7.1 Let p = (y1;5) be a function defined in Q) whose values are positive definite
hermitean n x n matrices. Assume that p is uniformly bounded and uniformly strictly positive
definite on Q.Suppose that for any o in Dom(T*) such that da = 0 it holds

/ S wjpasare Y < / T*af?e .

Then, for any f € Hy satisfying Of = 0, there is a solution, u to Ou = f satisfying

/ fuf2e < / S° i f fe .

If 1 is a constant multiple of the identity matriz, the converse to this also holds.

Since the proof follows exactly the lines of the proof of Proposition 1.3.2, we omit it.

Next, let 2 be a sequence of relatively compact subdomains of €2, with union equal to 2. Choose
also a sequence of functions y; with compact support in €2 such that y, = 1 on Q. Assume now
that v tends to infinity at the boundary, so rapidly that

|dx|* < e, (1.30)
for all k.
Proposition 1.7.2 Assume o € Dom(T*) satisfies da € Hz. Then there is a sequence o, whose
coefficients are in C°(QY), such that
lo* — allm, + | T*(* = )|, + [10(a* — a)|

tends to zero.

Proof: First we make a preliminary definition of o as

of = xpa.

Then clearly o tends to « in H;. Moreover da* = xp0a + (Ox)a. By condition 1.30 and
dominated convergence, the second term here tends to zero in Hs, so it also follows that Ja®
tends to Oa in Hs. Finally, by testing the definition of 7% on a function in H; which is smooth
with compact support, one sees that

SO
T*a* = i, T — v - OE,

and from this it easily follows that T*a* tends to T*a in H,. This way we have managed to
approximate o with a form with compact support, and the proof is then completed by taking a
convolution with a smooth approximation to the identity.

By Proposition 1.7.2 it therefore suffices to verify the hypothesis in proposition 1.7.1 under the ad-
ditional assumption that « is smooth and has compact support. We can then use the fundamental
identity, Theorem 1.4.2. If we apply that identity to e"¥«a we obtain

[ basare e < [rape s [ va)pe? <

< /|T*a\267¢+2/|5a\267¢*2¢+2/|d¢|2|a\267¢*2¢.

Altogether this gives the next lemma.
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Lemma 1.7.3 Assume 1 satisfies 1.30 and that
(600" = (uz) + 2ldy[*e ™ (8;5), (1.31)

where pi;5; is uniformly bounded and positive definite in Q2. Then, for any f € Ha such that df =0
there is a solution u to Ou = f satisfying

Jlree < [t pee.

It now only remains to get rid of the factor e~ in the estimate of the Lemma. Surprisingly, this
is quite easy. First note that the condition 1.30 is satisfied with ¢ = 0 in ;. Since we may of
course throw away any finite number of indices k in the beginning and then renumber, we see that
we may actually choose 1) = 0 on any relatively compact subdomain, £, given in advance. Next,
let ¢¢ be any strictly plurisubharmonic function in €2, which is smooth up to the boundary, and
let ¢ be a smooth, strictly plurisubharmonic exhaustion function in Q. Choose Q' = {¢ < C'} and
replace & by £ =: max(§, C). Apply the lemma with ¢ = ¢g + k(&.), where k is a convex function
which equals 0 for £ < C. Note

(k(€),7) = K'(&7)-
From here we see that 1.31 will be satisfied if we only choose k with &’ sufficiently large. Hence
we obtain from the lemma a solution to du = f satisfying

. juf?e=% S/QZWEfjfk@_‘bS/QZ%];fjfke_%-

Letting C tend to infinity we now obtain Theorem 1.6.1 from Lemma 1.6.2, and the rest of the
existence theorems follow as in the previous section.

1.8 A more refined estimate

In Theorem 1.6.1 we have estimated the solution to du = f in terms of the right hand side
measured in the norm o

> ¢ f; fie
In many situations, if the weight function ¢ is sufficiently plurisubharmonic this means that we
gain quite a lot, as compared to an estimate in terms of | f|2. This gain, however, is independent

of the domain, and it turns out that for special domains one can in many cases do better. We
shall first give two simple examples of when this situation occurs.

First, let us consider the one variable case, and choose A, the unit disk, for our domain. In that
case one would expect the estimate

Jur<c fa-pprie (1.32)

to hold, since one should roughly gain one unit when solving the equation du = f. Comparing to
the estimate in Theorem 1.2.3 this means that we would like to choose ¢ so that

Ap = (1—|22)2.
There is however no bounded function ¢ satisfying this, so 1.32 can not be proved this way.
As a second example of a similar problem remember that in Corollary 1.6.5, when the domain was

contained in a ball with radius 1, we chose the weight function ¢ = |2|?, and got a uniform constant
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in the estimate for all sgch domains. Applying the same argument to an arbitrary bounded domain
we get the constant e® if the domain is contained in a ball of radius R. It is clear that this is not
optimal, since a simple scaling argument shows that the right constant is of the order R2.

In both of these examples we were trying to choose a uniformly bounded weight function, with
Hessian ¢, as large as possible. The main point of the results in this section is that it is actually
enough to produce a weight function which satisfies a good bound on the gradient, and has a large
Hessian. We shall consider weight functions 1 that satisfy the condition

o OY[? <Y prayan, (1.33)

uniformly in our domain €2, for any a« € C™. Notice that this is a more liberal condition than
requiering that 1 be uniformly bounded, since if e g —1 < ¢ < 0 we can put ¢ = e®, and obtain
a function which satisfies 1.33, and has a Hessian larger than that of ¢.

We shall now state and prove a theorem, in essence due to Donelly and Fefferman [4], that in

particular solves the difficulties we encountered above.

Theorem 1.8.1 Let Q) be a pseudoconvexr domain in C™, and let ¢ be plurisubharmonic in Q. Let
Y be smooth and strictly plurisubharmonic in ) and suppose ¢ satisfies the condition 1.35 for all
a. Then, for any 0-closed (0,1)-form, f, we can solve Qu = f with

/|u|26_‘¥S < 4/Z¢j]}f]’fk6_¢-

In particular, if Q is bounded we can choose ¢ = R™2|z — ¢|? where B(c, R) is the smallest ball
containing(2, and this way we get the right dependence of the constant in the estimates in terms
of the diameter. In the second example above, we can take ¢ = —log(1 — |2|?). and this way we
see that 1.32 holds.

Proof of Theorem 1.8.1: By shrinking the domain slightly, and then passing to a limit like
we did in section 1.6 we may assume that 1) and ¢ are smooth up to the boundary, and that
Q = {p < 0} is a smoothly bounded domain. From Theorem 1.4.2, with ¢ replaced by ¢ + ¢ we
see that if « is smooth and satisfies the boundary condition a - 9p = 0, then

/Zzﬁj,;ajdke_w_‘b S/|5§Z+¢a|2e_w_¢+/\50426_1!’_45. (1.34)

Note that - -
s = O o+ - 99/2.

Hence B B
105 1601% < 2107 34 0l + o OPI*/2.

The condition 1.33 on 1 now implies that the second term on the right hand side can be controlled
by

1 _

5 Z z/Jj,;aj Q.
Using this in 1.34 we obtain

/Zwﬂcag‘dke—w—qb < 4/‘5:2/2+¢04|2€_w_¢+2/|5a|26_w_¢.

By the approximation lemma it follows that
_ = A% 2 —ah—
/ E Yiroage ¥ ¢§4/|8W2+¢a| e V2,
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for any o € Dom(T*) N N, where now T is regarded as an operator
T: L?(e®7¥/2) & L%Oﬁl)(efd’*wm).

Now we invoke Proposition 1.3.4 with w = e~%/? and Wik = wj,;e_w/Q and ¢ replaced by ¢ + /2.
This completes the proof. |

The original theorem of Donelly and Fefferman deals with forms of arbitrary bidegree (p, ¢) and
involves estimates with respect to a more general Kahler metric. It will be given in Chapter
3 (Theorem 3.9.6). Theorem 1.8.1 correspends to the case (p,q) = (n,1) of that theorem, but
we have rearranged the proof to avoid at this point the use of generalizations of Theorem 1.4.2
to general metrics. However we remark already here that the condition 1.33 can be expressed
equivalently as saying that the differential d¢ has norm not exceeding one when measured in the

metric (¢;z)-

We end this section by one more application of the same idea.

Theorem 1.8.2 Let €) be a pseudoconvexr domain in C™, and let ¢ be plurisubharmonic in Q). Let
Y be smooth and strictly plurisubharmonic in Q and suppose v satisfies the condition 1.33. Let
0 > 0. Then, for any 0-closed (0,1)-form, f, we can solve Ou = f with

/|u\26—¢+<1—6>'¢ < C(s/Zz/ﬂ’_“fjfke‘qﬁ*““W

Proof: We follow the proof of the previous theorem (which of course corresponds to the case
0 =1). By Theorem 1.4.2 we have

/Zz/zj,;ajdke’w"” §/|5;z+¢a|2e*w7¢+/\5a|2e*¢*¢, (1.35)

for any o € Dg,1) satisfying the boundary condition. Changing only slightly the preceeding proof
we write

Dy = 5§w/2+¢a +(1-=6/2)a- 0.

Therefore ~ ~
354l < (L4 1/ g0l + (L + (1 = 5/2)%] - D[,

If 4 satisfies 1.33, we can estimate the second term on the right by
(1-46/2) ijl_cajdk)
if we choose € small enough. Using this in 1.35 we find
/Z%Wg@k@_w_‘b <Cs (/ 105 249027V 77 + / |30<|26_w_¢) :

Again, the approximation lemma implies that

/ij,;ajo’zke_w_(z’ < Cs (/ 8§w/2+¢a|26_¢_¢)
holds for all « € Dom(T*) N N where now T is regarded as an operator from
T:L?(e 97 %/2) — L§ 1y (e 0"/2).

Applying Proposition 1.3.4, with ¢ replaced by ¢+01/2, w = e~ (1=0/2)% and Wik = wj,;e_(l_g/m‘/’,
the theorem follows. [ ]
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The point of this theorem is that, under the conditions stated, it allows for weight functions which
have the opposite sign to the usual one. Applying it e g to the case of the disk in one variable,
with 1 = log(1 — |2|?), we obtain, for positive §

/ e (1 — 2210 < G5 / (1= [22) 140 e,

This is clearly false for § = 0 so we see that Theorem 1.8.2 is quite sharp.

As a final illustration of Theorem 1.8.1 we can let the domain Q = B,, be the unit ball in C",
with n > 1, and choose ¢ = —log(1 — |2|?), as in the disk case. A direct computation then shows
that 1.33 holds. The conclusion of Theorem 1.8.1 then is that the (weighted) L?-norm of u can
be estimated by the integral

e

where |f|% stands for the norm of f measured in the Bergman metric. It is interesting to note that
this fact can not be deduced from the standard duality formulation, Proposition 1.3.2. Indeed,
this would require the condition of Proposition 1.3.2 to be satisfied with yu;z = 1;, which is easily
seen to force that a = 0 on the boundary.
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Chapter 2

The 0-Neumann problem

We shall now consider a somewhat different functional analytic set-up which can also be used to
treat the O-equation. The content of the method is to reduce the d-system, which is overdeter-
mined, to a system of equations with equal numbers of unknowns and equations. For motivation
we first look at a finite dimensional analog.

Let
A

EFE — F

be a linear map between finite dimensional spaces. A will later correspond to the J-operator, but
let us first assume that A is surjective. We suppose F and F' are equipped with scalar products,
and look for a solution ej to

Ae=f

which has minimal norm in E. This means that eg L N(A), where N(A) is the kernel of A. Now
A has an adjoint
A*:F—E

and since our spaces are of finite dimension, it holds that
N(A)* = R(A"),

where R means the image space of an operator. Thus ey must have the form
eo=A"h, hEF,

so we must solve

AA*h = .

But since A is surjective, so is AA*, and therefore AA* is invertible since it is a map from F' to
itself. In conclusion the ey we are looking for is given by

eo = AT(AA")1f.

Now we leave the assumption that A be surjective but instead assume given a third space G and
amap B: F — G, such that the sequence

A B
FE — F — (G

is exact. (This means that R(A) = N(B)). We can then decompose F
F = R(A) @ R(A)* = R(A) ® N(B)* = R(A) @ R(B").
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Define the map
A® B*
EaG — F

by A® B*(e+ g) = Ae+ B*g. Then A ® B* is surjective so our previous considerations apply.
Thus the solution of minimal norm to

Ao B (x)=f
z0=(A® B*)* (A B*)(A® B*)") ' f.

But clearly
(Ao B )*=A"9®B

and
(A@ B*)(A*® B) = AA" + B*B.

Hence
zg = (A* ® B)[AA* + B*B] ' f =: (A* @ B)h.

Let us now consider in particular f such that f € R(A). Write the equation f = (A ® B*)xg as
f - AQZO = B*JC().

Here the left hand side lies in R(A) and the right hand side is orthogonal to R(A), since BA = 0.
Hence both sides vanish, so f = Axg. Recalling o = (A* ® B)h, we find

f=AA*h.

In conclusion, we have showed that if the equation
Ae=f
is solvable, then the solution of minimal norm is
eo = A*h = A*(AA* + B*B)"'f
(this is of course easy to verify directly).

We shall now imitate this method to treat the d-operator. Our three Hilbert spaces are

L? (2, 9), L(20,1) (2, 9), L%0,2) (2,9)

and we have a sequence of operators

5::T é:'s
L? — L

- L%0,2>

2
(0,1)
which (at least) we hope is exact. Following the finite-dimensional analogy, we set up the
0-Neumann problem:

Suppose f € L%OJ)(Q,(,O). Solve
(TT*+S*S)h=f

with h € L%O 1) To have the operator in the left hand side defined, we require that

h € Dom (S) N Dom (T)
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and
Sh € Dom (S5*), T*h € Dom (T).

Before we discuss the solvability of this problem, we shall analyze what it means concretely. First,
we assume ¢ = 0 and compute the operators T and S*. From Chapter 1 we already know that

if h= Z hjdfj then
T h = 0*h
o azj

provided h € Dom T*. Moreover

Sh = dh = Z szk/\dzj_ Z(g’; ZZf)dzkAdzJ

Ifge L(o 1)) we write
9= ngjdzk NdzZ; gk = —gjk,

and we define the scalar product in L%o,z) by

<g,g9>= /Z 7ol
K

The adjoint of S is defined by
< Sa,g >=< a,5*g> Va € Dom (S).

Since smooth forms with compact support are dense in Dom (S), we can also define S* by the
same relation for all test forms «. Then

Oa 80%
X G~ =
B O0an: B
S DICE SIS LR DIRE T

< Sa,g >

Hence

* O9k;j ,_ . *
ngQZ (“)gzijdzk if g€ Dom (S*).

In particular,

S*Sh=> — 0 (Db _ Oty

0z 8zk 0z;
Since
TT *h = —
h= 82 82] Z 8zkaz] B,
we obtain 02
(TT* + S*S F dz.
Z 0z azj

Thus, the O-Neumann problem amounts to solving the system of equations
—Ahk:fk hzl,...,n

with a form h such that h € Dom (T*), Sh € Dom (S*) and h € Dom (S), T*h € Dom (T'). Of
these condition the last two mean only that h and T*h should be sufficiently differentiable, but
the first two contain assumptions on the boundary values of h and Sh, and this is what makes the
problem difficult.
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Remark. In the general case when ¢ = 0, let us denote the adjoints by 77 and S7. Using the
obvious relations
T, =e¥T e %, 5, =e?S"e %,

one can show that

Oy D
(TT; + S3)h ==Y Ahedz, + Y S =F g 2+ D by

2.1 Existence of solutions to the 0-Neumann problem

To prove existence we first give our problem a dual formulation. Let
E =C@E1) NDom T™.
On L%O,l) N Dom T* N Dom S we define a bilinear from
Qa, B) =<T"a, T*B >+ < Sa, 5B >

where the scalar products are taken in L?(Q, ) and L(2071)(Q7 ) respectively. Suppose now that
we have a solution to the 0-Neumann problem

(TT* +5*S)h = f
h € Dom (S) N Dom (T™)
Sh € Dom (S*), T*h € Dom T.

If o € E, we get
Q(h,a) =< T*h,T*a >+ < Sh,Sa >=< f,a > (2.1)

Denote by E® the completion of E with respect to the (pseudo)norm Q. By this we mean that
he EQifhe L( .1y and there is a sequence h, € E such that h, — h in L? ©0.1) and h,, is a Cauchy
sequence with respect to Q. Then, our dual formulation is:

Proposition 2.1.1 Suppose h € E® and that (2.1) holds for all o« € E. Then h solves the
0-Neumann problem with right hand side f.

In the proof we shall use the following lemma.

Lemma 2.1.2 Suppose h € Dom T* N Dom S and that (2.1) holds for all a« € E. then
| < Sh,Sa> [ <||f[llla]
and

| <T*h,T*a > | < || fllllall.

Proof. The assumption means that the sum of our two scalar products satisfies an estimate of
the type we claim, but we want to prove that each one of them also does. Therefore we decompose
a = al +a? where Sa! =0 and a? L N(S). Then o? L R(T) so T*a? = 0 whence

a' € Dom (T*) and T*a'=T*a.
This gives
<T*h,T*a >=< T*h, T*a' >= Q(h,a)
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and
< Sh,Sa >=< Sh,Sa® >= Q(h,a?).

But if (2.1) holds for all @ € E, it actually also holds for & € Dom T*NDom S by the approximation
lemma. Hence

1Q(h, o) =| < f,a > | < |IfIllle!] < £l
and
Q(h, a®)| = | < f,0? > | < || f[l[|ex]]-
[ |

Proof of Proposition 2.1.1. First note that if h € E9, then h € Dom T* N Dom S, since T*
and S are closed operators. Lemma 2.1.2 implies that

| < T*h,T*a > | < C|la|

for in particular all smooth forms with compact support. From this it follows that T*h € Dom T
(and that [|[TT*h| < C). What remains to prove is that Sh € Dom S*, which means that

| < Sh,Sa>|<Cla| for «€Dom S. (2.2)

We know that (2.2) holds if @ € E, and by the approximation lemma it suffices to prove (2.2)

for o € Cf5,)(€2). If o has compact support, (2.2) follows since « then lies in E. Hence we may
assume that o has support near 9€). Write

a=a’+ aép
where < a®,0p >= 0. Then o € E so
| < Sh,Sa’ > | < C|la°|| < C|

so we need only control

< Sh, S(adp) > .

Take a sequence of smooth functions . (t)e — 0 such that

x(t)=1 t<—¢
() =0 t>—¢/2.

We get with xe = xe(p)
< Sh,S(adp > = }1_{1(1) < Sh,xS(adp) >=
= !EI%)(< Sh, Sxcadp > — < Sh,adx. A\ Op >)
But dx. A 0p =0 and x.adp € E for fixed e. Thus
| < Sh,S(adp) > | < Clladp|| < Cllall,
so we see that indeed Sh € Dom (S*). But then
Q(h,a) =< (T*T 4+ SS*)h, o >

so (2.1) implies that
(T*T + SS*)h = f.

Thus, h satisfies all three criteria for a solution to the -Neumann problem and Proposition 2.1.3
is proved. |

It is now easy to give a criterium for the solvability of the 9-Neumann problem.
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Proposition 2.1.3 Suppose there is a constant Ag > 0 such that
Mollal? < Q(a,a) 23)

for all a« in E. Then for any f € L%O,l)(Q,go) there is a unique h € L%O,l) which solves the
0-Neumann problem with right hand side f. Moreover,

XollAl* < Q(h, h) < AP

Proof. Define an antilinear functional on E by
La=< f,a>.

Then
|Lal> < [[fIPlell® < A5 Qe @) I £]1%,

so L is continuous for the @-norm. Hence there is an element h in the completion of E with
respect to (), such that
< fra>=Q(h,a) forall a€kFE.

But (2.3) implies that the Q-completion of F is precisely what we have called E?, so the existence
follows from Proposition 2.1.1. Uniqueness follows since

< (TT* + S*S)h, h >= Q(h, h).

Corollary 2.1.4 1) Suppose Q is pseudoconvex with boundary in C* and that p € C?(Q) is strictly
plurisubharmonic. Then for f € L%O,l) (Q, ) there is a form h which solves the O-Neumann problem
with right hand side f and is such that

/Z‘Pﬂchﬁﬁkew < /Z@ﬂfa‘fke’w

(here (&7%F) = (0;5) 7).

2) Suppose Q is pseudoconver with boundary in C2. Then there is a constant C = C(Q) such that
forany f € L%O,l)(Q7 0) the 9-Neumann problem with right hand side f is solvable and the solution

satisfies
[k <c [
Q Q

Proof.

(1) By the basic identity, we have if o € C*'(Q) N Dom T*
|<fia>] < /Z‘ijfjfkeiw/@jfcajdkeiw <
[ e s eqtaa)

By the proof of Proposition 3 there is a solution A such that

IN

Q(h,h) < /Z#?ﬂfjfkff@-
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But the basic identity also says that

|3 ephitue > < Q)
since h € Dom T*.

(2) Let ¢ = t|2|?. Then the basic identity says that

t/ affe " < / (1950 +10af)e T,
But
5:;05 = 56‘044—7520@,%,
|5;a|2 < 2195l 4 2t - 2)? < 2|105al® 4 26222 o)
If ¢ is sufficiently small, 2¢2|z|? < /2 in Q, so we get
t/2/|a|2 < C/\5§a|2+ 1Bal?.
Hence (2.2) follows from Proposition 2.1.3. |

Finally we return to the d-equation.

Proposition 2.1.5 Let f € L%OJ)(Q,(,D) be such that Sf = 0, and let h be the solution to the
O-Neumann problem with right hand side f. Then

u="T%h

is the minimal solution to

ou=f
in Ly 1)(Q, 0).

Proof.
S*Sh=f—TT"h.
Here the left hand side is orthogonal to N(S), and the right hand side lies in N(S). Hence both
terms are zero, i.e., -
ou = f.

Since u € R(T™), v must be minimal. [ |

2.2 Regularity of solutions to the J-Neumann problem

In the previous section we have showed the existence of solutions to the d-Neumann problem in
the weak sense. It is of course natural to ask whether we also have classical solutions if the right
hand side is smooth. As far as interior smoothness is concerned, it is not hard to prove that this
is the case. Since the leading term of the operator (TT* + S*S) is just the Laplacian on each
component of our form, standard elliptic theory shows that our solution h is roughly two units
smoother than the right hand side.

The problem of boundary smoothness is however much more complicated, and is actually still
unsolved in the general case. The best results so far are based on a general theorem of Kohn and
Nirenberg [7], which specialized to our situation says: (Throughout this section we shall let our
weight function ¢ be identically 0, although the same arguments with minor modifications work
as well with an arbitrary weight which is smooth up to the boundary.)
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Theorem 2.2.1 Suppose that Q is pseudoconvexr with smooth boundary. Assume that the unit
ball defined by Q
K ={a € B;Qa,a) < 1}

is relatively compact in L? 0.1 Then the solution to the O-Neumann problem is smooth up to the
boundary, provided the mght hand side is smooth up to the boundary.

We shall not try to prove this theorem but rather give some easy corollaries. Let us first of all
note however, what the conclusion means. Since h is smooth up to the boundary, the condition
that h € Dom T simply means

(1) Zh]az =0 on 0.

In a similar way one sees that the condition Sh € Dom S* means that

.. 8h] 8hk 8p _ .
(i) zk:<82k —~ 82j)82k =0 on 9Q Vj.

Thus, we have a solution to a certain boundary value problem, where the boundary conditions are
of mixed Dirichlet and Neumann type.

For the rest of this section we will assume that €2 is pseudoconvex with smooth boundary and that
p € C*(Q). Let, as before, p be a function such that Q = {p < 0} and dp # 0 on 9.

Proposition 2.2.2 Assume §Q is strictly pseudoconvex. Then there is a constant C' such that

e+ [ oIval < cQa.a)

foralla e E.

Proof. Since the basic identity (Theorem 1.2.2) already gives a good estimate for the derivatives

g‘;‘; we shall first consider the integral
Oa
I = ]
/Z Oz,
But
Joj B dp  Oaj / 22a; B
/8zk ( p) o 8Zkaj 8zk ( p) Jazkﬁzk o
/@ I A
0z, & |d| azkafk J
Op Oa; / (90[] B 8p 80[]
82;7@ 6Zk Oé] + ( ) 8Zk 8zk 8Zk
Rearranging we get
da
2y o5
[ delar+ [ 32152 (24)
9 oo, |’
1/2 O‘J 1/2 _ oa;
c{ [ laas+( [ jaf) /Z ) [ 2| )
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With no loss of generality we may assume that Ap > 1. then (2.4) implies that

[lak+ [o Y |5 <m/www+/23

By the basic identity the right hand side is dominated by a constant times Q(«, «), so the proof
is complete. |

[ 804]

To prove the regularity of solutions to the O-Neumann problem, it is now sufficient to prove that
the norm in the left hand side of Proposition 2.2.2 defines a precompact unit ball. We shall prove
the following stronger statement.

Proposition 2.2.3 Let ¢(t) be a positive continuous function on (0,00). Suppose

tdt

full? = [ 1af + [ etd)ivup

where d is the distance to the boundary. Then the set

Let

{ue C=(Q); lull® < 1}

is relatively compact in L2.

Proof. It is easy to see that if x € C°°(Q), then we can estimate ||xu| with [Jul]. We may
therefore consider only functions that have support near a boundary point. Since moreover our
norm is not changed much if we transform by a change of coordinates, we may assume that € is
the ball.

Suppose now that u,, is a sequence of functions such that ||u,| < 1. By the Rellich lemma there
is, for each ' CC (), a subsequence that converges in L?(£)’). Taking a diagonal sequence, we
can assume that u, is convergent in L2(Q') for any Q' CC Q. We claim that then actually u,,
converges in L2(Q). To prove this, it is enough to prove that for any € > 0 there is a § > 0 such

that if |Ju||> < 1 then
/ lu? < e.
1-6<|z|<1

By rotational symmetry this follows if we can prove that

5
/ (v(t))?dt < e
0

when [ (v/(£))2¢(t)dt + [ (v(t))?dt < 1. Take a € (0,1). Then
a
o(t)] < (m+/|wms
t
1 a
d
< @H{/W?W@“( @2,
0 PN

Hence .
dx

2 2 _ax
(@) < 2[v(a)]” + 2 @)
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Integrating over a € (1/2,1) we get
lu(t)]? <24 2®(¢)

1 X
o= [ oy

But our hypothesis means precisely that fol ®(t)dt < 0o, so the proof is complete. |

where

Hence [? |o(t)[2dt < 26 + 2 [ (t)dt.

Corollary 2.2.4 Assume () is strictly pseudoconvex. Then we have smoothness up to the boundary
for solutions to the 0-Neumann problem.

It is clear from the proof that the condition of strict pseudoconvexity can be relaxed a lot. The
crucial part of the argument was that we managed to dominate

[Epival

by the energy form Q(«, «). Actually Proposition 2.2.3 shows that it would have been enough to
prove

I = /(—p)2_e|Va|2 < CQ(a,a), (2.6)

for any positive e. We shall close this chapter by showing that for any bounded pseudoconvex
domain, the @-norm dominates Iy, and that for positive ¢ Q dominates I, for a class of domains
that is considerably more general than the strictly pseudoconvex ones. The proof uses an idea of
Catlin [3], and we refer to that article for optimal results in this genre.

The next proposition follows from an argument similar to the one used in the proof of Proposition
2.2.2.

Proposition 2.2.5 Let Q be a smoothly bounded domain given by Q = {p < 0}, where p is a
smooth defining function satisfying dp # 0 on 0. Let 0 < e <1 . Then

(=)~ |VaP <O ( [(=p)* Y152 P + [ (=) ~lal?).
/ (JeoEige s feniar)

Note that the fundamental identity, Theorem 1.4.2, gives a bound of the first term in the right
hand side in terms of Q(a, ). It follows that in order to prove 2.6 it suffices to prove that @

dominates
[Eoral.

When € = 0 such an inequality follows from the proof of Corollary 2.1.4. For positive € we can use
the following proposition.

Proposition 2.2.6 Suppose there exists a function v which is strictly plurisubharmonic in Q with
(v;5) = (0;), which moreover satisfies an inequality

0<-v< C(_p)€7

for some positive €. Then the inequality
Joreaf < cQaa)

holds for all a € Dom(T) N C*(Q).
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Proof: Let ¢ = —(—v)'/2 + A, where A is chosen so large that ¢» > 1. Then 1 is bounded, and
satisfies

(%) = 1/2(=p)%.
Replacing if necessary 1 by ci)? we may assume that

o Oy <1/3> hpajan

for all . We now apply the fundamental identity, Theorem 1.4.2, with ¢ replaced by 1. Discarding
some positive terms we find

/Zwﬂé%‘@ke*w S/Ig{zal%*w#—/@a\%*w.

Using
|5;Za|2 = |05+ a- 9| < 2|0paf? + 2| - O,

and keeping in mind that v is bounded, we obtain

/Z%‘fc%dk < CQ(a, ).

This completes the proof. |
Note the kinship of this proof with the argument used in the proof of Theorem 1.8.1

We collect the result of this discussion in the following Corollary.

Corollary 2.2.7 Assume 2 is a smoothly bounded domain that satisfies the hypothesis of Proposi-
tion 2.2.6. Then we have smoothness up to the boundary for solutions to the 0-Neumann problem.
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Chapter 3

L?-theory on complex manifolds

Now we shall generalize the results of the first chapter to the setting of complex manifolds. The
first step is to develop a coordinate-free formalism for the concepts that we have already used.
This requires quite a lot of preparations, but once it is done, results like “the basic identity”, will
follow almost immediately (and in a much more general form).

We suppose the reader has some familiarity with the basic theory of real manifolds.

3.1 Real and complex structures

First we define a complex manifold as a manifold where the local coordinate systems can be chosen
holomorphic. More precisely:

Definition: A complex manifold M is a Hausdorff space which can be covered by local coordinate
patches in the following way.

i) M =UUj, U; open.
ii) for each j there is a homeomorphism
29 U; - U com
where U} is open in C".

iii) the functions
PO

are holomorphic where they are defined.

Fixing a system of local coordinates, we usually just write z = (z1,...,2,). Clearly if z;, = xp+iyx
the functions

(1,915 Tn, Yn)
will form a real coordinate system. Our first concern is how one can recover the complex structure
from the system of real coordinates.

Recall that the real tangent space of M at a point p € M is defined as the set of real derivations
on functions defined near p. In other words

veT,(M)
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if v is a linear map,
v : {f; f real-valued function defined near p} — R

satisfying
v(fg) = gp)v(f) + f(p)v(g)-

The derivations % and aiz, form a basis for T,,(M). Our next objective is to show that M:s
7 ;

Yi
structure as a complex manifold, makes each T}, into a complex vector space, in such a way that a
map between complex manifolds is holomorphic if an only if its differential is complex linear. Let
us first discuss complex structure is general.

Suppose F is a given finite dimensional real vector space. How can we make F into a vector space
over the complex numbers? Clearly, what we need is a definition of what v is if v is a vector in
E (and ¢ = y/—1). This definition must be such that the map

v— J() =:iv

is R-linear. Moreover we must demand that J? = —id. It is easy to see that if .J is a map satisfying
these two conditions then the rule

(a+ib)v =: av + bJ (v)
makes F into a complex vector space. Therefore we call such a J a complezx structure on E.

It is sometimes useful to describe the complex structure in terms of the complexification of E, ET.
Formally, E® is defined as
EC=E ®r C,

which means that
E® = {v +iw;v,w € E}.

(We could also define E¥ as the set of R-linear maps from E* to C, where E* is the dual to E.)

Any vector in EC can be written
v=e+if

where e, f € E, and any R-linear map between real vector spaces can be extended to a C-linear
map between the complexifications, simply by putting

Tv=Te+iTf.
In particular, given a complex structure J on E, we may extend to a C-linear map
J:EY — E".
Clearly, it still holds that J2 = —id. This implies that we have a decomposition as a direct sum
E® =FE1o® Eo,

where
Jv =1v if vekFE

and
Jv=—w if ’U€E0,1.
Explicitly the decomposition is given by

v—iJv v+iJu
= . .].
v 5 + 5 (3.1)

Let us denote by 71,9 and mg,; the projections on Fy ¢ and Ejp; respectively.

38



Lemma 3.1.1 m o is a R-linear isomorphism between E and E( o). If we let J define a structure
as complex vector space on E then m o is also C-linear.

Proof. Clearly,
1—4J

m1,0 =
is a linear map. If m; gv = 0 then
v =m0V + 71,00 = 0,
so 1, is injective. Moreover

J4i_ il

2 2

J?Tl,o = :Z'ﬂ'l’o

so R(m1,0) C E1. Since both spaces have the same dimension over R, 71 is an isomorphism.
Finally,
m,0d = Jm0 = im0,

so 7,9 is C-linear. |

Summing up, we have seen that a complex structure J on E gives us a splitting of E:s complexi-
fication
E® = E1, @ Eo.

such that

(i) Evo = Eoa

and

(ii) Jv = iv if veFE.

Conversely, if we have splitting of E¥, satisfying (i), we may define J on E¥ by

J(v1,0 + v0,1) = tv1,0 — V0,1-

Then J commutes with conjugation, so J : E — FE. Since clearly J2 = —id, we get back
our complex structure. Hence we can regard a complex structure either as a map J : £ — F
satisfying J2 = —id, or as a decomposition of E¥ into a subspace plus its conjugate.

Let us now return to our original situation where E = T,,(M) = T(M) (we drop the index p in
the sequel to avoid too many subscripts). Given holomorphic coordinates

Zj = T; +1Y;

we get a basis for T’

9 9 0 9
Ox1 Oy Oz, Oyn

0 0
U:Zaj%jJrZﬁjaiyj

(alaﬁlr" ,Oén,ﬁn)

which intuitively correspond to the complex numbers

A vector

has the coordinates

(041 +if1,...,0n —|—Zﬁn)
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It is therefore natural to define Jv as the vector corresponding to

(i(a1 + iﬁl), ey

i.e., the vector whose coordinates are

(—ﬁl,al,. vey
This means that P
J _—) =
(557
and 9
J(=—

y;

):_

i(on +16n))

_Bnaan)~

0

3yj

9
81‘]‘ '

The following lemma says that J does not depend on the choice of coordinates but only on the
complex structure on M.

Lemma 3.1.2 Let J' be defined in the same way as J, but using a coordinate system ( =
(C1y--.Cn) instead. Then J = J' if and only if the change of coordinates z o (=% is holomor-
phic.

Proof. Let ¢; = §] + 4n;. Then by the chain rule % =3 %’gk 72 Z%ka—yk and 3n =
ox o
> Snk Jor Z Zik Byk Thus
0y 0n 0 N~ On o
8@ 8yk 85] 8xk
and
-3 Orp 0 3 O 0
87)] on; Oy on; Oz,
On the other hand 5 5
J (=)=
(3§j) on;
and 9 9
I
anj 8@
Thus J = J' if and only if
Oy _ Oy
o9& O
and
Oy, _ Ok
8nj 8§J ’
By the Cauchy-Riemann equations this means that z o ¢! is holomorphic. [ |

If M and N are two complex manifolds and f : M — N is a map, we say that f is holomorphic if
the functions

Cofoz*1

are holomorphic, whenever { and z are complex coordinates on N and M respectively. Precisely
as in the proof of Lemma 3.1.2, we see that f is holomorphic if and only if the differential df is
C-linear as a map between tangent spaces.
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Note that our complex structure J on the tangent spaces T, induces a complex structure (still
denoted J) on the cotangent spaces Ty, by

Jw(v) = w(Jv).

We can now apply our previous discussion of complex structures on real vector spaces to T and
T*. We then get decompositions
T = Th,0® 1o (32)

T =Ty & T5,. (3.3)

As mentioned above, we have a natural representation of T7*C as the space of R-linear maps from
T to €. Using this interpretation of T*", we see that the condition that w belong to 17,

Jw=1iw, ie w(Jv)=1iw(v)

menas just that w is C-linear for the complex structure J on 7. More generally, (3.3) decomposes
a R-linear map into one C-linear and one C-antilinear part. In terms of local coordinates z =
(2j), z; = x; + iy; we have that

J(dlﬁ]) = 7dyj
J(dy]) = dxj,

8o dz1,...,dz, span 17 and dzy,...,dZ, span Tg,. If f: M — C is a differentiable complex
valued function, then clearly df is an element in 7*C. We then define

of =mio(df), Of = w1 (df),

so that -
df =0f +0f

is the decomposition of df into C-linear and C-antilinear parts. In particular, f is holomorphic if
and only if df is C-linear, i.e., if and only if f = 0. In terms of our local coordinates

0 0
df =) azfjdzj +) azfjdzj (3.4)

can be taken as definition of the operators 8%)_ and (%, Writing dz; = dx; +idy;, dz; = dz; —idy;
and identifying coeffcients in (3.4) we see that

0 1( 0 .0 )
(= i
8zj 2 &vj Byj
and
3] 1( 0 w )
— =—(=—+i=—).
afj 2 axj 3yj
Similarily we see that ain, ceey a‘zn span 17 o and a%j, ey a‘zn span Tj 1.

We say that a differential form is of degree one is of bidegree (0,1) if at each point it lies in
the 17 part of the decomposition (3.3). Bidegree (0,1) is defined analogously, and thus any
1-from can be uniquely splitted into a (1,0) and a (0,1) part. We also say that a k-form is of
bidegree (p,q) if it can be written as a (sum of) product(s) of p (1,0)-forms and ¢(0,1)-forms.
Since wy ..., wy, @W1,...,w, form a basis for T if wy ...,w, form a basis for T}, any k-form, w
can be written uniquely '

w= Z Wp.q

pt+q=Fk

where w,, 4 is of bidegree (p, q).
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The preceding discussion can be carried through even if M is not a complex manifold, as soon as
we have a complex structure on each T},(M) which varies smoothly with p. (By this we mean that
the matrix for J with respect to a smooth local basis for T'(M) is smooth, or equivalently that
locally there is a smooth basis for T3 g.) Such a structure is called an almost complex structure
on M. An almost complex structure is called integrable if it is induced by a structure on M as a
complex manifold. If this is the case, then we can choose

9 9
0z " Oz,

as a local basis for T7 g. From this it follows that if Z and W are vector fields of bidegree (1,0),
then their commutator [Z,W] is also of bidegree (1,0). A famous theorem of Newlander and
Nirenberg asserts that the converse of this is also true: an almost complex structure is integrable
if and only if the space of vector fields of type (1,0) is closed under the formation of Liebrackets.
Sine a vectorfield is of type (1,0) if and only if it is annihilated by any (0, 1)-form, and since any
1-form w satisfies

dw(Z,W) = Z(w(W)) = W(w(Z)) + w([Z, W]),

this condition is equivalent to saying that if w is (0,1) then dw has no (2,0) component.

We end this section with a discussion of scalar products in the real and the complex sense. Let us
return to our real vector space F with a complex structure J. It is clear that if (,) is a complex
scalar product on E, then

<, >=: Re(,) (3.5)

is a real scalar product. Which products arise in this way? Clearly a necessary condition is that
< Ju,Jw >=< v,w > for all v,w € E, i.e., <,> is J-invariant. Note also that if (3.5) holds, then

<wv,Jw >= Re —i(v,w) = Im (v,w).
We can therefore try to define
(v,w) =<v,w>+i < v, Jw >. (3.6)
If now <, > is J-invariant, then
< Jv,w >=< J?v, Jw >= — < v, Jw >

so (3.6) implies that

(v,w) = (w,v).

Moreover
(Jv,w) =< Ju,w > +i < Jv, Jw >= — < v, Jw > +i < v,w >= i(v,w),

so (,) is a complex scalar product. In other words we have a one-to-one correspondence between
complex scalar products and J-invariant real scalar products. This can also be seen in the following
way using the complexification of E. Given a J-invariant real scalar product on F, we can extend
<, > to a complex symmetric bilinear form on E€ in a unique way. If v, w € E1 0, then

<v,w>=< Ju, Jw >=— < v,w >
SO
<v,w >=0.

Therefore the form on E®
(v,w) =< v,w >

is sesquilinear and FE  is orthogonal to Ej; with respect to this form. Moreover, it holds that

(0,w) =< 0, w >= (v,w).

42



If now v is a real vector, i.e., v € E, then v = m1 gv + 71,90 so
< v,v >= (mM1,0v + 71,00, 71,00 + T1,00) = 2Re(m1,0v, T1,00).

Thus the C-linear isomorphism v — m gv makes (,) into a complex scalar product on E which
satisfies
< v,w >= 2Re(m 0V, 71 oW).

The conclusion of all this is that we may define a (complex) metric on a complex manifold either
as a J-invariant Riemannian metric on M, or as a smoothly varying Hermitean form on T, g
(which is everywhere positive definite).

3.2 Connections on the tangent bundle

To start with, we consider M with only its real structure. A connection is a rule which allows us
to differentiate a vectorfield along another field. Take two vector fields.

d )
X_ija—%,Y_Zma—% (3.7)

and let us try to define "X (V)" — the derivative of Y in the direction X. If we demand that
differentiation satisfy the product rule, we get

XY = X055+ S ()

The problem is that it is not clear what X (%) should be. We could try to put it equal to zero,
J
but then the definition will depend on which coordinates we have chosen, and it will in general

be impossible to get a global definition this way. A connection is an arbitrary (but consistent)
definition of X(%) .
J

Definition. Let x(M) be the space of vector fields on M. A connection V is a bilinear map
Vi x(M) x x(M) — x(M),

written

V(Xa Y) = VXK

which satisfies

i) VixY = fVxY
and
1) VxfY = fVxY + X(f)Y.

It follows from the definition that V is a local operator, i.e., its value in a point depends only on
X, and Y in any neighbourhood of that point. Consequently V xY is well defined for vector fields
that are only locally defined. If X and Y are given by (3.7) we find by ii) and i)

0 0]
ZX(Y})% +ZYJVX£
J J
0

9]
DXV g+ D ViXeV o o
J k UL

VxY
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Hence the connection is determined by V 2 %. Say,

0 , 0
— =31 —.
Vet o = 2Tk

The FLj:S are called the connection coefficients or Christoffel symbols of V.

It is evident that we can find many different connections, but we shall now show that each Rie-
mannian metric on M will give us a unique associated connection. Let X, Y —< XY > be a
Riemannian metric on M. We say that V is compatible with <, > if the product rule

X <Y, Z>=<VyxY,Z>+<Y,VxZ> (3.8)

holds. This condition does not in itself determine V since we may e.g. add a linear map in Y
which is antisymmetric w.r.t. <,>. Therefore we introduce one more restriction on V.

Definition. V is symmetric if

VxY -VyX =[X,Y]. (3.9)
If we take X = B%k’ Y = 6%1_, we see that (3.9) implies
i, =T% forall L (3.10)

Conversely one sees directly that (3.10) implies (3.9). We now have

Theorem 3.2.1 Given a Riemannian metric <,> there is precisely one symmetric connection
which is compatible with <,>.

Proof. It is enough to prove this in a coordinate neighbourhood since the unicity statement
implies that our definitions will agree on overlaps. If V is compatible with <, >, we get from (3.8)
with X = 52,V = 2 Z = ;2 that

J

8mk ) 6£E1 ?

0

ngij =1, + T}, (3.11)

in a given point p if we have chosen coordinates so that

o= —_—, —
9ij 8%1 ail'j

in p (this is always possible by a linear change of coordinates). Now assume that V and V’ are
two symmetric connections compatible with <, >, and let Aék be the difference of the Christoffel
symbols. Then (3.10) and (3.11) give

(a) Afm = Agk and

(b) AL+ AL = 0.

If we permute indices in the second equation, we get
Ak + Al =0.

If we use A7, = A7, this gives us together with (b) that

E _ Ad
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But this (together with (a)) says that A is symmetric in any pair of indices so (b) gives that
A = 0. Hence the coefficients are uniquely determined in p (and therefore in any point).

To show existence note that the space of coefficients I, satisfying
! !
Uk =Ty

n

5 )n. Moreover, the space of possible left hand sides in (3.11)

has dimension (

0

8xkg”"’

also has dimension (3)n since we have symmetry in the indices ¢ and j. Therefore (3.11) is a

quadratic system of equations, so the unicity implies existence of solutions. |
Notice that we have also shown that I' = 0 in any point where dg;; = 0.

Finally, we shall consider the interaction between the connection and the complex structure. Recall
from the previous paragraph how our metric <, > induces a complex scalar product on T'C.

Assuming <, > is J-invariant, we extended <, > to a C-bilinear form on T®. Then we define
(z,w) =< z,w >,

and this way (,) became a complex metric on 7. Now we also extend the definition of V with
C-linearity:

Vxtiyv = Vx+iVy
V(X +iY) = VX 4+iVY.

If V is compatible with the metric, one sees directly that

In general, we have no reason to believe that VyZ will be a (1,0) vector field if Z is a (1,0) vector
field, so that V will in general not operate on Tl%. We shall see later however that this will be
the case if our metric satisfies one more condition, known as the Kéhler condition.

3.3 Vector bundles

Let M be a complex manifold. A complex vector bundle over M is, loosely speaking, a family of
complex vector space indexed by the points in M, which depend on the point in a smooth way.

Definition. Let E be a manifold and let 7 : E — M be a surjective map. We say that (E, 7, M)
is a complex vector bundle of rank r over M if

1.V, € M E,=:7"!(p) is a complex vector space of rank 7.
2. For all p € M there is a neighbourhood U of p and a diffeomorphism.
ou:m N (U) - UxC"

such that

where @, is C-linear on each 7~ !(p).
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If U and V are intersecting neighbourhoods, we can define
Gvuv=9¢vopy :(UNV)xC— (UNV)xC.

Note that
Gvu(p,v) = (p, gvu(p)v)

where gy is a smooth function on U NV whose values and complex r x r-matrices. The gyy:s
are called the transition functions of the bundle and they clearly satisfy

(i) guave = 90,0,
(ii) gU1Ung2U3gU3U1 == Zd

Conversely one can prove that given a locally finite covering of M by open sets, and a collection
of transition functions, one for each pair of sets in the covering, that satisfy i) and ii), there is
always a complex vector bundle over M associated to this collection of transition functions.

In the sequel we shall denote the bundle simply by E, when © and M are understood. A (local)
section to E is a map
E:UCM— FE suchthat wo& =1idy.

A set of r local sections e, ..., e, such that {e;(p)} is linearly independent at each p, is called a
frame for F. Given a local frame an arbitrary section £ can be written uniquely

i
f = Z gyeu
1
where £, are complex valued functions.

We also say that our bundle E is holomorphic if E' is a complex manifold and the local trivializa-
tions can be chosen holomorphic. Observe that this is just the same as saying that the transition
functions can be chosen holomorphic. It is also equivalent to saying that E is a complex manifold
and that we have a local frame of holomorphic sections near each point. Clearly, an arbitrary
section £ is holomorphic if and only if its “coordinates” &, are holomorphic, provided the frame is
holomorphic.

A hermitian metric on E is a complex scalar product <, >, on each £, with the property that
<&n>

is a smooth function if £ and n are smooth sections to E. Given a smooth local frame <, > is
clearly represented by an hermitean matrix (h,,) whose entries are smooth functions.

Example. If M is a complex manifold,

T10(M) = Upem Ty o)

has a natural structure as holomorphic vector bundle over M. Given local coordinates z1,..., z,,
the fields %, ey % constitute a local holomorphic frame for F.

We can now mimick the definition of connection on the tangent bundle to define connections on
general bundles. Let T'(E) be the space of global sections to E, and similarly, let T'(T®(M)) be
the space of global complex vector fiels on M.

Definition. A connection on F is a bilinear map
V:T(T%(M)) x I'(E) — T'(E)

that satisfies
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L Vv fE=V(f)E+ fVvE

2. Vivé = fVvé.

We say that V is compatible with the metric <, > if
.v<€n>=<Vy&n>+<EVyn >,

V is said to be holomorphic if

4. Vy € =0if V is of the type (0,1) and & is holomorphic.

Earlier we have seen that on a Riemannian manifold there is exactly one connection that is
compatible with the metric and also is symmetric. The analogous statement for holomorphic
vector bundles is:

Theorem 3.3.1 Let E be a holomorphic vector bundle with an hermitian metric. Then there is
precisely one connection on E that is both holomorphic and compatible with the metric.

Proof. It is enough to prove this over a local trivialization since the local connections then must
agree on overlaps. Say eq,...,e, is a local holomorphic frame, and that

hoy =< ey, e, > .

If V meets both our conditions, then

Ohy,,
% =< V%mey7€“ >

since e,, is holomorphic. Let

Viey = ZFﬁwe,\.

Ozm

Then we get

Ohy,, N
82771 - Zrmvhkﬂ'

A
muvo

Solving for I' we get

O0zm,

T = 2 (G,
“w

SO Ce,, iS uniequely delermined Since
C 9 €, = ().
oy v

Conversely, this same formula evidently defines a connection which is both holomorphic and com-
patible with the mertric. |

3.4 Kahler manifolds

Let us now consider a complex manifold M with an hermitian metric (g;1), which we shall think
of as a complex scalar product on 77 ¢. Locally we can find an orthonormal basis for the space of
(1,0)-forms, say

Wiy, Wn.

We then put
n
Q= szk N Wi,
1
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so that Qis a (1,1)-form. If Z =3 Zja%j is a local vector field, then
VZ,Z)=ilZ).
Thus € is independent of our choice of orthonormal basis and has the form
O =1iY  gindzj Adz
in our standard basis.

Definition. The metric (g;x) is a Ké&hler metric if d{2 = 0.

Given a point p € M we can always change our local coordinates by a complex-linear transforma-
tion so as to achieve (g;x) = (,%) in p. If moreover it holds that dg;r = 0 in p, we say that the
coordinates are normal in that point. In that case we find that

dQ =Y dgjx Adz; Adz, =0

in p. Since the left hand side does not depend on our choice of coordinates, we see that if we can
find normal (holomorphic) coordinates at each point the metric must be Kéhler. Conversely we
have:

Proposition 3.4.1 IfQ2 defines a Kdahler metric, there are for each point p in M local holomorphic
coordinates near p that are normal in p.

Proof. Assume z1,..., 2, are holomorphic coordinates near p such that z(p) = 0 and g;r = J,%
at p. Let

2 =G Y ALGG, Al = A,
be a quadratic change of coordinates. Then
D ogirdzi Ndze =Y gid( AdG +2) ) ginALCGdCs A dG, +
+2) " gin AL GdG; A ds + O(ICP).

If g, denotes the components of the metric in the (-coordinates, we must have

Zgjkdzj ANdz, = Z gjdej A d&k

so that o
ik = Gk + 2D 9k ATC + 2> gr Al + O([C))).

Therefore, at p,

9Gik _ Ogjn . OGir _ Ogjk | o7
= +2A4%  and LA L) V)
Om O T O O
since g;i = d;i at p. Moreover % = 8fm and % = a,?m at p so our new coordinates are normal
if
1 8gk -3 1 69 ik
AR — 229 d A7 — _ Y99 .
n = 5, P A =55 W)

Since g;i = gkj, these two equations are equivalent. If the metric is Kahler, we can define A;,, by
these equations since the K&hler condition means precisely that A;?m then is symmetric in j and
m. |

Let us now consider the bundle of vectors of type T3 over M as a holomorphic vector bundle.
We then have two ways of defining a connection on 77 g:
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i) By the previous section there is a unique connection on T} o that is both compatible with
the metric and holomorphic.

ii) By the theory of Riemannian manifolds there is the Levi-Civita connection on T7 .

Actually, the second connection does not necessarily map a (1,0) field to a field of the same
type, so it is not, properly speaking, a connection on 77j o in general. We shall next prove that if
the metric is Kéahler, then the Levi-Civita connection does preserve type of the vector field, and
moreover the two “canonical” connections are equal.

Proposition 3.4.2 Let (M, g) be a Kdihler manifold. Let V be the canonical connection on T o
that is both holomorphic and compatible with the metric. Let D be the Levi-Civita connection
induced by the Riemannian structure. Then D maps (1,0) fields to (1,0) fields and D =V on
such fields.

Proof. It is enough to prove this in a fixed but arbitrary point, p. Let z; be normal coordinates

at p. Then
0 0
DX(ZZjaij) = ZX(ZJ‘)(QTZJ_

at p, by the comment after the proof of the existence of the Levi-Civita connection. In particular
Dx(Z) is a (1,0)-field if Z is a (1, 0)-field. Moreover

Dx(Z) =0

if Z is holomorphic and X is of bidegree (0,1). Hence D is a holomorphic connection. Since
moreover D is compatible with the metric, D = V. |

Our next objective is to generalize the fundamental identity from Chapter 1 to forms on a Kéhler
manifold with values in a holomoprhic bundle. This requires some algebraic perparations which
we will take care of in the next section.

3.5 The Kahler identities

Let M be a Kihler manifold and denote the associated scalar product on 7T'C by (,). In local
coordinates

LRI

0z;" 0z,) 9ik
o 0 _

(872]" 8751@) =  Gjk
0 0

(5o 95 = ©

The dual space of TT, T*T is the space of complex one-forms and we can let the scalar product
define an anti-linear isomorphism between T and T** by setting, for a vector field Z, Z*, be the
form satisfying

Z*(W) = (W, Z)

for all W € T®. Then we can define the scalar product also on T*® by

(2, W) = (W, 2).
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This implies |Z*|? = |Z|? and that

27| = sup |(Z",W*)| = sup |Z°(W)
wel<1 wis1

so the norm of a form with respect to the scalar product coincides with the norm as a linear
functional.

We shall now extend the definition of the scalar product to forms of arbitrary degree. If v and w
are two decomposable p-forms, i.e.,
Vo= v
w = wipA...wp
we let
(’U, w) = det((via wj))a

and then we extend the definition to arbitrary forms by linearity. The usual rules for determinants
imply that this definition is independent of the representation of a p-form as a sum of decomposable
ones. Note also that if

Viy...yV2p

is an orthonormal basis for (7*)®, then

’U]:'Uil/\...vip

where I = (iy,...,i,) runs over all increasing multiindices, is an orthonormal basis for AP(T*C).
We also see that forms of different bidegrees are orthogonal.

We shall also take the opportunity to review the definition of the x-operator. First we consider
M with only its real structure, i.e., as a N-dimensional real manifold, with a Riemannian metric.
We also suppose M is oriented so that we have a globally defined volume form, wy;, of degree N.
For v, a k-form and w a (N — k)-form we can define a pairing [v, w] by

VAW = [v,wwy.

This is a non-singular pairing which gives an isomorphism between the dual of the space of k-forms
and the space of N — k-forms. On the other hand, the space of k-forms is also dual to itself by
the scalar product. Hence there are a linear operators

w: NF 5 ANF
defined by the property
[v, *w] =< v,w >,

ie.,
VAW =< 0, W > Wy

If e1,...,en is an orthonormal basis for the one-forms, which is oriented so that wy; = ey A...epn,
then clearly
xe1 N...ep = €41 N...en.

This could also have been taken as the definition but one would then need to prove that it is
independent of the choice of basis. We leave it to the reader to verify that if v is a k-form then

sk v = (—1)FN=R)y,

If we consider complex-valued forms, we extend * by complex-linearity. We then have

v A0 = (v, w)way-
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With the aid of the scalar product we can now define the important operation of interior multi-
plication. Let 6 be a r-form and r-form and v, a p-form with p > r. Then we define

0w

by the relation -
(0w, w) = (v,0 Aw)

for all (p — r)-forms w. Observe that we have chosen the conjugate sign so that the operation
becomes complex linear in 6:

(aby + bO2) v = a(610) + b(Oaw).

Proposition 3.5.1 Let 0 be a I-form and let v=v1 A...v,. Then

v = (0ovi)va A...vg — (Bav)vy AV Aoy + ...

(Note also that 6v; = (6,7;)).

Proof. We may assume that the v;:s are the first p elements of an orthonormal basis, v1,. .., vap.
Then v, is also an orthonormal basis, so we may assume that 0 = vy, for some k£ = 1,...,2n. What
we must prove is then that

fov=0 ifk>p

and that
Ov= (-1 A op Av, if k<p.

The first claim follows from
(fv,w) = (v,v Aw) =0 ifk>p
and the second one follows from
(DR Yo A O Ao, w) = (V1 A v, v A w)

which is seen by expanding w in the same basis. ]

Let
Q= izgjdej A dzy,

be the fundamental form of the Kéhler metric. We now let L be the operator
w— Lw=QAw
which sends p-forms to (p + 2)-forms. Let us also use the notation
0*w = 6w.
Lemma 3.5.2
[L, 0" w =: (LO* — 0" L)w = if ANw

if 0 is a (1,0)-form.

Proof. Recall that Q can be written
Q=1 z wr N\ Wy
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if {wy} is an orthonormal basis for the (1,0)-forms. If § = 3 6;w; we get from the previous
proposition
0.Q = —i6.

If w is an arbitarary form, the same proposition gives
O(QAw) = (02Q2) ANw + QA (0uw).
This gives the lemma. |
We shall also have use for the operator A that is adjoint to L, defined by
(Av,w) = (v, Lw)

if v is a p-form and w is a (p — 2)-form. (Av = 0 if v is of degree 0 or 1).

Lemma 3.5.3 If 0 is a (1,0)-form,
0" =i[A, 0] =: i(A(OAN) — O A A).

Proof. This is the dual of the previous lemma:

O*v,w) = (v,0Aw)= (AW, =
= ("L — LO")w,v) =
= i(w,[A,0]v) =
= i([A, O]v,w).
(Note that A = A since Q = ). |

Our next aim is to find a useful formula for the adjoint of the 0-operator. Recall that in Section
3.1 we have defined 0f when f is a function. If z is a local holomorphic coordinate system and f
is a (p, q)-form,

F=>_ frder Ndz,
(I=(ir...ip), J = (J1,---+Jq), dzr = dzy A ... dz;,) we let
5f225fjj/\d21/\d§].

We then define the formal adjoint operator 9 by

@)= [(wou)

for all smooth forms v with compact support. Here the integrals are taken with respect to the
volume element on M, defined by
dv = Q" /nl

but we do not write that out in general.

First we shall give a formula for ¥ in terms of the connection D on M. The connection is originally
defined on vector fields but can also be defined on 1-forms by the product rule:

(Dxv)(Z) +v(Dx(2)) = X(v(Z))

if v is a 1-form and X, Z are vector fields. Note that Dx preserves the type ((1,0) or (0,1)) of
the form v, since we know that this is the case for vector fields. Next we define Dx on p-forms
again by a product rule:

Dx(vAw) = DxvAw+ (=1)%8"y A Dxw

if v and w are forms of arbitrary degree.
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Lemma 3.5.4 Let Zy,...,Z, be a basis for the vector fields of type (1,0) and let wy, ..., w, be
the dual basis for the (1,0)-forms (so that w;(Zy) = d;1). Then

)= W;ADy.

Proof. Note first that the right hand side is independent of the choice of basis. Fix a point p € M
and choose Z; so that

0
Zj = aizj,wj :de

in the point p, and assume also that z; are normal coordinates at p. Then

D%deZD%dZJ DadZJ—O

GEPS
in p. Hence, if
v = gdzr /\dZJ
ZWjADzjv Z dZ]/\dZ]/\dZJ—a’U

at p. |

Proposition 3.5.5 Let again Z; be a basis for the (1,0) vector field and let w; be the dual basis
for (1,0)-forms. Then
- Z w; JDZj .

Proof. Observe again that the expression in the right hand side is independent of choice of basis.
Therefore we may assume that

0
ng,wj:dzj
J

where z; are normal coordinates at p — a given point. The operator ¥ is defined by

@)= [w.00)

for all smooth v:s with compact support. Let us first assume that the metric is flat near p, i.e.,
Z; is orthogonal in a whole neighbourhood of p. Choosing v with support in that neighbourhood
we get if

v = gdzr A\ dZJ, w = hdzg N\ dzp,
/(51},11}) = / Z dzj ANdzr NdzZy, hdzg N dZr)
3 / —_gﬁ(dz, Adzy,dzjo(dzg A dzL))
6Zj

= —Z/g%(dz,Adz,],dsz(deAdzL))

= / ZdZJJD o w

where the last equality follows since Ddzy A dzp, = 0. This proves the proposition if the metric is
flat. In the general case we can argue in precisely the same way and we get the same result apart
from possibly some extra terms containing first derivatives of the metric. All of those terms will
vanish in the point p since we have normal coordinates so the proposition holds in general. |
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The last part of the argument may well be formulated as a general principle. If a formula is
independent of choice of coordinates, depends only on derivatives of the metric to order 0 and 1,
and holds in the flat case, then it holds on any Kdahler manifold.

It will be useful to rewrite the formula for ¥ using the A operator.

Proposition 3.5.6
¥ = [0, A].

Proof. It is enough to compute Yv, where
v=gdzr NdZj,
in a given point where our coordinates are normal. According to the previous proposition
9 = 09 o (der A dzy) = —0udzs A dZ
v——za—zj zja(dzr Ndzy) = —0adzp NdZy
if
0 = 0g.

Hence Lemma 3.5.3 gives
v =i[0, Aldz; A dZy.

On the other hand
Ov=0ANdzr Ndzy

and
OAv =0 ANAdz; NdZy.

(The last statement follows since dAdz; A dz; = 0, which is true since it holds in the flat case and
our coordinates are normal.) Hence

1[0, AJv =i[0, A]v = Yv
and the proposition is proved. |

Taking conjugates we get, since A = A:

Proposition 3.5.7 The adjoint of 0,7 satisfies

Y = —i[0, Al.

Recall now that in Riemannian geometry one defines the Laplace operator by
A =d"d+ dd”

where d* is the adjoint of the exterior differentiation operator d under the scalar product. Using
the operators 0 and 9, we can then define in the same way

O=09"0+ 00"
and -
0 =00+ 00"
where we have written 0* and 0* instead of ¥ and 9. Then both O and O send (p, ¢)-forms to
(p, q)-forms. We then have the following generalization of the elementary formula
o? 1

505 12"

o4



Theorem 3.5.8 On a Kdher manifold

-1
D—D—EA.

Remark. The factor % instead of i depends on our having chosen the metric so that dz; is of
norm 1.

Proof. By Proposition 3.5.6
O = 970+ 90" =i([0,A]0 + [0, A]))
= i(0AD — AID + OO — OAD).
Hence [ is a real operator so [J = [J. Propositions 3.5.6 and 3.5.7 also give that
"0 + 00" =i([A, 9]0 + J[A,0]) =0

and

9*0 + 00" = 0.
Writing d = 0 + 0, d* = 0* + 0* we therefore get
A=0+0

since the “mixed” terms vanish. | |

Proposition 3.5.9 On a Kdhler manifold

[0,L] =0 = [0, A].

Proof: Since (0* = O it suffices to prove the second equality. But, since [0*, A] = 0,
(A0 = [A, 81" + 8°[A, 8] = —i(8*8 + 50) = 0,
by the proof of the previous Proposition. |

In the last section we shall also have use for the next proposition.

Proposition 3.5.10 Let M be a Riemannian manifold. Then
[A, %] = 0.

If M is a Kdhler manifold it also holds
3, %] = 0.

Proof: We need of course only prove the first statement. First we need to verify that if v is a
k-form then

d*v = (=1)FFON=1 gy,

if N is the (real) dimension of M. To see this, let u be a k — 1-form with compact support (if
k =0, the formula is trivial). By definition

/(du,v) = /(u,d*v).
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On the other hand, by the definition of the *-operator

/(du,v):/du/\*v:/d(u/\*v)—i—(—l)k/u/\d*v,

and the first term on the right hand side vanishes if w has compact support, by Stokes theo-
rem. Since #* = (—1)?V=P) on p-forms, it follows that * x (d * v) = (=1)N=FFDE=D (g x ) =
(—1)N+D+k+1(d 4 9), and from this the formula for d* follows.

That
*A = #(d*d + dd*) = (d*d + dd*)* = Ax

now follows from a direct verification, using again that +x = (—1)?=P) on p-forms . |

3.6 The Lefschetz isomorphism

In this section we shall prove some further identities for forms in a point. Apart from the first
two propositions they will be used only at one place in the sequel, namely in the proof of the
so-called “hard Lefschetz Theorem”. Since we are dealing with forms in a fixed point, we assume
throughout that dzy,...,dz, is orthonormal, i.e., our K&hler form is

Q:iZdzj/\déj.

Definition. A form « is primitive if

Aa =0.
Let us use the following notation:
dV; = dz;Ndz, dVp =dVi A...dV;,
ar gk = dViNdzy NdzZg

where I, J, K are disjoint multiindices.

Let us also write I +i = {i,I} and I — ¢ = the multiindex I with ¢ removed regardless of place.

Proposition 3.6.1

Aar g = —i E 1. JK
jel

Proof. If 3 = ar v N,

LB=QAB=i > oy
J¢L.M,N

A is defined by
<Aa,B>=<a,L3>.

The scalar product in the right hand side is # 0 if and only if there is a j ¢ L U M U N such that
L+j=1, M =J, K= N. In this case it equals —i. This proves the proposition. |

Proposition 3.6.2 Suppose « is a form of degree k. Then

A, Lla = (n — k)a.
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Proof. We may assume a = ay_j k. Then

La=1 E 14, J,K
JEITUJUK

SO
ALa= > arjrsx+ 0=+ +]|K])a

kel
JEIUJUK

(the last term comes from when j = k). Moreover

LAa = Z ar—jtr,gx + |I|a.

JeI
kgTUJ, K

Combining we get
A, Lla = (n— 2I|+ |J| + |K|)a = (n— k)a.

Proposition 3.6.3 Suppose « is a k-form. Then
A, LPla = Cy pLP '«

where Cip =p(n —k+1—p).

Proof. Note that LP~ '« is of degree k + 2p — 2. Hence

AL’ = ALLP 'a=[ALILP 'a+ LALP 'a =
= (n—(k+2p—2)L" 'a+ Cpp 1 LPla+ LPAa

where we have used the previous proposition and an induction hypotehesis. Hence
A, LPla = Cy L e

where
Ckm = Ck7p_1 + (n —k—2p+ 2).

This difference equation implies that CY ,, is a second degree polynomial in p with leading coefficient
7p23
Cip=—p" +2p+ Chpo.

Since Cio=0and Cp1 =n—Fk, weget c=n—k+1so

Crp=pn—k+1-p).

Theorem 3.6.4 Let a be a k-form. Then o can be written
a=uvg+ Lvy +...L°v,

with v; primitive (k — 2j)-forms. Moreover, the decomposition is unique in the sense that o = 0
implies Liv; =0, j =0,...s.
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Proof. We can always write
o« =g+ al

where o' is orthogonal to the kernel of A, and v is primitive. Since our space of forms in a point

is of finite dimension a! = La; for some a; of degree (k — 2). Repeating the argument with «
replaced by «y, etc., we get the existence of a decomposition. To prove unicity, it is enough to
prove that the terms are pairwise orthogonal. Say k < j and vy, v; are primitive. Then

(Lkvk,Lj’Uj) = (Lk_lvk,ALj’Uj) = (Lk_lvk,Lj_l’Uj)Cj,gj

where g; = degree (v;). Here we have used our commutator formula and Av; = 0. Continuing k
times we find that the terms are indeed orthogonal. |

A natural question that arises is if L7v; = 0 implies v; = 0? The answer is given by

Proposition 3.6.5 Suppose v is a primitive k-form. Then

a) k<n if v#0.

b) L" v =0=v=0.

¢) L"Ftly =0,

Proof. Suppose v is a primitive k-form and L°v = 0. Then [A, L*]v = 0 so
s(n—k+1-s)L* v =0.

If now s <n —k, we get L tv = 0. Iterating we find v = 0, so b) is proved. On the other hand,
L*v = 0 always if s is sufficiently big. Then it follows again that even L*~'v = 0if s >n —k + 1.
Iterating we find L%+l =0ifn—k+1>0, so c) also follows. If again n —k+1 < 0, the
process stops at the stage v = 0, so we also obtain a). |

We can then improve the formulation of Theorem 3.6.4.

Theorem 3.6.6 Any k-form a can be written

a= Z Ljvj

Jjzk—n

with v; primitive. If such a sum vanishes,then v; = 0 for all j.

Proof. We know -
o= Z L’ v
0
and deg v; = k — 2j =: d;. The previous proposition implies that
Ljvj = 0,

ifj>n—dj=n—-k+2j,ie,if j <k—n. Thus

a= Z Ljvj.

Jjzk—n

If in this sum L/v; vanishes, then v; = 0 since j < n — d;. n
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Proposition 3.6.7 Let a be a k-form with k < n. Assume L™ **3a = 0. Then the primitive

decomposition
o= Z Ljvj
j>0
conists only of s terms (i.e., Lv; =0, j > s).
Proof. We have already seen that L"~*+5q = 0 implies L **$tiy; =0, j = 0,1,2,.... This in

turn implies v; = 0 if
n—k+s+j<n-—deg (v;) =n—(k—2j),

ie., if s <j. [ |
Corollary 3.6.8 Let o be a k-form with k < n. Then « is primitive if and only if L *+1a = 0.
Proof. The “if”-direction follows from the last proposition, and the other is Proposition 3.6.5.

c). |

The main result of this section is also an immediate consequence:

Theorem 3.6.9 Let k < n. Then the map
Ln—k . Ek N E2n_k.

(E7 is the space of j-forms) is an isomorphism.

Proof. Injectivity is the case s = 0 of Proposition 3.6.7. Surjectivity follows from 3.6.6

(or by comparing dimensions). [ |

Our next goal is to compare the isomorphism L™~ with the isomorphism defined by the *-opertor
(see §5). We start with the case v primitive, and then want to compute *v.

Note that a form of the type
adzy NdZi INK=¢

is always primitive by Proposition 3.6.1. The same evidently holds for forms that can be written in
this form after a unitary change of coordinates. Our next Lemma says that this gives us spanning
set for all primitive forms.

Lemma 3.6.10 Let v be a primitive (p,q)-form. Then v can be written as a sum of terms of the
type
* ar A...ap Nby A ... by,

where a;,b; are (1,0)-forms such that

(ai,bj) =0 VZ,]
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Proof. It is enough to show that if v is primitive and orthogonal to all forms of type * then v = 0.
Suppose that e.g. p > ¢. Take an arbitrary (1,0)-form a. Then

a_v
satisfies the same hypothesis as v on a', i.e., a_v is orthogonal to all forms of type
ag A...ap Nby A... b,

where a; and b; are pairwise orthogonal and orthogonal to a. Moreover, Aa_v = auAv = 0 so awv
is primitive. We can then assume by induction that aov = 0 on a™, i.e.,

aw Las A Nap Abi AL by

if ag,...ap, b1,...b; L a. In other words,

vLiaNagAa, Nby A...b,.

Of course this last relation holds even if the a;:s are not orthogonal to a since the component of
a; that is parallel to a gives a zero contribution to the wedge product. On the other hand, there
is nothing special about the first factor in a A as A ... a, so actually

vJ_al/\ag/\...ap/\Bl/\...Bq

as soon as there is some linear combination of a1, . .., a, that is orthogonal to all the b;:s. Otherwise
p < q, s0 p=qand v can be written
v="> M\dV

(just expand v = Y Arjrarsi). Now take j # k and a multiindex J that does not contain j or
k. Since v is orthogonal to
(de — dZ/C) A (d?j + dzk) ANdVy,

we see that
Ajur = Apug-

This means that all the Aj:s are equal, so
v =P
where (2 is the Kéhler form. But then v can be primtive only if v = 0. |

It is now easy to compare the s-operator and the operator L"~* on k-forms. First assume that v is
a primitive k-form. By the previous Lemma it is enough to treat the case v = dzy Adz;, TUJ = 0.
Then it is easily seen that

Ly = Qpp,q * V.

If v = L7w where w is a primitive k-form, we use the relation
*L = Ax

and find that
LR,

Jopn — AJ _
wlw=Nxw=2A4,pq;

If we then use the orthogonal decomposition

a = ZLjvj

with v; primitive, we see that * and L™k are related by a multiplicative constant at each level,
and this constant depends on n,j and the bidegree.
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3.7 Vector bundles over Kahler manifolds

If we for a moment recall the proof of the O-estimates over open sets in €™ from Chapter 1, we
see that a crucial role was played by the weight factor e~%. The counterpart of this in our present
setting is a choice of hermitian metric on a complex vector bundle over our complex manifold
M. The weight factor e~¥ from Chapter 1, can then be interpreted as a metric on the trivial
line bundle over C™. In this section we assume that M is a K&hler manifold with a fixed K&hler
metric.

Let (E, M, n) be a complex vector bundle over M, endowed with an hermitian metric g. Let V
be the canonical conection on E which is both holomorphic and compatible with the metric. We
shall now regard V from a slightly different point of view, and as a preparation we first need to
consider differential forms on M with values in E. An ordinary complex k-form on M is, for each
p € M, an alternating form v, on

C C :
T, x...T, (k times )

such that the function of p

o(Zi,... Z)
is smooth if Zi,...,Z, are smooth vector fields. A k-form with values in F is then, for each
p € M, amap

@:T;,D ><...T}§D — By,
which is linear in each argument, alternating and smoth. This means that if Zy, ..., Z, are smooth
vector fields, then

&2y, .., Zy)
is a smooth section to E. In particular, a O-form with values in F is just a section to E, and in
general if e1,...,e, is a local frame of sections to F, a k-form with values in E can be written

locally
§= Zgueu
1

where &, are complex valued k-forms. Sometimes we write

£:Z£u®eua
1

where the tensor product, £ = v ® s, of a form and a section is defined in the obvious way
f(Zl, ey Zk) = U(Zl, ey Zk)s.

Of course we can consider F-valued forms that are only locally defined. The space of E-valued
k-forms over U C M is written
CX(U,B),

and the decomposition of scalar forms in bidegrees induces a decomposition
CRU.E)= > CX(UE)
pta=k

in the obvious way. Now observe the important fact that the d operator can be defined in a natural
way on Cp<, (U, E). Simply let

5522651,@6,,

if e, is a holomorphic frame. It is immediately clear that this definition is independent of which
holomorphic frame we have chosen. On the other hand, the operator d has no canonical definition
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on F-valued forms, and we shall now see that what corresponds to d for E-valued forms is our
connection V.

We have defined (see §3) V as a bilinear map
V:T(T%(M)) x I'(E) — (E)
with certain additional properties. Equivalently, we can consider V as a map
V:T(E) — C*(E)
from sections to formvalued sections, where if £ is a scalar-valued section, V¢ is defined by
VE(Z) = V€.

The defining properties of a connection mean precisely that V¢ is an E-valued 1-form, and more-
over,

Vi§=df @+ fVE
if f is a function. Remember that V is said to be holomorphic if Vz& = 0 whenever £ is a
holomorphic section, and Z is of bidegree (0, 1). Decompose

V=V 4V

where V'g is the (1,0) component and Vg is the (0,1) component of the 1-form V¢. If Z is of
bidegree (0,1) and £ = > ¢, ® e,

Vz&=V75¢
and

V'E=D 05 @+ Y &V e,

Hence V is holomorphic if and only if

vll — a
We have previously defined the connection coeflicients I'# , by
v3mel/ = Z anue#

(where 0, = 82‘9711’) if {e, } is a frame field. Equivalently,

Ve, = Z I dzm @ ey
We can then define
o8 => Th, dzm,
and get
VE=) 06 @e+ ) &bl e,

or in short-hand
V' =9+6. (3.12)

So, for each frame, we get a matrix of (1,0)-forms #. Now, let g be a hermitian metric on E so
that
Gup =< €y, €y >,

and let V be the canonical connection for this metric. Then we know that

1o}
Fﬁfw = Z gAH%gV)\
A
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(see the proof of Theorem 3.3.1), so
95 = Zg)\uagu)\
A
or
=h"'on if h=g"
In particular, we see that if F is a line bundle (i.e., r = 1) and

g=gn=c¢€ %,

then
0 =e¥f0e” % = —0op. (3.13)

Next, we can combine the scalar products that we have on forms and on sections to E to get a
scalar product on E-valued forms. Concretely, if

f:Z§V®eV and 7’]:2771/@61/7

then
< 5777 >=: Z < §u777u >< ey,€ey >= Zguu < fyanu >

This definition implies that
<ERs, Nt >=<En>< 8,1 >

if £ and 7 are forms, and s and t are scalar sections. Therefore, the definition is independent of
choice of frame.

We can let the connection V act on E-valued forms by demanding
VonE=doANE+ (—1)"v AVE (3.14)

if v is a scalar m-form, and ¢ is an E-valued form. If, with respect to a frame £ = > &, ®e,, then
(3.14) implies

VE = ) de®e, + ()" &AL ReE, (3.15)
= del,®el,+205/\fu®eﬂ:(d+9)§.

Conversely if (3.15) holds for some choice of frame, then (3.14) holds, so we really get a good
definition.

The last new concept that we need is the curvature of the connection. Consider the operator
§— V¥
that sends (E-valued) k-forms to (k + 2)-forms. If f is a function

VA(fE) = V(df NE+ fVE) =
fANE—df NVE+Af NE+ [V = fV2E.

This means that V2 (contrary to V) is C*°-linear.
With respect to a frame V£ = Y&, @ Ve, = 3 & A O @e,. The operator

VZ=:0
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is called the curvature of connection and is represented with respect to a frame by the matrix of
2-forms

(©5).
We can compute © by

Vi = (d+0)(dE+0NE) =
APEFAINE—ONdE+ONEFONONE = (dO+ 0 NB)E.
In other words,

Ol = dol + Y O\ NG
A

Proposition 3.7.1 Let V be the canonical connection with respect to some metric. Then
0 +0N0=0 and O =06.

Proof. We know that
6 = h'oh.

Hence

00 = —h~'Ohh™'oh = -0 N O,

which proves the first equation. The second one follows since

O=di+0N0=00+0AN0+ 0.

Example. If E is a trivial line bundle and g = (g11), where
g =¢e %,
we know that ((3.13)) § = —dyp. Hence
© = —00p = D0¢.

If ¢ and 7 are two E-valued forms of which at least one has compact support, we can define

<& >M=/ <&m>,
M
where, as usual, the integral is taken with respect to the volume element
dv = Q" /nl|
where Q is the Kaher form of M. As before, we define the adjoint operators to V' and V” by
<V'En>u=<&(V)n>u

and
<V >u=<& (V"Y' >u.

Suppose 2 defines a Kéhler metric on M, and define the A-operator on E-valued forms by

AY g@e, =) (Ag)®e,

(see §5 for the definition of A).

64



Proposition 3.7.2

(V')* —i[0,A] and
(V" = 4V AL

Proof. Take a holomorphic frame {e,} and let
Gup = < e€y,ey >
hl/u = Guv

as before. For the moment we use the notation

{5777}:2<£V777V >

ifE=> 6 ®e,,n=>.1m,®e,, and let h operate on £ by

h€ = Z hl/p,gu & ey.

We know that
V'€ = 0¢ + (h~'oh)¢ = h™1a(hE)

and
<& >={h&n} ={& gn}
Hence

<V >u= /M{ﬁ(hi)m}: /N {00y =< €00 >,

where 9*n = 3" 0*n, ® e,. Since by Proposition 3.5.7 * = —i[0, A], we have proved the first
statement. On the other hand,

<V"&n>y= /{héan} = /{55,977} =<&,970"(gn) >u,

where 0*n = 3" 0*n, ®e,. Thus
(V") =g~ 9" (gn) = ig~ '[9, Algn = ilg~'9g, Aln = i[V', A]
by Proposition 3.5.6 since g and g~! commute with A. [ |

Now we are finally ready to prove the fundamental identity that generalizes Theorem 1.4.2 and
is the key to the vanishing theorems that we will prove in the next section. In analogy with §5
we can use the operators V', V" to define two Laplace-operators for forms with values in a vector
bundle.
O =v' (V) + V)V (3.16)
and
|:|// — v//(v//)* + (v//)*v//' (317)

When E is the trivial line bundle with trivial metric ' = O and O0” = [, so it follows from §5
that 00’ = O0”. In general, the difference of the two operators depends on the curvature of the
connection on F.

Theorem 3.7.3

0" =0 +1[O, Al.
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Proof. As before, we choose a holomorphic frame eq,...,e, so that
V=d+¥4
with respect to this frame. By the previous proposition
(V)* = —i[0,A] = 0*
where 0*¢ just means

o* Zgu Qe, = Z((’)*fy) R e,.

In the same way, ~
(V"* = 0" +i[h, A].

Therefore,
O =0+ 600" +9%0

and ~ -
0" =0+ [0, A]0 +i9[0, Al

where O and O are the Laplacians from §5 acting on each component &,. Since our metric on M
is Kahler O = [, so

0" -0 = i([0,A]0+ 0[0,A]) — 00" —0*0 =
i([0,A]0 + [0, A] + 0[0, A] + [0, A]9) = i[06 + 60, A].
Now, the expression 96 + 00 stands for the operator
E—0ONE)+ONOE

which equals

E—(00)NE=OANE.

Hence
0" — O =4[O, A]

and we are done. | |

3.8 Vanishing theorems

To explain the title of this paragraph, we first review the definition of the Dolbeault cohomology
groups. First, let B

ZPU M, E) =A{¢ € Cpy (M, E); 0§ = 0}
and

BP(M, E) = {0n; Cpey 1 (M, E)}

p,q—1

QBP”l =: 0). Thus ZP is the space of smooth O-closed (p,q)-forms, and BP? is the space of
D-exact (p, q)-forms. Note that ZP¥ is the space of holomorphic p-forms, i.e., forms of bidegree
(p,0) that have all their coefficients holomorphic. Clearly BP¢ C ZP4,

Definition 3.8.1
HPY(M,FE)=2Z"1(M,E)/B”Y(M, E)

is the (p, q):th Dolbeault cohomology group with coefficients in E.
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This, HP? measures to what extent the equation On = ¢ is solvable, and theorems to the effect
that this equation is always solvable are called vanishing theorems since they mean that H?9 = 0.

The formalism of the preceding section makes it easy to give the analog of Theorem 1.4.2.

Theorem 3.8.2 Let E be a hermitian vector bundle over the Kahler manifold M, and let £ be a
(p, q)-form with values in E and compact support. Then

[ ioer+ [ onyer = [ wers [ oy [ i<l

Proof. This follows directly from Theorem 3.7.3 since

[<orees= [+ [1vryer
[<oees= [vep+ [iorer

To get existence theorems for the 0-equation, we need to analyze the expression

and

i[0, AJ¢.

We shall do this in some detail when E is a line bundle, but to warm up, we first study the case
when M = C", and F is the trivial line bundle with metric e~¥. This means that we consider the
scalar product

<&n>= (e ?,

where (,) denotes the standard scalar product for forms on C” defined by
(dzj,dzk) = 6.
For reasons that will become apparent we choose for £ a (n,1)-form
§= &dziNdz, dz=dz A...dz,.

Then we have . - -
Adzj Ndz =i(—=1) ey AL Ldzj AL dz, = dd2;

(see §6), and
O = ¢;pdz Ndz.
Since © A £ = 0 for bidegree reasons,

i[0,A6 = ~ONY &dz; = > pjp&ida Adz.

Hence ~
i< [0,A]6,6>=> ¢p&iée?,
and the theorem says that

| Yot < [ joepee s [ joepe

(where, for a moment, we let | - | denote the non-weighted norm.) This is precisely the inequality
that we used in the proof of the existence theorem in Chapter 1.
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Now, let E be a general hermitean line bundle over M. Given a local frame e, the curvature
operator is represented by a (1, 1)-form so that

OE®e) =V ({®e)=(ONE)®e

(for simplicity, we use the same notation for the operator and the form). Notice that the form
O is actually independent of choice of frame. Choose a (local) basis for the space of (1,0)-forms,
Wi, ..., W,. Then

0= ch,;wj A W
We say that © is (semi)-positive if (c;;) is (semi)-positively definite, and define negativity in the
same way. This is of course independent of choice of basis. At a given point, we can choose a basis
that is orthonormal for the Ké&hler metric on M and moreover diagonalizes O.

0= Z)\jwj A Wj.

Let us first assume that © is positive (everywhere). Observe that O is always a closed form. (This
can be seen in many ways: with respect to a local frame the metric can be written

g=(g11), gn=¢e7%

and

O = 00y.
Hence d© = 0. Or, in general © = 90 where 99+0A0 = 0. Hence 90 = 0 and 90 = +9(9A0) = 0.)

Therefore, we can give M a new Ké&hler metric whose Kéhler form is
O =i0.

Then

if € is a k-form by Proposition 3.6.2. With this new Kéahler metric Theorem 3.8.2 implies
(h-n) [1 < [1eP+ [10vye (315)
If, on the other hand, © is negative, we choose for our new Kahler metric
Q' =—-i0
and get

(1) [162 < [1a6P+ [10vyer (3.19)

Lemma 3.8.3 Suppose that E is a hermitian vector bundle over a complex, compact manifold
M. Suppose that for all E-valued (p, q)-forms & it holds

e [1er < [1enyer+ [ e (3.20)
for some fized ¢ > 0. Then HP4(M,E) = 0.

Proof. This is basically a repetition of Proposition 1.3.2, but, for no particular reason we shall
formulate the duality argument differently this time. Let f be a E-valued (p, ¢)-form.

[ <resp<g fur iy [iogr)
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for all (p, g)-forms &. By elementary Hilbert space theory (cf. proof of Propostion 1.2.1.) it follows
that there are a (p,q — 1)-form w and a (p, ¢ + 1)-form v such that

/<f,€>=/<u,(V”)*£>+/<v,5§>

1
S w102 <2 [ 152,

f=0u+ (V")

(in the weak sense). If now df = 0, we have that

for all £ and

This means that

f—0u= (V") v
is both O-closed and orthogonal to closed forms. Hence
ou=f

and we are done, except for the question of regularity. We shall discuss this question only briefly.
Notice that we have proved that any f, F-valued form in L2, can be written

f=0u+ (V") .

Alternately, we could notice that (3.20) implies

[ler< [<oees
@ [1ep < [1oree.

This implies that we can actually solve the equation

SO

f=0"= (V") + (V") )y

by the same Hilbert space argument as before. In other words, if df = 0, we can choose our
solution u to du = f of the form

u=(V")*g where (V")*0g=0.

If moreover f is smooth, it follows relatively easily that g is smooth since (1" is an elliptic operator.
Therefore, this special choice of u will also be smooth, and we are done. |

It is now easy to prove the Kodaira-Nakano vanishing theorem. First, a

Definition. A complex line bundle E over M is called positive if E can be given a hermitian
metric with positive curvature form. E is negative if E' has a metric with negative curvature.
Theorem 3.8.4 Let E be a line bundle over a compact complex manifold of dimension n. Then
HPY(M,E) =0 if

a) E is positive and p + q > n,
orb) E is negative and p 4+ q < n.
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Proof. This follows immediately from Lemma 3.8.2 and the comments before it. |

We shall end this section by giving a generalization of Theorem 3.8.3, known as Girbau’s Vanishing
Theorem.

Definition. A curvature form © on a line bundle is called k-positive if it is semipositive and at
each point at most k eigenvalues are equal to zero. A line bundle is k-positive if it has a metric
with k-positive curvature.

Lemma 3.8.5 Let wy,...,w, be an orthonormal basis for the space of (1,0)-forms, and let
e = Z )\jwj A Wj.
Let wr = wi, A...wj, if I = (i1,...,ip). Then

[i@,A]w[/\@J:)\[Jw[/\@J

where .
R D D 920
iel ieJ 1
Proof. Let
Vk =wi, Nwi,Aecowi, AN, i K = (2.1,...,2'1»),
and write

wrNwy =V Nwp ANy
where K, L, M are pairwise disjoint. As in the proof of Proposition 3.6.2, one verifies that

|i@,A]VK/\wL Ny = (Z )\j — Z )\]—)VK/\wL/\J)M.
JjEK j¢KULUM

This means that w; A @; is an eigenvector for the operator [i©, A] with eigenvalue equal to the
sum of all A;’s in I N J minus the sum of all \;’s outside I U J. This can also be written

SNED N =D
1

jel jeJ

and the proof is complete. |

Theorem 3.8.6 Let E be a k-positive line bundle over a compact Kdhler manifold M. Then

HPYM,E)=0 for p+g>n+k.

Proof. Choose a metric with k-positive curvature form ©. We would like to give M the Kéahler
metric with fundamental form ¢© as before, but that is no longer possible since © is not positively
definite. Let 2 be the fundamental form of some arbitrary Kéhler metric and consider the metrics
defined by

QO =i0 + Q.

For each € > 0 this defines a new Kéhler metric and if Ay < Ao < ...\, are the eigenvalues of ©
with respect to €2, then
A\ = )‘j
J €+ )‘j
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are the eigenvalues of © with respect to Q'. (If

O = Z /\jwj AN wj,
where w; are orthonormal w.r.t. €, then

Wi = wi(Aj + )

are orthonormal w.r.t. €', and

0 => Nuwj A
As € tends to 0, )\;. tends to 1 or 0, depending on whether A; > 0 or A\; = 0. By Lemma 3.8.4
i0,90¢ =" Aslrwr Ay

if £ = Zﬁ]Jw[/\LA_)J, where

A7 =D XD N =D N
1

jerI jeJ

Replacing A; by A} and Ar; by A} ;, we see that
lm X > (0= )+ (g 1)~ (n-1)
where [ is the number of eigenvalues that vanish. Since

pt+g>n+k>n+l

this limit is always > 1. Hence, for € sufficiently small
. 1.5
<O, )¢, € > Sl

and the proof is completed just as in the Kodaira-Nakano case. |

3.9 Vanishing theorems on complete manifolds

In the previous section we have shown the principal analogs of Theorem 1.6.2 for compact man-
ifolds. It should be noted that one aspect of the proofs actually is much easier in the compact
case. Namely, as soon as we have the inequality of Lemma 3.8.3, we get existence theorems for
the d-operator. This is no longer the case if our manifold is non-compact. The argument in the
proof of Lemma 3.8.3 still gives that we can solve

f=0u+ (V")

but this no longer implies f = du since (V”)*v need not be orthogonal to d-closed forms if M is
open.

We shall now see that if our manifold is complete, there is a way to circumvent this difficulty,
which in particular will give us a new approach to the theorems in Chapter 1.

Definition. A Riemannian manifold M is called complete if there is a smooth function

p:M—-1R
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such that

i) p71[—00, ] is compact for each ¢

and

ii) |dep]| is uniformly bounded with respect to the riemannian metric.

A complete Kdhler manifold is then a Kéhler manifold which is complete as a Riemannian manifold.
Recall that a complex manifold is a Stein manifold if there is a strictly plurisubharmonic function
¥ on M such that 1)~1(—oo0, c] is relatively compact for all c.

Lemma 3.9.1 Any Stein manifold has a complete Kdhler metric.

Proof. Let ¢ be a strictly plurisubharmonic function such that ¢~ (—o0, ] is relatively compact
for all ¢. We shall find a Kahler metric such that diy is bounded. If €2 is the Kéahler form, this
means precisely that

) — i A O
is non-negative for some constant c. Let k be some convex increasing function on IR. Then
00k o p = K 00y + K" 0np A O,
so it is enough to take Q = i09(k o 1)) where k is strictly increasing and k”(¢) > 1 fort >0. W

Lemma 3.9.2 Assume M is complete. Then there is a sequence {x,} of smooth functions with
compact support such that x, increases to 1 everywhere and dy, is uniformly bounded.

Proof. Let g, be a sequence of smooth functions on R, such that g,(z) =1 for z < v, g, (z) =
0 z>v+1and|g,| <2 Take x, =g, 0. [ |

Lemma 3.9.3 Let M be a complete Kahler manifold and let E' be a hermitian vector bundle over
M. Suppose that f is a O-closed E-valued (p,q) form in L%, and that for any E-valued (p,q)-form
with compact support & it holds

| / <fespP<c / D€ + (V)€ 2. (3.21)

Then, there is a solution u to Ou = f with

/\u|2 <2C.

Proof. We shall again repeat the arguments from Chapter 1. Take an E-valued test-form §
and decompose & = £ + €2, where ¢! is d-closed and £ is orthogonal to the d-closed forms. In
particular &2 is orthogonal to all forms of type dn, so (V”)*¢2 = 0, whence

(V//)*fl — (v//)*£

Moreover ("¢t = 9(V")*¢ = 9(V")*¢ is smooth, so ¢! is smooth. Let x, be the sequence from
Lemma 3.9.2. Then x, £ is a test-form, so

[ <resp

|/<f,£1 > =lim|/<f,><yf1 > <
C [NHOE T + AT EE + B [ 16 Pl

IN
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Since dy, tends to 0 pointwise and boundedly it follows that
[ <re>pzae [(omrep =2 [17er
By the usual Hilbert space argument there is a u such that

/<f,f >:/<u, (V*¢ > forall &

and [ |u|?> <2C. Then du = f and we are done. |

Recall now the basic identity, Theorem 3.8.1. Let us assume that E is actually a line bundle and
consider the curvature term

< [i©,A]¢, £ >
for (n, g)-forms £. Assume © is positive. Then
| <f.6>P < flbe <il©, Al € > (3.22)

where || f|lo,e is simply the supremum of | < f,& > | over all £ such that the curvature form is
bounded by 1. If, for example, the curvature form dominates c|¢[3, then || f[lo,0 < 1|f[3. For the
next theorem we need to study how |

Choose an orthonormal basis w1, ... ,w, for the (1,0)-forms. Write
0 = Zijwj AN, €= Z§JWAJ)J,
fo=Y fwha,

where w = wy A...wy, and wy = Ajegw;. Then < f,€ >=3" f;€;, and a computation like in the
beginning of Section 6 shows that

<i[O,A)E,E>= > > 0o (3.23)

[I]=q—1
Now let Q' be another Kéhler form with ' > Q. We can assume {w;} is chosen so that ' is also
diagonal
Q= iZ’ijJj NWj

where we must have v; > 1. Let wj = |/yjw;, so that wj is orthonormal for 2. Let v =71...79,
and v; =7, ...7j, if J = (j1,...,Jq). Then

&= Zf}w’ A&, and © = Z@;kw} A @y,

where §; = £;//77; and O’ = ©;1/,/7;7k. Therefore we get if we consider the 2" metric

<ilO,Ng 6> = > Z

[I|=g—1

f[u gluk ¢
Z Z M ZQikflz/u{i}g}lu{k}

where we define £ = ¢;/\/7 7. Since ||f|q,e is the supremum of Y f/&; over all &’s such that
the curvature form with respect to ' is bounded by 1, we get

flu{z}qu{k}

1
1fl&e < ;Hf“?z,e-

73



If we let dV denote the volume element +i"w A @ we have dVo = v7dVgq so, finally we have

1flI&edVa < ||flla.edVa. (3.24)

Note also that for any (n, ¢)-form

B dVar =D 1812 fyvadVer < 1652 dVa = [¢[3dVa. (3.25)

We are now all set for the principal result of this section.

Theorem 3.9.4 Let M be a compler manifold which has a complete Kdahler metric, and let Q
be some Kdhler metric on M (complete or not). Let E be a hermitian line bundle over M with
semi-positive curvature form ©. Let f be a O-closed (n,q)-form on M in L?, with values in E.

Then we can solve Ou = f with
Juti<2 [s1se

Proof. If Q) itself is complete, this follows directly from the previous lemma since
| < 6> < Iflbe <10, Al € >
and
[ <to.nee>< [ 1og?+1(9)ep
by Theorem 3.8.2.

In general, let w be a complete metric and let

1

Then Q. is complete for any k since |di|gr < k|di|.,. Hence we get, for each k, a solution uy to
8uk = f with

[ ultave, <2 [ 1518, odva, <2 [ 173 edvo.
by (3.24). If I > k, we get
[ 1wl ave, <2 [ 1717 0ava

by (3.25) so we can choose a subsequence of u; which converses weakly to u in L? with respect to
any Q. Then Ou = f and

/ [l dVa, <2 / 1713.0dV0

and letting k£ tend to oo, we get the statement of the theorem. |

Corollary 3.9.5 Let M be a Stein manifold with some Kdhler metric and let ¢ be plurisubhar-
monic on M. Suppose

< [i0dp, A€, & >> |¢]?
for any (n, q)-form &. Then for any (n, q)-form f with Of = 0 there is a solution u to Ou = f with

[upee <z [irpes.
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Note that if M is a pseudoconvex domain in C™ with its standard metric, we get back the theorems
of Section 1.3.

We end this section with one more application of Lemma 3.9.3. As mentioned in section 1.8, the

first theorem of this type appears in [4].

Theorem 3.9.6 Let M be a compler manifold with a complete Kihler metric ). Suppose Q =
100y where |dplq is uniformly bounded. Then, for any (p,q)-form f in L? such that Of = 0 there

is a solution u to Ou = f with
G

provided that p + q # n.

Proof. We shall consider two different metrics on the scalar-valued forms (i.e., forms with values
in the trivial line bundle). The first one is the usual scalar product given by M’s metric <, >, and
the second one is <, > e™% where 1) is a certain weight function. Let 0* denote the adjoint of 0
with respect to the first metric and let (V”)* denote the adjoint with respect to the second one.
Clearly

(V)" =evdre .

Theorem 3.8.2 gives if £ is a test-form.
/ < [i00, A€ > e < / BEPe + (V") g[2e.

Substitute £ = e¥/2. Then we get

/[z‘aéw,A]n,n >< / |0yn|? + [9ynl|®
where

oy = e ¥/29e%/?  and
Uy = 6¢/2(V//)*67w/2.

It is easily seen that -
ynl? < 2(10n|* + 0412 [n]?)

and ~
[0yl < 2100 + |09 [*[n]?).

Now we can choose 1) = t@. Then
< [100¢, Aln,n >= t(p + ¢ — n)ln|*.

By hypothesis |9¢|? < A for some A. Hence
to+a-m) [P < [ don? + 00 + 242 [ P

If p4+ g —n > 0, we choose t small but positive; if p+ ¢ — n < 0, we take ¢ small and negative.

Then we get
[ < [1on? 1o

The theorem now follows from Lemma 3.9.3. | |
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3.10 The Hodge Theorem

In this section it becomes inevitable to go a bit further into the questions of regularity associated
with the operators (', 0" and A. We shall start with a rather brief recapitulation of the necessary
facts from PDE theory, after which Hodge’s Theorem will be an easy consequence.

Let us consider a general second order differential operator L, acting on sections of a complex
vector bundle F', over a compact Riemannian manifold. If eq,..., e, is a local frame, any smooth
section s € C*°(U, F') can be written s =Y s,e, and

Ls =Y (Lusv)e, (3.26)

where L,,, are scalar differential operators which we assume have smooth coefficients. In our case
later, F' will be the bundle of E-valued (p, ¢)-forms where E is a holomorphic bundle.

We now associate with L, its symbol o(L), which will be a quadratic form on each T, with values
in the linear maps from F), to F},. This may seem rather formidable, but let us see what it means
concretely. Take a smooth real-valued function ¢ and consider

p(t) = e L"),

where t is a positive parameter. This is a second degree polynomial in ¢ and by definition the
coefficient of 2 is

o(L)(d,dg)s.
If, with respect to some local coordinates x1,...,x,
. o2
Loy = ZA{};amjaxk +...,
where the dots indicate lower order terms, then

o(L)(dp,dg)s = Ak d;dns,eq,

so o(L) only depends on d¢ and is indeed a quadratic form with values in the space of linear maps
from F to F.

Definition. L is elliptic if there is a positive constant ¢ such that

|o(L)(€,€)s] > cl¢|?]s]. (3.27)

Clearly, the constant ¢ depends on our choice of Riemannian metric and scalar product on F, but
the property of being elliptic does not if our manifold is compact.

Let us fix a hermitean scalar product on F. Then we can define the formal adjoint of L by

/<Ls,v>=/<s,L*v>

if s and v are smooth sections. Note that
/ < e MPLePg y >= / < s,e Ly >

so, identifying coefficients of t2, we see that

o(L)(d¢,d¢)" = (L) (d¢, dp).

In particular, we see that L is elliptic if and only if L* is elliptic.
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Next, we introduce the notation L?(M, F) for the space of sections in L2, which is a Hilbert space
with the natural scalar product. More generally, we need to introduce Sobolev norms on sections
to F. If s is a section with support in a coordinate patch over which F' is trivial, we can associate
to s, a vector-valued function with compact support in an open set in R™. We then define the m:th
Sobolev norm, ||$||n, as the sum of the Sobolev norms of the components of this vector-valued
function. Clearly, the norm depends on our choice of coordinates and trivialization, but let us
just fix one choice. A general section can, via a partition of unity, be decomposed into a sum
of terms of the terms. Tedious verifications show that different choices of partition of unity will
give equivalent norms. The space of L2-sections with finite Sobolev m-norm is denoted W™. We
can consider L as a densely defined closed operator from L?(M, F) to itself in two different ways.
Either we let the domain of L consist of all s € L?(M, F) such that Ls € L?, where we compute
Ls in the sense of distributions

/<Ls,v>:/<s,L*v> veC®(M,F).

The other choice is to extend the definition of L from C*° by closing the graph. Then s € Dom (L)
if there is a sequence v, € C*°(M, F) such that v, — s and Lv, — w in L. Then of course we
put Ls = w. The second definition gives a domain which a priori is smaller, but as a matter of
fact, the two definitions are equivalent, and the common domain is just W?2. This follows, among
other things, from our next theorem which is called Gardings inequality.

Theorem 3.10.1 Let L be a second order elliptic operator acting on sections to a complex vector
bundle F over a compact Riemannian manifold M. Let s € L?(M, F) and suppose Ls (taken in
the sense of distributions) lies in L*> = W°. Then s € W? and

lsllz < Zsllo + l1sllo (3.28)

for some § > 0 depending only on L.

For the proof we refer to Warner,[9], Chapter 4.

We can now state the PDE-theorem behind Hodges Theorem.

Theorem 3.10.2 Suppose L is elliptic. Then

i) N(L) =: {s € L*(M, F); Ls = 0} is of finite dimension.
ii) R(L) =:{Ls € L*(M, F); s € L>(M, F)} is closed and has finite co-dimension.
i) L2(M,F) = N(L) & R(L*).

Moreover, N(L) C C*(M, F) and we also have the decomposition.
iv) C(M,F) = N(L) ® L*C>(M, F).

Proof. On N(L) the inequality (3.28) takes the form
[Islla < Clls]lo-

By the Rellich lemma this means that the unit ball in N(L) is compact. Therefore dim N (L) <
oo since otherwise there would be an infinite orthonormal system which could not contain any
convergent subsequence.
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We now claim that if s € N(L)* then
Isllo < ¢l[Lsllo, (3.29)

for some constant c. Otherwise, we could find a sequence s,, with ||s,|lo =1 and || Lsy]||o tending
to 0. Then (3.28) implies, again by the Rellich lemma, that there is a subsequence converging to
s. Since L is closed, Ls = 0. Hence s € N(L) N N(L)*, so s = 0, contradicting ||s[o = 1. But
(3.29) implies immediately that R(L) is closed, since if v, € R(L), we can write v,, = Ls,, with
s, € N(L)*, and then {s, } must be convergent if {v,} is convergent, so

limv, = L(lims,) € R(L).

On the other hand, R(L)* C N(L*) so codim R(L) < dim N(L*) < oo, since L* is also an elliptic
operator. Moreover R(L) C N(L*)* so, actually R(L) = N(L*)* since R(L) is closed. In the
same way R(L*) = N(L)* so, we have proved i), i) and iii).

N
N

To prove iv), it suffices to show that if Ls € C*(M,F), then s € C*(M,F). So, suppose
Ls € C*, and let X be any first order differential operator. First, note that (3.28) implies a
bounde on ||s||2. Applying X to s, we get

L(Xs)=XL(s)+ [L,X]s (3.30)

so L(X(s)) € L? since [L, X] is of second order. Therefore we get a bound on || Xs||2, and since
this holds for any X, we can estimate ||s||s. But then we can let X be a second order operator in
(3.30), and continuing in this way, we see that s lies in all Sobolev spaces. By the Sobolev lemma
s is smooth, and we are done. |

Proposition 3.10.3 Let E be a holomorphic bundle over a Kdahler manifold. Then
(I Coy(M,E) — CX,.(M, E)

is elliptic and (O")* = 0O". If E is the trivial line bundle so that ' and A are defined, then OV
and A are also elliptic and formally self-adjoint.

Proof. We shall prove the statement concerning (1”7, the other being similar. Remember

D// — a(v/l)* + (v//)*a

and

(V") =i[V',A], V/ = 0+,

(see Proposition 3.7.2). To compute o(00"), we consider
/ < e Heeittg g >= / |5eit¢s|2 + |(V")*e“¢s\2.
Identifying coefficients of 2, we get
/ < o(0")(dp,dp)s,s >= / |06 A s|* + |0¢s|?
(cf. Proposition 3.5.3). Hence

o (") (dg,dp)s = 0pa(0p A s) + Dp A (Dpas) = |0¢|?s

by Proposition 3.5.1 thus o(0") is just a multiple times identity operator, so 0" is clearly elliptic.
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Lemma 3.10.4 On a compact manifold O0"s = 0 if and only if 0s = 0 and (V")*s = 0. In the
same way, if £ is a differential form,

O"¢ =0 if and only if 96 =0, (V")*¢=0

and
AE=0 if and only if d€=0,d"¢ =0.

Proof. (0"s = 0 implies
0=/< O0's, s >=/|5g|2+|(v”)*g|2.

The other statements are proved in the same way. |

Let E be a holomorphic vector bundle over a compact Kéhler manifold. An E-valued (p, ¢)-form
&, satisfying (0”¢ = 0 is called a harmonic form. As we have seen, any harmonic form satisfies
0¢ = 0 and so defines an element in H?*?(M, E). We shall now see that all cohomology classes are
represented by some harmonic form, and moreover the harmonic representative is unique.

By Theorem 3.10.2 applied to L = 0", we have
Cpg(M,E) =My o(M, E) & 0"Cp (M, E) (3.31)
wher H, ; = N(O") is the space of harmonic forms. We now claim that
O"Cye, =00y, 1 & (V') Cx . (3.32)

First, note that 9C> L (V")*C* since 9> = 0, and clearly [(”C>® C @dC> @ (V”)*C>. But,
Lemma 3.10.4 shows that -
0C, 1 © (V) Cr iy L Hp g,

so (3.32) follows from (3.31).

Clearly, a smooth form ¢ is d-closed if and only if & L (V")* 15 S0 if Z, o denotes the space
of O-closed forms, we have -
Zp,q = Hp,q ® OC,

P,q—1°
this means that any cohomology class contains exactly one harmonic representative, so we have
proved the first part of Hodge’s Theorem.

Theorem 3.10.5 Let E be a holomorphic vector bundle over a compact Kdhler manifold. Then

HP UM, E) ~Hpq(M,E).

Let us now consider scalar valued forms. Then the same arguments as above apply to A =
dd* + d*d, so in particular, we have the orthogonal decomposition of the space of k-forms

CRo (M) = Hy(M) @& ACE = Hy, @ dCR2, & d*CR2, (3.33)

when Hj, stands for the space of A-harmonic k-forms. This has of course nothing to do with the
complex structure of M and so is valid for any Riemannian manifold. From this it follows first
the analog of Theorem 3.10.5 for de Rham cohomology.

Theorem 3.10.6 Let M be a compact Riemannian manifold. Then
H*(M,C) ~ Hp(M). (3.34)
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But we also know that 1A =0 so
Hk(M) = @erq:ka,q(M)

(a k-form is A harmonic if and only all the terms in tits decomposition after bidegre are -
harmonic). Moreover 0" = 0" = [0’ is a real operator so H,, = H, 4 We collect this in the
second part of Hodge’s Theorem.

Theorem 3.10.7 Let M be a compact Kahler manifold. Then
HY(M,C) = @y HPI(M)

and
HP9 ~ [pra,

Thus the Dolbeault cohomology groups HP:?, that are defined in terms of the analytic strucure,
determine the toplogically defined de Rham groups. The second statement says in particular
that H9' ~ HL0 ie. any class in H%! has a unique representative of the form h where h is a
holomorphic (1, 0)-form.

Hodge’s Theorem has numerous applications in geometry. We close by giving a few of the most
important.

Theorem 3.10.8 (Poincaré duality) Let M be an N -dimensional Riemannian manifold. Then
HF(M,C) ~ HN=F(M, ©)

Proof: By Theorem 3.10.6 this follows since the operator
§— g

is an isomorphism between Hy(M) and Hy_x(M). (Remember Proposition 3.5.10 says that
*A = Ax.) |

On a Kahler manifold the same argument gives

Theorem 3.10.9 (Serre duality) Let M be an n-dimensional Kdhler manifold. Then

HPa(M) ~ H'P"79(M).
Finally we also have

Theorem 3.10.10 (Hard Lefschetz Theorem) The operator
LF: HYF(M) — H" (M)

is an isomorphism.

Proof By Hodge’s Theorem we just need to prove that if £ is an n — k-form then £ is harmonic if
and only if L"~* is harmonic. This follows from Theorem 3.6.9 and Proposition 3.5.9. ]
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