
Measures everywhere
Applications

Sergei Zuyev

University of Strathclyde, Glasgow, U.K.

c©S. Zuyev Applications. 25th Finnish Summer School on Probability Theory, Turku, June 2 – 6, 2003 1 Mesures everywhere



Applications already considered

• Estimation of mixture distribution

• Generalisations of Kiefer-Wolfowitz theorem in optimal design

• Russo’s Formula and Gamma-type results in stochastic geometry

• Numeric integration of functions and Approximation of convex bodies
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Clustering

Data points yj ∈ X ,

1 ≤ j ≤ n.

Ward criterion: find clusters’

centres: x = (x1, . . . , xk)
minimising∑

xi

∑
yj∼Cxi

(x)

ρ2(xi, yj)

xi

Cxi

– centers xi

– observation points yj

Note: the objective function is non-convex w.r.t. x1, . . . , xk (k-means)!
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Poissonisation

Cluster centres: Poisson process Πµ with intensity µ with µ(X) = k

Eµ

 ∑
xi∈Πµ

∑
yj∼Cxi

(Πµ)

ρ2(xi, yj)

 =
∑
yj

Eµ[ρ2(yj ,Πµ)]

=
∑
yj

∫
exp{−µ(b√t(yj) ∩X)}dt

Note: The objective function is strictly convex w.r.t. µ!
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Redwood data

Data and level sets for optimal µ for

total mass n = 20, 50, 100
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Telecommunications example

• Daughter points ≡ subscribers (or demand).

• Cluster centers ≡ local exchanges (stations)

Problem: Find density µ of stations minimising the average connections

cost of subscribers to the stations:

Eµ

∑
xi

∑
yj∼Cxi

(Π)

ρβ(xi, yj) .

❏ High intensity solution: Density of stations pµ(x) ∝ q(x)d/(d+β),

where q is the density of the demand (d = 2 typically)
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Optimal placement of stations
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Monte Carlo integration

Aim: calculate
∫

X
f(y)dy, X ⊂ Rd∫

X

f(y)dy ≈ [f(U1) + · · ·+ f(Un)]/n = In ,

VarIn =
1
n
ϕ(X)

where ϕ(X) = `(X)
∫

X

f(y)2dy −
[∫

X

f(y) dy
]2

Stratification: split X into k sub-regions and

sample n/k points from every sub-region
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Find optimal stratification

Variance (stratified case): is k/n times F (Π) =
∑

xi∈Π ϕ(Cxi(Π)).

High intensity solution:

pµ(x) ∝ ‖gradf‖d/(d+1)
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Optimal random search

(How to catch a random set using Poisson traps?)

• Y ⊂ X is a random closed set in-

depentednt of Π.

• Maximise trapping probability

Pµ{Y ∩Π 6= ∅}
• ∆µ(x) = Eµ[e−µ(Y ) 1Ix∈Y ]
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Example: X = {0, 1, 2, . . .}
Y = {ξ} geometrically distributed random singleton: P{ξ = {i}} = pqi

If µ({i}) = mi, then (maximisation!)

∆µ(x) = e−mipqi

= u i ∈ suppµ,

≤ u ∀i

Thus mi = − log(u/(pqi)) on suppµ and hence suppµ is finite as

otherwise mi become negative.

❏ E.g., if p = q = 0.5 and a = µ(X) = 1, then

suppµ = {0, 1} with m0 = 0.847,m1 = 0.153,

trapping probability is 0.3211

❏ Compare:

0.5 = trapping probability using the fixed trap at 0 (not Poisson).

But trapping probability given Π(X) > 0 is 0.3211/(1− e−1) = 0.509.
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Catching a random ball

X ⊆ Rd, Y = bρ(ξ) random ball of radius ρ at x ∈ X
ξ and ρ are independent and have continuous densities

∆ap(x)λ(x) ∝ −pξ(x)bdd−1

×

[
pρ(0)(d+ 1)Γ(1 + 1/d)

(ap(x)bd)1+1/d
+
p′ρ(0)(d+ 2)Γ(1 + 2/d)

(ap(x)bd)1+2/d
+ · · ·

]

High intensity solution:

p(x) ∝ (pξ(x))d/(d+k+1), where k is the first non-zero p
(k)
ρ (0).
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Design of materials

Boolean model:

Ξ =
⋃

xi∈Πµ

(xi + Ξi)

Π Poisson process with intensity

measure µ,

Ξ0 is a typical grain (e.g., bξ(0)).

Minimise the expected uncovered volume (convex function!):

ψ(µ) = EVol(X \ Ξ) =
∫

X

e−E µ(x−Ξ0)dx 7→ min

Gradient:

d(x, µ) = −E
[∫

Ξ0+x

e−E µ(y−Ξ0)dy

]
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Measures maximising the expected covered area in X = [0, 1]2 with the

fixed total mass a. The typical grain is a ball of radius r.

(a) a = 10, r = 0.1;

(b) a = 50, r = 0.1;

(c) a = 10, r is exponentially distributed with mean 0.1;

(d) a = 10, r = 0.3.
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(a) (b)

(c) (d)
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Other quantities

❏ Weighted volume EΘ(Ξ ∩X)

❏ Predetermined volume EVol(Ξ ∩X) = v

Solve f(µ) = v or, equivalently, minimise

fv(µ) = (f(µ)− v)2

❏ Entropy of the uncovered phase

−
∫

X

(1− r(x)) log(1− r(x))dx

=
∫

X

e−E µ(x−Ξ0) Eµ(x− Ξ0)dx

where r(x) = P{x ∈ Ξ}.
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Functionally graded materials (FGM)

Ξ is a Boolean model in

X× [0, 1]. The last coordinate

(height) is used for grading

0

1

X

t

Expected uncovered volume at height t is called density profile

q(t, µ) = Eµ Vol(Ξc ∩ (X × {t}))

=
∫

X

exp{−Eµ((x, t)− Ξ0)}dx .
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Design of FGM

Assume: µ = dx× ν(dt) is homogeneous on X and Ξ0 = Bξ(0)

Aim: Given h(t), design FGM (measure µ) such that

q(t, µ) = h(t), t ∈ [0, 1] or

ψ(µ) =
∫ 1

0

(q(t, µ)− h(t))2ν(dt) 7→ min

q(t, µ) = exp
{
−

∫ 1

0

g(s, t)ν(ds)
}

g(s, t) = bd E
[
max(ξ2 − (s− t)2, 0)d/2

]
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Target density profiles h (solid lines) and the calculated density profiles

q(t,Λ) (dashed lines) for optimal measures with a total mass 50.

(a) d = 1, h(t) = t3;

(b) d = 2, h(t) = t3;

(c) d = 1, h(t) = t1/3;

(d) The optimal ν for the case (a).
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(a) (b)

(c) (d)
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Some subjects non-covered in the course

❏ Infinite mass measures

❏ Second order necessary conditions for inf

❏ Specific constraints, e. g. class of absolutely continuous measures

❏ P-design measures

❏ Sequential Gamma-type results

❏ Hitting properties of stopping sets

❏ Projected gradient descent

❏ Other applications
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