Measures everywhere

High intensity optimisation

Sergei Zuyev

University of Strathclyde, Glasgow, U.K.

\mathcal{L}_1 -Approximation of convex functions

Let f(y) be a convex function on [a, b].

g(y, P) – linear spline: $g(y_i, P) = f(y_i)$ for $y_i \in P$ – set of N points in [a, b].

Problem 0: to improve accuracy of the trapezoidal rule, i.e.

find \boldsymbol{P} that minimises

$$F(P) = \int_{a}^{b} \left[g(y, P) - f(y)\right] dy.$$

Asymptotic solution when N grows is given by McClure & Vitale (75): density of P should be proportional to $f''(x)^{1/3}$.

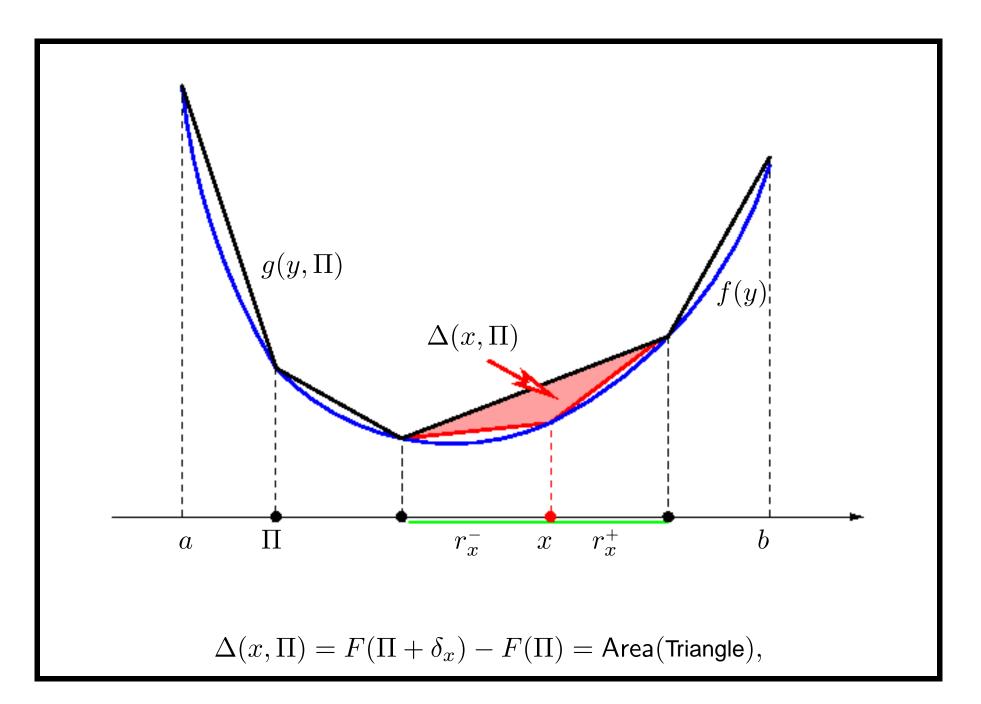
Poissonisation

Let P be random and consider

Problem: find μ minimising expectation

$$\mathbf{E}_{\mu} F(\Pi) = \int_{a}^{b} g(y, \Pi) - f(y) \, dy \, .$$

subject to $\mu([a,b])=N-\text{large}$ but fixed.



Using independence of r_x^- , r_x^+ we obtain:

$$\overline{\Delta}_{\mu}(x) = -f(x)[\mathbf{E}_{\mu}r_{x}^{-} + \mathbf{E}_{\mu}r_{x}^{+}] + \mathbf{E}_{\mu}r_{x}^{-}\mathbf{E}_{\mu}f(x + r_{x}^{+}) + \mathbf{E}_{\mu}r_{x}^{+}\mathbf{E}_{\mu}f(x - r_{x}^{-}) = \text{Const}$$
(1)

Noting that

$$\mathbf{P}_{\mu}\{r_{x}^{-} > t\} = \exp\{-\mu([x - t, x])\}$$
$$\mathbf{P}_{\mu}\{r_{x}^{+} > t\} = \exp\{-\mu([x, x + t])\}$$

it can first be shown that the density $p_N(x)$ of an optimal μ_N with $\mu([a,b]) = N$ exists and that (1) leads to a DE to be solved for each particular f.

High intensity solution

Assume $a\mu_a$ is the optimal measure with total mass a, so that $\mu_a(X) = 1$. How does μ_a behave for large a? We say that μ is a *high-intensity solution* if μ_a tends to μ in some sense (e.g., weakly).

Assume that all μ_a have densities $p_a(x) = \frac{d\mu_a}{d\ell}(x)$ and that for $x \in {\rm Int} X$ one has

$$\lim_{\substack{y \to x \\ a \to \infty}} p_a(y) = p(x) > 0 \,.$$

 r_x^{\pm} have order O(1/a) (with exp. tails), so that $p_a(x)$ is practically a constant p(x) in such a small neighbourhood. Thus r_x^{\pm} asymptotically conform to Exp(ap(x)) – distance to the closest point in *homogeneous* Poisson process with intensity ap(x).

Then, denoting E the expectation w.r.t. ${\rm Exp}(ap(x))$ and writing Taylor series for $f(x\pm r_x^\pm)$, (1) gives

Const =
$$\overline{\Delta}_{\mu}(x) = -f(x)[\mathbf{E} r_x^- + \mathbf{E} r_x^+] + \mathbf{E} r_x^- \mathbf{E} f(x + r_x^+)$$

+ $\mathbf{E} r_x^+ \mathbf{E} f(x - r_x^-) = a^{-3} p(x)^{-3} f''(x) + o(a^{-3})$

so that

$$p(x) \propto f''(x)^{1/3}$$

Smth. to check here! It works because the influence of adding a point is local: $\overline{\Delta}_{\mu}(x)$ depends only on a *stopping set* $[x - r_x^-, x + r_x^+]$ that 'shrinks' as *a* grows.

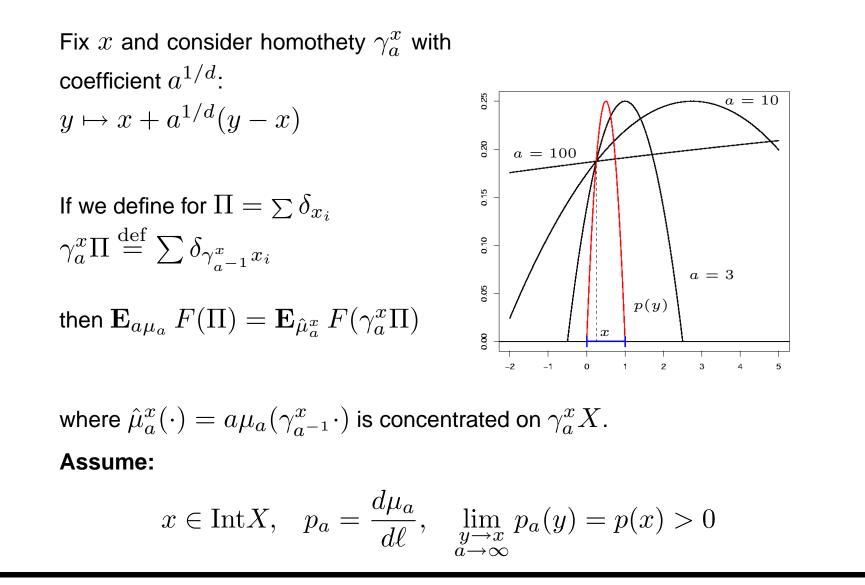
Generalisations

 \Box L_{β} -norm. Then $p(x) \propto (f''(x))^{\beta/(2\beta+1)}$

 $\label{eq:L1} \begin{array}{ll} \square & L_1 \text{ approximation of d-dimensional function by maxima of tangent} \\ \text{planes drawn at Poisson points} & p(x) \propto K(x)^{1/(2+d)}, \\ K(x) = \det \|D^2 f(x)\| - \text{the Gaussian curvature of the surface.} \end{array}$

approximation of smooth convex sets by inscribed polygons (area) $p(x) \propto k(x)^{2/3}$

Existence of high intensity solution



Path differentiability:

For some g(a) = g(a, x) > 0

$$\Gamma_a(x;\Pi) = g^{-1}(a)\Delta(x;\gamma^x_a\Pi) \xrightarrow{\mathbf{P}_\ell - \text{a.s.}} \Gamma(x;\Pi) \text{ as } a \to \infty$$

such that $0 < \mathbf{E}_{p(x)\ell} \Gamma(x; \Pi) < \infty$.

Localisation:

There exist stopping sets $S_a = S_a(x; \Pi)$ and $S = S(x; \Pi)$ such that $\Gamma_a(x; \Pi)$ is \mathcal{F}_{S_a} -measurable $\forall a \ge A$; $\Gamma(x; \Pi)$ is \mathcal{F}_S -measurable; and for each compact set W containing x in its interior

$$1\!\!\mathrm{I}_{S_a(x;\Pi)\subseteq W} \xrightarrow{\mathbf{P}_\ell - \mathrm{a.s.}} 1\!\!\mathrm{I}_{S(x;\Pi)\subseteq W} \text{ as } a \to \infty \,.$$

Uniform integrability:

There exists a compact set \boldsymbol{W} containing \boldsymbol{x} in its interior such that

$$\lim_{\substack{a \to \infty \\ b \to \infty}} \mathbf{E}_{\hat{\mu}_a^x} \left| \Gamma_a(x; \Pi) \right| \mathbb{1}_{S_a \not\subseteq \gamma_b^x W} = 0.$$

There exists a constant M = M(W, b) such that $|\Gamma_a(x; \Pi)| \leq M$ for all $a \geq A$ and Π satisfying $S_a(x; \Pi) \subseteq \gamma_b^x W$.

Then

$$\lim_{a \to \infty} \left| \mathbf{E}_{\hat{\mu}_a^x} \, \Gamma_a(x; \Pi) - \mathbf{E}_{p(x)\ell} \, \Gamma(x; \Pi) \right| = 0 \,,$$
$$\lim_{a \to \infty} \frac{\overline{\Delta}_{a\mu_a}(x)}{\overline{\Delta}_{ap(x)\ell}(x)} = 1$$

and for $\ell\text{-almost}$ all x satisfying the above conditions

$$\mathbf{E}_{p(x)\ell}\,\Gamma(x;\Pi) = \mathsf{Const}\,.$$

References

- D.E. McClure and R.A. Vitale. Polygonal approximation of plane convex bodies.
 J. Math. Anal. Appl., 51, 326–358 (1975)
- I. Molchanov and S. Zuyev. Variational analysis of functionals of a Poisson process. *Math. Oper. Research*, 25, 485–508 (2000)

http://www.stams.strath.ac.uk/~sergei