Measures everywhere

Numerical optimisation

Sergei Zuyev

University of Strathclyde, Glasgow, U.K.

Numeric approach

Optimal μ can rarely be obtained explicitly.

Steepest descent: Move from μ to $\mu + \eta$, where η minimises $D(\psi(\mu))[\eta]$ over $\|\eta\| = \varepsilon$.

Difficulty: $\mu + \eta$ must also satisfy all the constraints. For a fixed mass problem this implies $\eta(X) = 0$, thus $\mu + \eta$ may not be a probability measure even for very small ε !

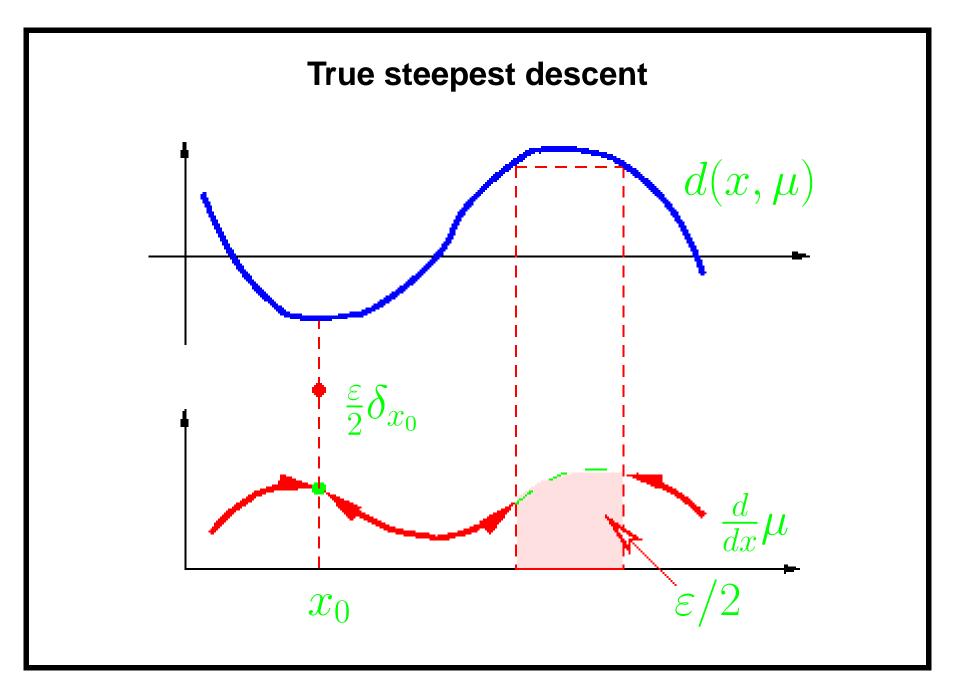
Not really steepest descent

Common approach for probability measures: add 'optimally' a *positive* measure and rescale the result to unit mass. Specifically, move from μ to $(1-\varepsilon)\mu + \varepsilon\nu$, where $\nu \in \mathbb{M}_+$ minimises

$$\tilde{D}\psi(\mu)[\nu] = \lim_{t \downarrow 0} t^{-1}(\psi((1-t)\mu + t\nu) - \psi(\mu)).$$

But $\tilde{D}\psi(\mu)[\nu] = D\psi(\mu)[\nu - \mu]$. As a result:

- the direction given by \tilde{D} is not the *true* steepest descent;
- convergence is slower and not evident.



Theorem 1. If the only constraint is $\mu(X) = a$, then the minimum of $D\psi(\mu)[\eta]$ over all $\|\eta\| \le \varepsilon$ such that $\mu + \eta > 0$ is achieved on a signed measure η such that η^+ has total mass $\varepsilon/2$ and concentrated on the points of the global minima of the gradient function $d(x, \mu)$; and $\eta^- = \mu|_{M(t_{\varepsilon})} + \varepsilon' \mu|_{M(s_{\varepsilon}) \setminus M(t_{\varepsilon})}$, where $M(p) = \{x \in X : d(x, \mu) \ge p\}$, and

$$t_{\varepsilon} = \inf\{p: \ \mu(M(p)) < \varepsilon/2\}, \tag{1}$$

$$s_{\varepsilon} = \sup\{p: \ \mu(M(p)) \ge \varepsilon/2\}.$$
 (2)

The factor ε' is chosen in such a way that $\mu(M(t_{\varepsilon})) + \varepsilon' \mu(M(s_{\varepsilon}) \setminus M(t_{\varepsilon})) = \varepsilon/2.$

Algorithm

```
Realised in R/Splus library mefista. Convergence follows from the conventional steepest descent theory.
```

```
Procedure go.steep
```

Data. Initial measure μ .

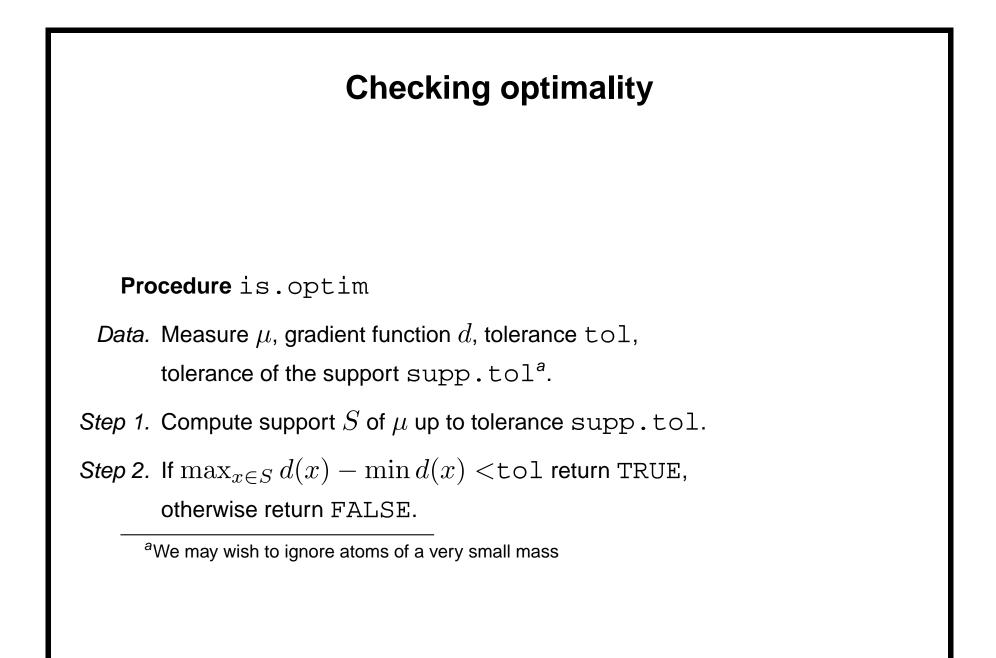
Step 0. Compute $y \leftarrow \psi(\mu)$.

```
Step 1. Compute d \leftarrow d(x, \mu). If is . optim(\mu, d), stop.
```

Otherwise, choose the step size ε .

Step 2. Compute $\mu_1 \leftarrow \texttt{take.step}(\varepsilon, \mu, d)$.

```
Step 3. If y_1 \leftarrow \psi(\mu_1) < y, then \mu \leftarrow \mu_1; y \leftarrow y_1; and go to Step 2.
Otherwise, go to Step 1.
```



Taking a step

Procedure take.step

Data. Step size ε , measure μ , gradient function $d(x, \mu)$.

Step 0. Assign to each point $x \in X$ the mass $\mu(\{x\})$.

- Step 1. Find the global minima of $d(x, \mu)$ and add the total mass $\varepsilon/2$ to one of these points or spread it somehow (e.g. uniformly) over these points.
- Step 2. Find t_{ε} and s_{ε} from (1) and (2) and assign mass 0 to all the points of the set $M(t_{\varepsilon})$, decrease the total mass of the point $M(s_{\varepsilon}) \setminus M(t_{\varepsilon})$ by value $\varepsilon/2 \mu(M(t_{\varepsilon}))$ and return the obtained measure.

Armijo method for the step size

It defines the new step size to be $\beta^m \varepsilon$, the integer m is such that

$$\psi(\mu + \eta_m) - \psi(\mu) \le \alpha \int d(x,\mu)\eta_m(dx) ,$$

$$\psi(\mu + \eta_{m-1}) - \psi(\mu) > \alpha \int d(x,\mu)\eta_{m-1}(dx) ,$$

where $0 < \alpha < 1$ and η_m is the steepest descent measure with the total variation $\beta^m \varepsilon$.

Comparison with rescaling method

□ It is a *true* steepest descent. All the convergence results and properties are inherited from a general descent theory.

Faster to run.

Example: cubic regression through the origin.

$$y(x) = \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \sigma dw(x), \ x \in [0, 1].$$

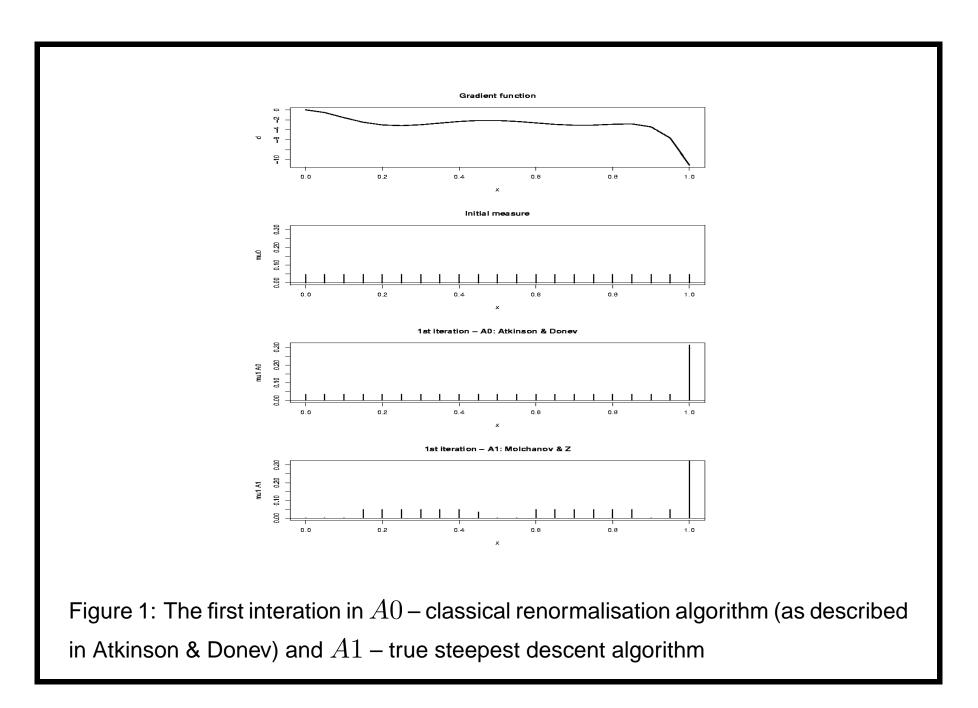
Find D-optimal design measure $\mu(dx)$ minimising the generalised variance:

$$\det \|\operatorname{\mathbf{cov}}(\widehat{\beta}_i,\widehat{\beta}_j)\| = \sigma^2 \det M^{-1}(\mu) \,,$$

where

$$M(\mu) = \int f(x)^{\top} f(x) \,\mu(dx) \,, \quad f(x) = (x, x^2, x^3) \,,$$

is the corresponding information matrix.



Optimisation under linear constraints

Consider the problem $\varphi(\mu) \to \inf, \ \mu \in \mathbb{M}_+$ under finite number of linear constraints:

$$H_i(\mu) = \int h_i(x)\mu(dx) = a_i, \quad i = 1, \dots, k,$$
 (3)

where $a = (a_1, \ldots, a_k)$ is a given vector.

Definition: Vectors w_1, \ldots, w_{k+1} are called *affinely independent* if $w_2 - w_1, \ldots, w_{k+1} - w_1$ are linearly independent.

General form of the increment measure

Theorem 2. The minimum of $D\psi(\mu)[\eta]$ over all $\eta \in T_{\mathbb{M}_+ \cap H^{-1}(a)}(\mu)$ such that $\|\eta\| \leq \varepsilon$ is achieved on a signed measure $\eta = \eta^+ - \eta^-$, where η^+ has at most k atoms and $\eta^- = \sum_{i=1}^{k+1} t_i \, \mu|_{B_i}$ for some $0 \leq t_i \leq 1$ with $t_1 + \cdots + t_{k+1} = 1$ and some measurable sets B_i such that vectors $H(\mu|_{B_i})$, $i = 1, \ldots, k+1$, are affinely independent.

Caution: Finding the optimal η here is equivalent to solving a Linear Programming Problem: not efficient. Need faster approximate solutions.

 ${}^{a}\mu|_{B}(\bullet) = \mu(\bullet \cap B)$ is the restriction of μ onto B.

In Theorem 1,
$$B_1 = M(t_{\varepsilon}), \ B_2 = M(s_{\varepsilon}) \setminus M(t_{\varepsilon})$$
 and $t_1 = \varepsilon/2 - \varepsilon', \ t_2 = \varepsilon'$.

Realisation in library medea

Move from the current measure μ to $\mu + \eta$, where $\eta = \nu - \gamma \mu$ for some $\gamma > 0$ which has similar meaning to the step size.

Due to Theorem 2, the positive part $\nu = \eta^+ = \sum \delta_{x_i}$ of the steepest increment measure has at most k atoms. The masses p_1, \ldots, p_k located at points x_1, \ldots, x_k may be chosen so that to minimise the directional derivative $D\psi(\mu)[\eta]$. To satisfy the constraints $H(\mu + \nu - \gamma \mu) = a = (a_1, \ldots, a_k)$ we impose $H(\nu) = \sum_{j=1}^{n} p_j h(x_j) = \gamma a$, or i=1 $H(x_1,\ldots,x_k)p^{\top} = \gamma a^{\top}$ with $p = (p_1, \ldots, p_k)$ and $H(x_1, \ldots, x_k) = [h_i(x_i)]_{i,i=1}^k$.

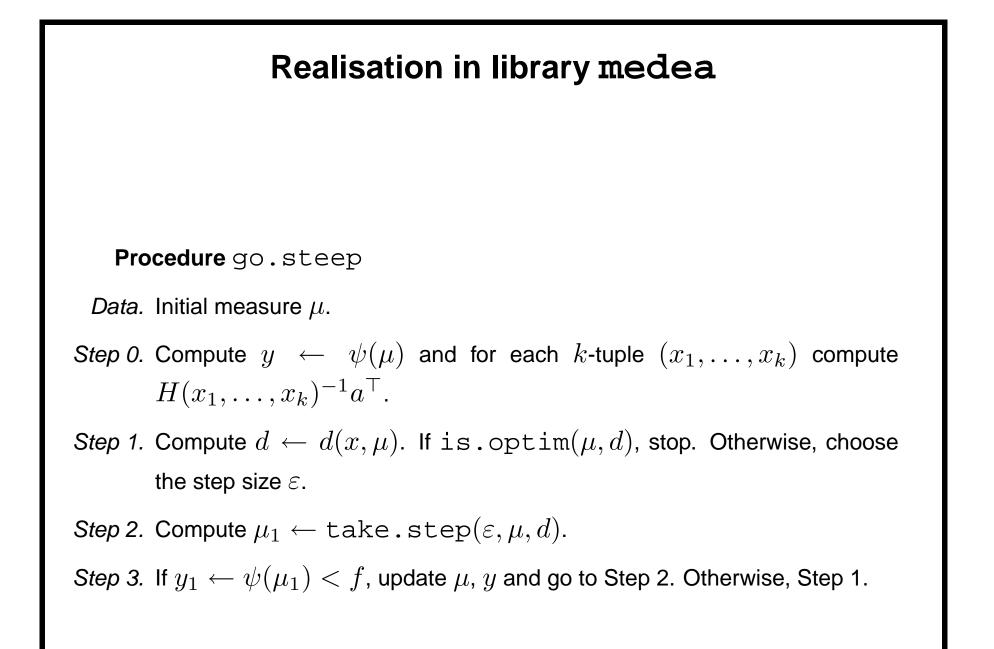
Thus

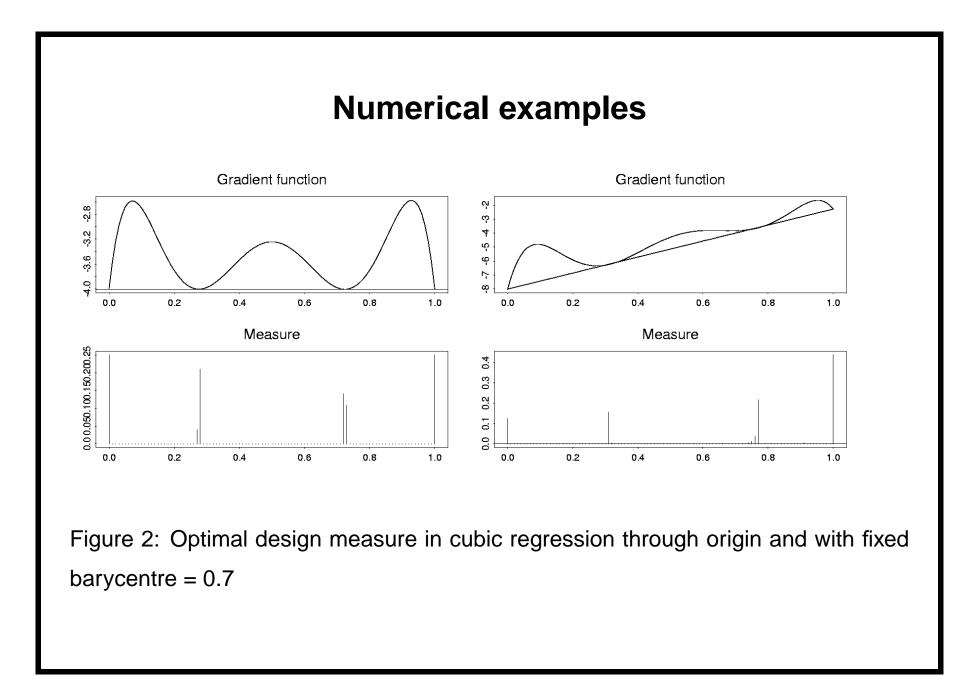
$$p^{\top} = \gamma H(x_1, \dots, x_k)^{-1} a^{\top} .$$
(4)

Since $\eta=\nu-\gamma\mu,$ the directional derivative $D\psi(\mu)[\eta]$ is minimised if ν minimises

$$D\psi(\mu)[\nu] = \sum_{j=1}^{k} p_j d(x_j, \mu)$$
$$= \gamma d(x_1, \dots, x_k) H(x_1, \dots, x_k)^{-1} a^\top,$$

where $d(x_1, \ldots, x_k) = (d(x_1, \mu), \ldots, d(x_k, \mu))$ are the values of the gradient function of ψ at the support points of ν .





References

 I. Molchanov and S. Zuyev. Steepest descent algorithms in space of measures. Statistics and Computing, 12, 2002, 115–123.

http://www.stams.strath.ac.uk/~sergei