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Numeric approach

Optimal µ can rarely be obtained explicitly.

Steepest descent: Move from µ to µ+ η, where η minimises

D(ψ(µ))[η] over ‖η‖ = ε.

Difficulty: µ+ η must also satisfy all the constraints. For a fixed mass

problem this implies η(X) = 0, thus µ+ η may not be a probability

measure even for very small ε!
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Not really steepest descent

Common approach for probability measures: add ‘optimally’ a positive

measure and rescale the result to unit mass. Specifically, move from µ to

(1− ε)µ+ εν, where ν ∈M+ minimises

D̃ψ(µ)[ν] = lim
t↓0

t−1(ψ((1− t)µ+ tν)− ψ(µ)) .

But D̃ψ(µ)[ν] = Dψ(µ)[ν − µ]. As a result:

• the direction given by D̃ is not the true steepest descent;

• convergence is slower and not evident.
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True steepest descent
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Theorem 1. If the only constraint is µ(X) = a, then the minimum of

Dψ(µ)[η] over all ‖η‖ ≤ ε such that µ+ η > 0 is achieved on a signed

measure η such that η+ has total mass ε/2 and concentrated on the points

of the global minima of the gradient function d(x, µ); and

η− = µ|M(tε) + ε′µ|M(sε)\M(tε), where

M(p) = {x ∈ X : d(x, µ) ≥ p} , and

tε = inf{p : µ(M(p)) < ε/2} , (1)

sε = sup{p : µ(M(p)) ≥ ε/2} . (2)

The factor ε′ is chosen in such a way that

µ(M(tε)) + ε′µ(M(sε) \M(tε)) = ε/2.
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Algorithm

Realised in R/Splus library mefista . Convergence follows from the

conventional steepest descent theory.

Procedure go.steep

Data. Initial measure µ.

Step 0. Compute y ← ψ(µ).

Step 1. Compute d← d(x, µ). If is.optim (µ, d), stop.

Otherwise, choose the step size ε.

Step 2. Compute µ1 ← take.step (ε, µ, d).

Step 3. If y1 ← ψ(µ1) < y, then µ← µ1; y ← y1; and go to Step 2.

Otherwise, go to Step 1.
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Checking optimality

Procedure is.optim

Data. Measure µ, gradient function d, tolerance tol ,

tolerance of the support supp.tol a.

Step 1. Compute support S of µ up to tolerance supp.tol .

Step 2. If maxx∈S d(x)−min d(x) <tol return TRUE,

otherwise return FALSE.

aWe may wish to ignore atoms of a very small mass
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Taking a step

Procedure take.step

Data. Step size ε, measure µ, gradient function d(x, µ).

Step 0. Assign to each point x ∈ X the mass µ({x}).

Step 1. Find the global minima of d(x, µ) and add the total mass ε/2 to one of

these points or spread it somehow (e. g. uniformly) over these points.

Step 2. Find tε and sε from (1) and (2) and assign mass 0 to all the points of the

setM(tε), decrease the total mass of the pointM(sε) \M(tε) by value

ε/2− µ(M(tε)) and return the obtained measure.
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Armijo method for the step size

It defines the new step size to be βmε, the integer m is such that

ψ(µ+ ηm)− ψ(µ) ≤ α
∫
d(x, µ)ηm(dx) ,

ψ(µ+ ηm−1)− ψ(µ) > α

∫
d(x, µ)ηm−1(dx) ,

where 0 < α < 1 and ηm is the steepest descent measure with the total

variation βmε.
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Comparison with rescaling method

❏ It is a true steepest descent. All the convergence results and

properties are inherited from a general descent theory.

❏ Faster to run.

Example: cubic regression through the origin.

y(x) = β1x+ β2x
2 + β3x

3 + σdw(x) , x ∈ [0, 1] .

Find D-optimal design measure µ(dx) minimising the generalised variance:

det ‖ cov(β̂i, β̂j)‖ = σ2 detM−1(µ) ,

where

M(µ) =
∫
f(x)>f(x)µ(dx) , f(x) = (x, x2, x3) ,

is the corresponding information matrix.
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Figure 1: The first interation inA0 – classical renormalisation algorithm (as described

in Atkinson & Donev) and A1 – true steepest descent algorithm
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Optimisation under linear constraints

Consider the problem ϕ(µ)→ inf , µ ∈M+ under finite number of linear

constraints:

Hi(µ) =
∫
hi(x)µ(dx) = ai , i = 1, . . . , k , (3)

where a = (a1, . . . , ak) is a given vector.

Definition: Vectors w1, . . . , wk+1 are called affinely independent if

w2 − w1, . . . , wk+1 − w1 are linearly independent.
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General form of the increment measure

Theorem 2. The minimum of Dψ(µ)[η] over all η ∈ TM+∩H−1(a)(µ)
such that ‖η‖ ≤ ε is achieved on a signed measure η = η+ − η−, where

η+ has at most k atoms and η− =
∑k+1

i=1 ti µ|Bi for some 0 ≤ ti ≤ 1
with t1 + · · ·+ tk+1 = 1 and some measurable sets Bi such that vectors

H(µ|Bi),a i = 1, . . . , k + 1, are affinely independent.

Caution: Finding the optimal η here is equivalent to solving a Linear

Programming Problem: not efficient. Need faster approximate solutions.

aµ|B( • ) = µ( • ∩ B) is the restriction of µ onto B.

In Theorem 1, B1 = M(tε), B2 = M(sε) \ M(tε) and t1 = ε/2 − ε′, t2 = ε′.
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Realisation in library medea

Move from the current measure µ to µ+ η, where η = ν − γµ for some

γ > 0 which has similar meaning to the step size.

Due to Theorem 2, the positive part ν = η+ =
∑
δxi

of the steepest

increment measure has at most k atoms. The masses p1, . . . , pk located

at points x1, . . . , xk may be chosen so that to minimise the directional

derivative Dψ(µ)[η]. To satisfy the constraints

H(µ+ ν − γµ) = a = (a1, . . . , ak) we impose

H(ν) =
k∑

j=1

pjh(xj) = γa , or

H(x1, . . . , xk)p> = γa>

with p = (p1, . . . , pk) and H(x1, . . . , xk) = [hi(xj)]ki,j=1.
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Thus

p> = γH(x1, . . . , xk)−1a> . (4)

Since η = ν − γµ, the directional derivative Dψ(µ)[η] is minimised if ν

minimises

Dψ(µ)[ν] =
k∑

j=1

pjd(xj , µ)

= γd(x1, . . . , xk)H(x1, . . . , xk)−1a> ,

where d(x1, . . . , xk) = (d(x1, µ), . . . , d(xk, µ)) are the values of the

gradient function of ψ at the support points of ν.
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Realisation in library medea

Procedure go.steep

Data. Initial measure µ.

Step 0. Compute y ← ψ(µ) and for each k-tuple (x1, . . . , xk) compute

H(x1, . . . , xk)−1a>.

Step 1. Compute d ← d(x, µ). If is.optim (µ, d), stop. Otherwise, choose

the step size ε.

Step 2. Compute µ1 ← take.step (ε, µ, d).

Step 3. If y1 ← ψ(µ1) < f , update µ, y and go to Step 2. Otherwise, Step 1.
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Numerical examples

Figure 2: Optimal design measure in cubic regression through origin and with fixed

barycentre = 0.7
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