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Outline of the course

• Measures and constrained optimisation

• Optimal design of experiments

• General Poisson processes

• High intensity optimisation

• Steepest descent algorithms

• Other applications: FGM, Clustering, etc.
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Measures everywhere!

• All the statistics is about: Estimation of an unknown underlying

probability distribution: P

• An estimate P̂ minimises a given Goal functional ψ(P) (–Likelihood,

distance to the empirical distribution, etc.) usually under some

constraints (e.g., within a given parametric class Pθ, θ ∈ Θ).

• Probability is a measure, so it is a particular case of optimisation in the

class of non-negative measures M+ subject to a total mass fixed to 1

and possibly other constraints.
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What is it?

We are given: a set X – phase space, a system of its subsets B closed

under countable intersections and complements and containing empty set ∅
(σ-algebra).

Signed Measure (or Charge), is a function µ : B 7→ R such that

1. µ(∅) = 0;

2. µ(A ∪B) = µ(A) + µ(B) whenever A ∩B = ∅;

3. µ(∩∞n=1Bn) = limn→∞ µ(Bn) for any B1 ⊇ B2 ⊇ . . .
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Positive measure (or just Measure) is a charge such that

µ(B) ≥ 0 ∀B ∈ B.

❏ Examples

• Length in X = R; Area in X = R2; Volume in X = Rd, d ≥ 3;

• Mass, Potential, Charge in physics;

• Probability is a positive measure such that µ(X) = 1.
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Banach space M

❏ Measures can be added and multiplied by a number:

(µ+ ν)(B) def= µ(B) + ν(B); (tµ)(B) def= tµ(B).

❏ Jordan decomposition: of a signed measure µ = µ+ − µ−, where

µ+, µ− ≥ 0 and orthogonal:

µ+(B) > 0 ⇒ µ−(B) = 0; and µ−(B) > 0 ⇒ µ+(B) = 0.

❏ Total variation norm: ‖µ‖ = µ+(X) + µ−(X).

❏ The set M of all signed measures with finite norm thus forms a

Banach space.
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Cone M+

Positive measures with a finite norm form a cone M+ in M:

if µ, ν ∈ M+, then µ+ ν ∈ M+ and tµ ∈ M+ for t ≥ 0.

❏ Subtlety of M+ is that it does not contain inner points unless X is a

finite set.

c©S. Zuyev Variation analysis on measures. 25th Finnish Summer School on Probability Theory, Turku, June 2 – 6, 2003 7 Mesures everywhere



Lebesgue integral

For µ ∈ M+, if f(x) =
∑

i fi 1IBi
(x) – a step-function then∫

f dµ =
∫
f(x)µ(dx) def=

∑
i

fiµ(Bi) .

For a general f , ∫
f dµ

def= lim
n

∫
fn dµ

for any sequence of step-functions fn(x) uniformly converging to f(x).

For µ ∈ M, ∫
f dµ

def=
∫
f dµ+ −

∫
f dµ−.
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Differentiability on M

A function ψ : M 7→ R is Fréchet (strongly) differentiable if

ψ(ν + η)− ψ(ν) = Dψ(ν)[η] + o(‖η‖) as ‖η‖ → 0 ,

where Dψ(ν)[η] is a bounded linear continuous functional of η.

In this case for any η ∈ M there also exists Gateaux (directional) derivative:

lim
t↓0

t−1(ψ(ν + tη)− ψ(ν)) = Dψ(ν)[η]
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Finite dimensional triviality

Let X = {1, . . . , n}. Finite measures on X are ν = (m1, . . . ,mn), i. e.

M = Rn and M+ = Rn
+.

Dψ(ν) is then a usual differential (linear mapping) at the point ν ∈ Rn, so

that there is a vector (d1, . . . , dn) = d(x, ν), x ∈ X – gradient, such

that for any increment η(x) = (η1, . . . , ηn) one has

Dψ(ν)[η] =
n∑

x=1

dxηx =
∫

X

d(x, ν) η(dx) .
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Countable infinity

Let X = N. Then finite measures on X are sequences ν = (ν1, ν2, . . . )
such that ‖ν‖ =

∑
i |νi| <∞, i. e. M = `1.

As the dual space `∗1 = `∞, the bounded linear functional Dψ(ν) can be

represented as

Dψ(ν)[η] =
n∑

x=1

dxηx =
∫
d(x, ν) η(dx) ,

where d(x, ν) = {dx}, x ∈ N is a bounded sequence (gradient).
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Gradient function

❏ Does a gradient (function, necessarily bounded) always exist for a

general X , so that

Dψ(ν)[η] =
∫

X

d(x, ν)η(dx) ∀η ∈ M?

If so, then

Dψ(ν)[δx] =
∫

X

d(y, ν)δx(dy) = d(x, ν) ,

i. e. the gradient d(x, ν) is the directional derivative of ψ at ν in ‘direction’

of δx (cf. finite-dimensional case)

❏ Answer is: NO, unless X is at most countable (as above).
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Contre-example

Let X = [0, 1] and µλ be the part of Lebesgue decomposition of µ which

is absolutely continuous w.r.t. Lebesgue measure λ. Then the linear

bounded functional L : µ 7→ µλ(X) cannot be represented as an integral

w.r.t. µ.

Indeed, assume that d(x) is such a gradient function. Then for any y ∈ X ,∫ 1

0

d(x) dx = L(λ) = L(λ+ δy) =
∫ 1

0

d(x) dx+ d(y)

so that d(y) ≡ 0, thus L(λ) = 0 – contradiction.
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Nature is not that bad!

For most interesting differentiable functionals the gradient function does

exist .

Example 1: ψ(ν) = ν(X) – linear function of ν.

ψ(ν + η)− ψ(ν) = η(X) =
∫

X

1 η(dx)

so that d(x, ν) ≡ 1. Another way:

ν(X) =
∫

1 ν(dx)

already an integral form of the linear functional, so that d(x, ν) ≡ 1.
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Example 2: µ - is a probability distribution on B(X), X ⊆ R,

ψ(µ) = var(µ) =
∫
x2µ(dx)−

[∫
xµ(dx)

]2

.

By the Chain rule

d(x, µ) = x2 − 2
∫
xµ(dx) · x = x2 − 2xE(µ) .

Note that D var(µ)[η] does not exist for all η ∈ M, and thus var(µ) is

not strongly differentiable, unless X is compact.

❏ From now on we consider only strongly differentiable functionals

possessing a gradient function.
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Variational analysis

Let ν provides min to ψ on M. Then

Dψ(ν)[η] ≥ 0 for all η .

If ψ possesses a gradient function, then

Dψ(ν)[η] =
∫
d(x, ν) η(dx) ≥ 0 .

• Taking η = δx implies d(x, ν) ≥ 0.

• Taking η = −δx implies d(x, ν) ≤ 0.

❏ Thus we have shown

Theorem 1. If ν provides min to ψ on M, then d(x, ν) = 0 for all x ∈ X
(i. e. all directional derivatives are 0).
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Constrained optimisation.

Let ν provides min to ψ on A ⊆ M. Then

Dψ(ν)[η] ≥ 0 for all admissible η ,

i. e. for such η that ν + tη ∈ A for all sufficiently small t > 0.

Closure of all admissible ‘directions’ at ν is called tangent cone

TA(ν) = lim inf
t↓0

A− ν

t

So we need to characterise TA(ν) for A of interest.
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Tangent cone to M+

Take µ ∈ M+ and η ∈ M such that η− � µ. Consider a sequence of

measures ηn( • ) =
∫
• min{h(x), n}µ(dx), where h(x) = dη−

dµ (x).

Then for any B ∈ B,

(µ+ tηn)(B) =
∫

B

(1− tmin{h(x), n})µ(dx) + tη+
n (B) ,

which is non-negative for all t ≤ 1/n. Thus ηn ∈ TM+(µ) for all n. Next

‖η − ηn‖ =
∫
h(x) 1Ih(x)>n µ(dx) → 0

by dominated convergence as
∫
h(x)µ(dx) = η−(X) <∞.

But TM+(µ) is closed, so that lim ηn = η ∈ TM+(µ).
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Consider now η ∈ M such that η− 6� µ, i. e. there is B ∈ B such that

µ(B) = 0, η+(B) = 0, but η−(B) > 0. Then

(µ+ tη)(B) = −tη−(B) < 0 for all t > 0 so that such η 6∈ TM+(µ).

❏ Thus we have shown

Theorem 2. For µ ∈ M+ we have

TM+(µ) = {η ∈ M : η− � µ} .

c©S. Zuyev Variation analysis on measures. 25th Finnish Summer School on Probability Theory, Turku, June 2 – 6, 2003 19 Mesures everywhere



Optimisation on M+

For µ providing minimum of ψ on M+ we should have

Dψ(µ)[η] =
∫
d(x, µ)η(dx) ≥ 0 for all η ∈ TM+(µ) .

• Take η = δx. Then d(x, µ) ≥ 0.

• Take η = −µ( • ∩B). Then−
∫

B
d(s, µ)µ(dx) ≥ 0. Since this is

true for all B, then d(x, µ) ≤ 0 µ-almost everywhere.

❏ Combining this,

Theorem 3. If µ ∈ M+ provides minimum of ψ over M+ then

d(x, µ) ≥ 0 ∀xa and d(x, µ) = 0 µ-almost everywhere.

aFor maximisation, the inequality turns to the opposite
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General constrained optimisation: regularity

Let Y be a Banach space and A ⊆ M, C ⊆ Y be closed convex sets.

Consider

ψ(ν) → inf subject to ν ∈ A, H(ν) ∈ C , (1)

where ψ : M 7→ R and H : M 7→ Y are strongly differentiable.

❏ ν is called regular for (1) if

cone(H(ν) +DH(ν)[A− ν]− C) = Y , a

where cone(B) = {tb : b ∈ B, t ≥ 0}.

aEquivalently, 0 ∈ core(H(ν) + DH(ν)[A− ν]− C), where core(B) for B ⊆ Y is

{b ∈ B : ∀y ∈ Y ∃t1 such that b + ty ∈ B ∀0 < t ≤ t1}. For Y = Rd, core(B) = int(B).
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1st-order necessary condition for inf

Let Y ∗ denote the dual space to Y and u · y be the canonical bi-linear

form for y ∈ Y and u ∈ Y ∗.

Theorem 4. Let ν such that H(ν) ∈ C provide a local minimum point for

Problem (1). Then

Dψ(ν)[η] ≥ 0 for all η ∈ TA∩H−1(C)(ν) . (2)

Moreover, if ν is regular, there exists Lagrange multiplier (or Kuhn-Tucker

vector) u ∈ Y ∗ such that u · y ≥ 0 for any y ∈ TC(H(ν)) and for the

Lagrangian function L(ν) = ψ(ν)− u ·H(ν) one has

DL(ν)[η] = Dψ(ν)[η]− u ·DH(ν)[η] ≥ 0 for all η ∈ TA(ν) . (3)
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Finitely many constraints on M+

ψ(µ) → inf , µ ∈ M+ (4)

subject to Hi(µ) = 0 , i = 1, . . . , l ;

Hi(µ) ≤ 0 , i = l + 1, . . . ,m .
(5)

where ψ and Hi are Fréchet differentiable functions with gradients d(x, µ)
and hi(x, µ), respectively.
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Constraint qualification

For constraints (5) the regularity condition becomes:

• linear independence of the gradients h1, . . . , hl; and

• existence of η ∈ M such that
∫
hi(x) η(dx) = 0 for all i = 1, . . . , l,∫
hi(x) η(dx) < 0 for all i ∈ {l + 1, . . . ,m} verifying Hi(ν) = 0a .

It can be shown that for a regular ν,

TA∩H−1(C)(ν) = TA(ν) ∩ (DH(ν))−1[TC(H(ν))] .

ae.g., for the saturated inequality constraints

c©S. Zuyev Variation analysis on measures. 25th Finnish Summer School on Probability Theory, Turku, June 2 – 6, 2003 24 Mesures everywhere



1st-order necessary condition on M+

Theorem 5. Let µ ∈ M+ be a regular local minimum of ψ subject to (5).

Then there exist Lagrange multipliers u1, . . . , um with uj ≤ 0 if

Hj(µ) = 0 and uj = 0 if Hj(µ) < 0 for j ∈ {l + 1, . . . ,m}, such thatd(x, µ) =
∑m

i=1 uihi(x, µ) µ− a.e. ,

d(x, µ) ≥
∑m

i=1 uihi(x, µ) ∀x ∈ X .
(6)

Proof. Apply Theorem 3 to the Lagrangian function

L(µ) = ψ(µ)−
∑m

i=1 uiHi(µ).
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Optimisation with a fixed total mass

Let µ be a local minimum of ψ subject to µ(X) = a. Then there exists u

such that d(x, µ) = u µ− a.e. ,

d(x, µ) ≥ u ∀x ∈ X .
(7)
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Optimisation with a limited cost

Let µ be a regular local minimum of ψ subject to µ(X) = a and

K(µ) =
∫
κ(x)µ(dx) ≤ C . Then there exist u1 and u2 < 0 if

K(µ) = C and u2 = 0 otherwise, such thatd(x, µ) = u1 + u2κ(x) µ− a.e. ,

d(x, µ) ≥ u1 + u2κ(x) ∀x ∈ X .
(8)
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Estimation of mixture distribution

pθ(·), θ ∈ Θ (= X), is a parametric family of pdf’s

pµ(y) =
∫
pθ(y)µ(dθ)

is the mixture density, µ is unknown mixing distribution

Aim: given a random sample y1, . . . , yn, find µ that maximises the

log-likelihood

ψ(µ) =
n∑

i=1

log pµ(yi) .

Note: ψ is concave w.r.t. µ so (7) becomes necessary and sufficient.

The gradient function (score function)

d(θ, µ) =
n∑

i=1

pθ(yi)∫
pθ(y)µ(dθ)

.
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A synthetic example

Θ = [0, 1] discretised by 0.01, 30 observations, one third comes from

N (0.4, 0.01) and two other thirds fromN (0.6, 0.01). Looking to

describe as mixture
∫
ϕ(θ,0.01)(y)µ(dθ). Result:

• µ has 15 atoms

• The mass of µ in the neigh-

bourhood of 0.4 is 0.3017

and in the neighbourhood of 0.6

is 0.666.

• Observe an artifact atom of

mass 0.0323 at 0.859

due to an outlier observation

point at 0.892.
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