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Outline of the course

Measures and constrained optimisation
Optimal design of experiments

General Poisson processes

High intensity optimisation

Steepest descent algorithms

Other applications: FGM, Clustering, etc.
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Measures everywhere!

All the statistics is about: Estimation of an unknown underlying
probability distribution: P

An estimate P minimises a given Goal functional 1 (P) (-Likelihood,

distance to the empirical distribution, etc.) usually under some

constraints (e.g., within a given parametric class Py, 0 € ©).

Probability is a measure, so it is a particular case of optimisation in the
class of non-negative measures M, subject to a total mass fixed to 1

and possibly other constraints.
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What Is it?

We are given: a set X — phase space, a system of its subsets /5 closed

under countable intersections and complements and containing empty set ()

(o-algebra).

Signed Measure (or Charge), is a function 14 : B — R such that
1. u(0) =0;

2. /(AU B) = u(A) + u(B) whenever AN B = 0);

3. (NS, B,) =limy, oo u(By) forany By O By O ...
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Positive measure (or just Measure) is a charge such that
u(B) >0VB e B.

[1 Examples

e Lengthin X = R; Areain X = R?: Volumein X = R%, d > 3;

e Mass, Potential, Charge in physics;

e Probability is a positive measure such that j1(X ) = 1.
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Banach space Ml

[1 Measures can be added and multiplied by a number:

(1 + v)(B) = w(B) + v(B); (tp)(B) = tu(B),

[1  Jordan decomposition: of a signed measure © = u* — ™, where

™, u~ > 0 and orthogonal:
put(B)>0=pu (B)=0,andu~(B) > 0= u"(B) =0.

[0 Total variation norm: ||p|| = p™(X) + p= (X).

[1  The set M of all signed measures with finite norm thus forms a

Banach space.
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Cone M,

Positive measures with a finite norm form a cone ML, in M:
if u, v € My, thenu+v € My andtpu € M fort > 0.

[]  Subtlety of Ml is that it does not contain inner points unless X is a

finite set.
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Lebesgue integral

For p € My, if f(z) = ). fi Ip,(x) — a step-function then

[ fan= [ 1@ utaz) 3 B

For a general f,

[ Fan i [ .y

for any sequence of step-functions f,, () uniformly converging to f(x).

[ ran [ gt~ [ fau

For 1 € M,
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Differentiability on M

A function 1) : M — R is Fréchet (strongly) differentiable if

(v +mn) =) = Dy@)nl + olllnl) as |l — 0,

where D1)(v)[n] is a bounded linear continuous functional of 7).

In this case for any 1 € M there also exists Gateaux (directional) derivative:

limt = (¢p(v + tn) — (v)) = Dy(v)[n]

t|0
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Finite dimensional triviality

Let X = {1,...,n}. Finite measureson X are v = (mq,...,Mmy),i.e.
M = R™ and M| = R’

Dw(v) is then a usual differential (linear mapping) at the point v € R", so
that there is a vector (d1, . ..,d,) = d(x,v), x € X — gradient, such

that for any increment n(x) = (11, ...,7y) one has

Do)l = 3 dune = [ d(a.v)n(do).
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Countable infinity

Let X = N. Then finite measures on X are sequences v = (v, Vo, . . .
suchthat ||v|| = ) . |vi| < oo,i.e. M = 4.

As the dual space ¢ = ., the bounded linear functional D1)(1/) can be

represented as

Dyl = S dyne = / (2, v) n(da)

where d(x,v) = {d,}, * € Nis a bounded sequence (gradient).
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Gradient function

[1 Does a gradient (function, necessarily bounded) always exist for a

general X, so that

D) ] = /X Az, v)n(de) VpeM?

If so, then

Dy(v)[6,] = /X Ay, )5, (dy) = d(z,v).

i e. the gradient d(x, v) is the directional derivative of v/ at / in ‘direction

of d, (cf. finite-dimensional case)

[1 Answeris: NO, unless X is at most countable (as above).
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Contre-example

Let X = [0, 1] and )\ be the part of Lebesgue decomposition of £ which
is absolutely continuous w.r.t. Lebesgue measure A. Then the linear
bounded functional L : p — ) (X) cannot be represented as an integral

W.r.t. L.

Indeed, assume that d(x) is such a gradient function. Then for any y € X,

/o d(x)dxr = L(\) = L(A+0,) = /0 d(x)dr + d(y)

so that d(y) = 0, thus L(A) = 0 — contradiction.
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Nature is not that bad!

For most interesting differentiable functionals the gradient function does

exist .

Example 1: ¢ (v) = v(X) - linear function of v.

V(v +n) —Y(v) =n(X)

so that d(x, ) = 1. Another way:

(X)) = / 1 v(da)

already an integral form of the linear functional, so that d(z, v) = 1.
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Example 2: p - is a probability distribution on B(X), X C R,

2

() =var() = [ a*u(do) - [ [ an(ds)]

By the Chain rule

d(z, p) = z° — 2/xu(daz) x=a°—-2cE(u).

Note that D var()[n] does not exist for all 7 € M, and thus var(u) is

not strongly differentiable, unless X is compact.

[1  From now on we consider only strongly differentiable functionals

possessing a gradient function.

© S. Zuyev Variation analysis on measures. 25th Finnish Summer School on Probability Theory, Turku, June 2 — 6, 2003

15



Variational analysis

Let v provides min to ¢ on M. Then

Dy(v)[n] > Oforalln.

If 20 possesses a gradient function, then

Dy(v)[n] = / Az, v) n(dz) > 0.

e Taking n = J, implies d(x,v) > 0.
e Taking n = —&, implies d(x,v) < 0.

[1]  Thus we have shown

Theorem 1. If v provides min to ) on M, then d(x,v) = Oforallz € X

(i. e. all directional derivatives are 0).
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Constrained optimisation.

Let v provides min to ) on A C M. Then
Dy (v)[n] > 0 for all admissible 7,

i.e. for such n that v 4 tn € A for all sufficiently small ¢ > 0.

Closure of all admissible ‘directions’ at v is called tangent cone

A —
Ta(v) = lir?l(i)nf ; Y

So we need to characterise T () for A of interest.
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Tangent coneto M,

Take € M, and n € Ml such that ™ < u. Consider a sequence of
measures 1, (¢ ) = [, min{h(z),n} p(dz), where h(z) = dg—;(w).
Then forany B € B,

(1 + tn,) (B) = /B (1 — tmin{h(z), n}) u(de) + tn? (B),

which is non-negative for all ¢ < 1/n. Thus 0, € T, (1) for all n. Next

I = 7l = / B() Tngayon p(d) — 0

by dominated convergence as [ h(z)u(dz) =n~ (X) < oc.
But Ty, () is closed, so that limn, =1 € T, ().
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Consider now 17 € Ml suchthatn™ < pu, i.e. there is B € B such that
uw(B) =0,n"(B)=0,butn~ (B) > 0. Then
(u+tn)(B) = —tn~(B) < Oforallt > 0sothatsuchn & T, ().

[]  Thus we have shown

Theorem 2. For i € M, we have

Ty, (p) ={neM: n~ <pu}.
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Optimisation on M,

For p providing minimum of @ on M, we should have

DYl = [ dle,pn(dz) 20 forailn € T, (1)

e Take 1) = J,. Thend(x, 1) > 0.

e Take ) = —p(* N B). Then — [ d(s, p)p(dx) > 0. Since this is
true for all B, then d(z, ;1) < 0 p-almost everywhere.

[1 Combining this,

Theorem 3. If 4 € Ml provides minimum of 1) over ML, then
d(z,p) > 0Vx?and d(x, u) = 0 p-almost everywhere.

2For maximisation, the inequality turns to the opposite
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General constrained optimisation: regularity

Let Y be a Banach space and A C M, C' C Y be closed convex sets.

Consider
Y(v) — inf subjecttorv € A, H(v) € C',

where ¢ : M +— Rand H : M +— Y are strongly differentiable.

[1 v is called regular for (1) if
cone(H(v)+ DH(v)[A—v]-C)=Y,*

where cone(B) = {tb: b€ B, t > 0}.

2Equivalently, 0 € core(H (v) + DH (v)[A — v] — C), where core(B) for B C Y is
{be B: Vy € Y 3ty suchthatb +ty € BY0 <t < t1}. For Y = R%, core(B) = int(B).
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1st-order necessary condition for  inf

Let Y™ denote the dual space to Y and wu - y be the canonical bi-linear

formfory € Y andu € Y*.

Theorem 4. Let v such that H (v) € C' provide a local minimum point for

Problem (1). Then

Dy(v)[n] = 0 foralln € Tyng-1(c)(v). 2)

Moreover, if I is regular, there exists Lagrange multiplier (or Kuhn-Tucker
vector) u € Y * suchthatwu -y > Oforany y € T (H (v)) and for the
Lagrangian function L(v) = ¢(v) — u - H(v) one has

DL(v)[n] = Dy(v)[n] — u- DHW)[n] 2 0 foralln € T(v). @)
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Finitely many constraints on M,

TP(M) — inf? TS M-i-
subject to
HZ(,LL> O, ’izl,...,l;
. (5)
Hi(p) <0, ¢=1+1,...,m.

where 1) and H; are Fréchet differentiable functions with gradients d(z, )

and h;(x, p), respectively.
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Constraint qualification

For constraints (5) the regularity condition becomes:
e linear independence of the gradients h1, ..., h;; and

e existence of 17 € M such that

[ hi(z)n(dz) =0 foralli=1,...,1,

[ hi(z)n(dx) <0 forallie€ {l+1,...,m} verifying H;(v) = 02.

It can be shown that for a regular v,

Tanm-1(c)(v) = Tu(v) N (DH(v)) " [Tc(H(v))].

2e.g., for the saturated inequality constraints
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1st-order necessary conditionon M,

Theorem 5. Let 1 € M, be a regular local minimum of ¢ subject to (5).

Then there exist Lagrange multipliers w1, . . . , Uy, with u; < 0 if
Hi(p) =0andu; =0if Hj(n) < Oforj € {{+1,...,m}, such that

d(x,p) = Y00  wihi(z, 1) p—ae.,

(6)
Az, i) > S0, wihi(, ) Vo€ X

Proof. Apply Theorem 3 to the Lagrangian function

L(p) = (p) — Yoy wiH; ().
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Optimisation with a fixed total mass

Let 14 be a local minimum of ¢ subject to (X' ) = a. Then there exists u

such that
dlz,u) =u p—a.e.,
dlz,u) >u Vre X.

(7)
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Optimisation with a limited cost

Let 1 be a regular local minimum of ¢ subject to 14(X ) = a and
K(pn) = [ k(z)pu(dz) < C. Then there exist u; and ug < 0 if

K(u) = C and us = 0 otherwise, such that

d(x, ) = u; +usk(x) p—a.e.,
d(z,p) > uy +usk(x) Ve e X.
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Estimation of mixture distribution

po(+), 0 € © (= X), is a parametric family of pdf’s

pu(y) = / po(y)p(do)

IS the mixture density, 1 is unknown mixing distribution

Aim: given a random sample y1, ..., Yp, find u that maximises the

=) logpyu(ys) -
1=1

log-likelihood

Note: 1) is concave w.r.t. 1t so (7) becomes necessary and sufficient.

The gradient function (score function)

d(@,,u) Z fpe (yz)
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A synthetic example

© = [0, 1] discretised by 0.01, 30 observations, one third comes from
N(0.4,0.01) and two other thirds from N (0.6, 0.01). Looking to
describe as mixture | ©(g.0.01)(y)p(d0). Result:

Gradient function

® [, has 15 atoms

e The mass of 1 in the neigh-
bourhood of 0.4 is 0.3017

and in the neighbourhood of 0.6
is 0.666.

e Observe an artifact atom of
mass 0.0323 at 0.859

due to an outlier observation
point at 0.892.

0.00 010 0.20 0.30
N S A |
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