Measures everywhere

Variation analysis for Poisson processes

Sergei Zuyev

University of Strathclyde, Glasgow, U.K.

Finite Poisson processes

Poisson process models an array of points scattered randomly and independently with a density proportional to $\mu(dx)$ in a given region X. More exactly:

Definition: Π is a Poisson process in $[X, \mathcal{B}]$ with the intensity measure μ : $\mu(X) < \infty$ if for any disjoint $B_1, \ldots, B_n \in \mathcal{B}$, the number of points of Π in these sets are independent Poisson random variables $\Pi(B_1), \ldots, \Pi(B_n)$ with parameters $\mu(B_1), \ldots, \mu(B_n)$. The definition implies:

- If μ is *diffuse*, i. e. $\mu(\{x\}) = 0$ for any singleton $\{x\}$, then with probability 1 no realisation of Π contains multiple points.
- $\mathbf{E} \Pi(B) = \mu(B)$, that is why $\mu(dx)$ is also called the mean measure.

 \Box We treat each realisation $\{x_1, \ldots, x_{\Pi(X)}\}$ of the process Π as a *(random) counting measure* and write $\Pi = \sum_i \delta_{x_i}$, so that $\Pi(B)$ equals the number of points in B and

$$\int f(x) \Pi(dx) = \sum_{x_i \in \Pi} f(x_i) \,.$$

Palm distribution

Given an event Ξ , for every $B \in \mathcal{B}$ one can define *Campbell measure* $\mathcal{C}(\Xi, B) = \mathbf{E}_{\mu} \operatorname{1\!I}_{\Xi}(\Pi) \Pi(B)$. This is a measure on \mathcal{B} and $\mathcal{C}(\Xi, \bullet) \ll \mu(\bullet)$, therefore there exists a Radon-Nikodym derivative

$$\frac{d\mathcal{C}(\Xi, \bullet)}{d\mu}(x) = \mathbf{P}^x_{\mu}(\Xi)$$

which can be chosen to be a *probability* distribution on events Ξ . \mathbf{P}_{μ}^{x} is called the *Palm distribution* of Π and has a meaning of the conditional distribution of Π 'given there is a point of the process in x'.

Another interpretation is that of the distribution of a configuration seen from a typical point of the process.

Campbell formula

From definition

$$\mathbf{E} \int_{B} \mathbb{1}_{\Xi}(\Pi) \Pi(dx) = \int_{B} \mathcal{C}(\Xi, dx) = \int_{B} \mathbf{P}_{\mu}^{x}(\Xi) \,\mu(dx)$$

and thus by the standard monotone class argument

$$\mathbf{E}_{\mu} \int f(x, \Pi) \,\Pi(dx) = \int \mathbf{E}_{\mu}^{x} \, f(x, \Pi) \,\mu(dx) \tag{1}$$

which is known as *Refined Cambell formula* – continuous analog of the full probability formula. In particular, we have *Campbell formula*:

$$\mathbf{E}_{\mu} \sum_{x_i \in \Pi} f(x_i) = \mathbf{E}_{\mu} \int f(x) \,\Pi(dx) = \int f(x) \,\mu(dx) \,.$$

Slivnyak's theorem and Mecke's characterisation

As the points in Poisson process are independent, we should have that the distribution of $\Pi - \delta_x$ under \mathbf{P}^x_{μ} should be just \mathbf{P}_{μ} . This is known as Slivnyak's theorem and equivalent to the following form of Campbell formula (1): for any process $f(x, \Pi)$, one has

$$\mathbf{E}_{\mu} \int f(x, \Pi) \Pi(dx) = \mathbf{E}_{\mu} \int f(x, \Pi + \delta_x) \,\mu(dx) \,. \tag{2}$$

Mecke established that (2), in fact, *caracterises* a Poisson process.

Expectation

Given a functional $F=F(\Pi),$ by the full probability formula

$$E_{\mu} F = \sum_{n=0}^{\infty} \frac{(\mu(X))^{n}}{n!} e^{-\mu(X)} \int_{X^{n}} F\left(\sum_{i=1}^{n} \delta_{x_{i}}\right) \frac{\mu(dx_{1})}{\mu(X)} \dots \frac{\mu(dx_{n})}{\mu(X)}$$
$$= e^{-\mu(X)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{X^{n}} F\left(\sum_{i=1}^{n} \delta_{x_{i}}\right) \mu(dx_{1}) \dots \mu(dx_{n})^{\mathsf{a}}.$$
(3)

 \Box We view $\mathbf{E}_{\mu} F$ as a function $\psi(\mu)$ of the intensity measure.

^aBy definition we have $F(\emptyset)$ for n=0 in the sum above.

I

Variation analysis

Substituting $\mu \leftarrow (\mu + \eta)$ into (3) and assuming, for simplicity, that F is bounded we get

$$\begin{aligned} \mathbf{E}_{\mu+\eta} F &= e^{-\mu(X)} (1 - \eta(X) + o(\|\eta\|)) \times \\ \left[F(\emptyset) + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{X^n} F(\sum_{i=1}^n \delta_{x_i}) (\mu + \eta) (dx_1) \dots (\mu + \eta) (dx_n) \right] \\ &= \mathbf{E}_{\mu} F + e^{-\mu(X)} \sum_{n=1}^{\infty} \frac{n}{n!} \int_{X^n} F(\sum_{i=1}^n \delta_{x_i}) \mu(dx_1) \dots \mu(dx_{n-1}) \eta(dx_n) \\ &- \eta(X) e^{-\mu(X)} \sum_{n=0}^{\infty} \frac{1}{n!} \int_{X^n} F(\sum_{i=1}^n \delta_{x_i}) \mu(dx_1) \dots \mu(dx_n) + o(\|\eta\|) \end{aligned}$$

Thus

$$\begin{split} \mathbf{E}_{\mu+\eta} \, F - \mathbf{E}_{\mu} \, F \\ &= e^{-\mu(X)} \sum_{n=0} \frac{1}{n!} \int_{X^{n+1}} F(\sum_{i=1}^{n} \delta_{x_{i}} + \delta_{x}) \, \mu(dx_{1}) \dots \mu(dx_{n}) \eta(dx) \\ &- e^{-\mu(X)} \sum_{n=0} \frac{1}{n!} \int_{X^{n+1}} F(\sum_{i=1}^{n} \delta_{x_{i}}) \, \mu(dx_{1}) \dots \mu(dx_{n}) \eta(dx) + o(\|\eta\|) \\ &= \mathbf{E}_{\mu} \int_{X} [F(\Pi + \delta_{x}) - F(\Pi)] \, \eta(dx) + o(\|\eta\|) \end{split}$$

We see that ${f E}_{\mu}\,F$ is differentiable and possesses a gradient function

$$\overline{\Delta}_{\mu}(x) = \mathbf{E}_{\mu}[F(\Pi + \delta_x) - F(\Pi)]$$

which we call the expected first difference.

Analyticity of the expectation

Theorem 1. Assume that there exist a constant b > 0 such that $|F(\sum_{i=1}^{n} \delta_{x_i})| \le b^n$ for all $n \ge 0$ and $(x_1, \ldots, x_n) \in X^n$. Then $\psi(\mu) = \mathbf{E}_{\mu} F(\Pi)$ is analytic on \mathbb{M}_+ and

$$\mathbf{E}_{\mu+\eta} F = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{X^n} \overline{\Delta_{\mu}^n}(x_1, \dots, x_n) \eta^n (dx_1 \dots dx_n), \quad (4)$$

where

$$\overline{\Delta_{\mu}^{n}}(x_{1},\ldots,x_{n}) = \mathbf{E}_{\mu} \Delta_{\mu}^{n}(x_{1},\ldots,x_{n};\Pi)$$
$$= \mathbf{E}_{\mu} \left[\sum_{m=0}^{n} (-1)^{n-m} {n \choose m} F\left(\Pi + \sum_{j=1}^{m} \delta_{x_{j}}\right) \right].$$
(5)

First Fréchet derivatives

In particular,

$$\overline{\Delta}_{\mu}(x) = \mathbf{E}_{\mu}[F(\Pi + \delta_{x}) - F(\Pi)] \quad \text{gradient function}$$
$$\overline{\Delta}_{\mu}^{2}(x_{1}, x_{2}) = \mathbf{E}_{\mu}\left[F(\Pi + \delta_{x_{1}} + \delta_{x_{2}}) - 2F(\Pi + \delta_{x_{1}}) + F(\Pi)\right]$$

etc.

 \Box We call $\overline{\Delta_{\mu}^{n}}(x_{1}, \ldots, x_{n})$ the expected *n*th order difference.

Perturbation analysis

Consider the case a homogeneous Poisson process with intensity λ in a compact $X \subset \mathbb{R}^d$ so that the intensity measure is $\lambda \ell$ (ℓ is the Lebesgue measure). Slightly abusing notation, write simply \mathbf{E}_{λ} instead of $\mathbf{E}_{\lambda \ell}$. Then

$$\frac{d}{d\lambda} \mathbf{E}_{\lambda} F = \lim_{t \downarrow 0} \frac{1}{t} \Big[E_{\lambda+t} F - \mathbf{E}_{\lambda} F \Big]$$
$$= \lim_{t \downarrow 0} \frac{1}{t} \Big[D \mathbf{E}_{\lambda} F[t\ell] + o(t) \Big] = \int_{X} \mathbf{E}_{\lambda} [F(\Pi + \delta_{x}) - F(\Pi)] dx$$

Russo's formula for Poisson processes

Let $F(\Pi) = \mathbb{1}_{\Xi}(\Pi)$ for some event Ξ and let $\Upsilon(\Pi) = \{x \in X : \mathbb{1}_{\Xi}(\Pi + \delta_x) \neq \mathbb{1}_{\Xi}(\Pi)\}.$ Then

$$\frac{d}{d\lambda} \mathbf{P}_{\lambda}(\Xi) = \int_{X} \mathbf{E}_{\lambda} [\mathbb{1}_{\Xi}(\Pi + \delta_{x}) - \mathbb{1}_{\Xi}(\Pi)] dx$$
$$= \mathbf{E}_{\lambda} \int_{X} [\mathbb{1}_{\Xi}(\Pi + \delta_{x}) - \mathbb{1}_{\Xi}(\Pi)] \mathbb{1}_{\Upsilon(\Pi)}(x) dx$$
$$= \mathbf{E}_{\lambda} \int_{X} \mathbb{1}_{\Xi}(\Pi + \delta_{x}) \mathbb{1}_{\Upsilon(\Pi)}(x) dx - \mathbf{E}_{\lambda} \int_{X} \mathbb{1}_{\Xi}(\Pi) \mathbb{1}_{\Upsilon(\Pi)}(x) dx$$

By Slivnyak's theorem (2)

$$\begin{split} \mathbf{E}_{\lambda} \int_{X} \mathrm{I}_{\Xi}(\Pi + \delta_{x}) \, \mathrm{I}_{\Upsilon(\Pi)}(x) \, dx \\ &= \frac{1}{\lambda} \, \mathbf{E}_{\lambda} \int_{X} \, \mathrm{I}_{\Xi}(\Pi) \, \mathrm{I}_{\Upsilon(\Pi - \delta_{x})}(x) \, \Pi(dx) \\ &= \frac{1}{\lambda} \, \mathbf{E}_{\lambda} \, \mathrm{I}_{\Xi}(\Pi) N_{\Xi}(\Pi) \,, \end{split}$$

where $N_{\Xi}(\Pi) = \operatorname{card} \{ x_i \in \Pi : \Pi_{\Xi}(\Pi) \neq \Pi_{\Xi}(\Pi - \delta_{x_i}) \}$ is the number of *pivotal* points for event Ξ in configuration Π , i. e. the points which removal would break the occurrence of Ξ .

$$\mathbf{E}_{\lambda} \int_{X} \mathrm{I}_{\Xi}(\Pi) \, \mathrm{I}_{\Upsilon(\Pi)}(x) \, dx = \mathbf{E}_{\lambda} \, \mathrm{I}_{\Xi}(\Pi) V_{\Xi}(\Pi) \,,$$

where $V_{\Xi}(\Pi) = \operatorname{vol}\{x \in X : \ \operatorname{I\!I}_{\Xi}(\Pi + \delta_x) \neq \operatorname{I\!I}_{\Xi}(\Pi)\}$ is the volume of the pivotal locations, where adding a point would break the occurrence of Ξ . Finally,

$$\frac{d}{d\lambda} \mathbf{P}_{\lambda}(\Xi) = \mathbf{E}_{\lambda} \, \mathrm{I}_{\Xi}(\Pi) [\lambda^{-1} N_{\Xi}(\Pi) - V_{\Xi}(\Pi)] \tag{6}$$

$$\frac{d}{d\lambda}\log \mathbf{P}_{\lambda}(\Xi) = \mathbf{E}_{\lambda} \left[\lambda^{-1} N_{\Xi} - V_{\Xi} \mid \Xi \right]$$
(7)

$$\mathbf{P}_{\lambda_2}(\Xi) = \mathbf{P}_{\lambda_1}(\Xi) \exp\left\{\int_{\lambda_1}^{\lambda_2} \mathbf{E}_{\lambda} \left[\lambda^{-1} N_{\Xi} - V_{\Xi} \mid \Xi\right] d\lambda\right\}.$$
(8)

Toy example

Consider a set B of volume V and let $\Xi = {\Pi(B) = k}$. Surely,

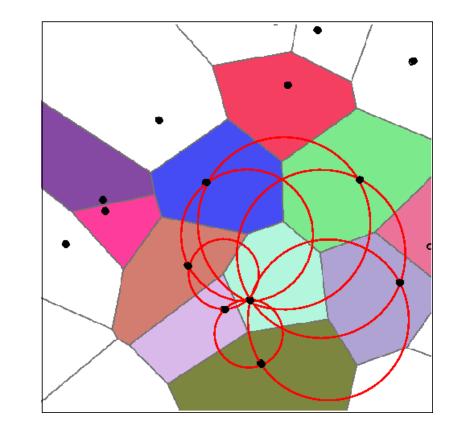
$$\mathbf{P}_{\lambda}(\Xi) = \frac{(\lambda V)^k}{k!} \exp\{-\lambda V\}.$$

Thus

$$\frac{d}{d\lambda}\log \mathbf{P}_{\lambda}(\Xi) = \frac{k}{\lambda} - V.$$
(9)

On the other hand, when Ξ occurs, there are k points in B and removing any of them would break occurence of Ξ . Thus on Ξ , $N_{\Xi} = \mathbf{E}_{\lambda}[N_{\Xi} \mid \Xi] = k$. Similarly, no additional point could be added anywhere in B without breaking the occurence of Ξ . So on Ξ , $V_{\Xi} = \mathbf{E}_{\lambda}[V_{\Xi} \mid \Xi] = V$ and (7) is seen to be equivalent to (9).

Voronoi flower



By similar method one may derive that the conditional distribution of the volume of a typical Voronoi flower (the one at the origin under \mathbf{P}^0) given the corresponding Voronoi cell has nsides is $\operatorname{Gamma}(n, \lambda)$.

Set indexed filtration

Consider a continuous time process ξ_t , $t \ge 0$ and filtration $\mathcal{F}_{[0,t]} = \sigma\{\xi_s, \ 0 \le s \le t\}$. τ is a stopping time if $\{\tau \le t\} \in \mathcal{F}_{[0,t]} \ \forall t$ or equivalently, random set $[0, \tau]$ is such that $\{[0, \tau] \subseteq [0, t]\} \in \mathcal{F}_{[0,t]} \ \forall t$.

Consider now a homogeneous Poisson process Π in \mathbb{R}^d and let $\mathcal{F}_B = \sigma\{\Pi(A), A \subseteq B\}$ be the natural filtration. We have

- monotonicity: $\mathcal{F}_{K_1} \subseteq \mathcal{F}_{K_2}$ for any two compact $K_1 \subseteq K_2$;
- continuity from above: $\mathcal{F}_K = \bigcap_{n=1}^{\infty} \mathcal{F}_{K_n}$ if $K_n \downarrow K$.

Stopping sets

Definition: A random compact set Δ is called a *stopping set* (more precisely, $\{\mathcal{F}_K\}$ -stopping set) if the event $\{\Delta \subseteq K\}$ is \mathcal{F}_K measurable for all compact K.

Let $\mathcal{F} = \bigvee_{K \in \mathbb{K}} \mathcal{F}_K$, where \mathbb{K} is the collections of compact sets. The stopping σ -algebra is the following collection:

 $\mathcal{F}_{\Delta} = \{ A \in \mathcal{F} : A \cap \{ \Delta \subseteq K \} \in \mathcal{F}_K \, \forall K \in \mathbb{K} \}.$

Set-indexed martingales

Definition. A set indexed random process X_K , $K \in \mathbb{K}$ is called a *martingale* (more precisely, a $(\mathbf{P}, \{\mathcal{F}_K\})$ -*martingale*) if for all $K_1, K_2 \in \mathbb{K}$ such that $K_1 \subseteq K_2$ one has

$$\mathbf{E}[X_{K_2} \mid \mathcal{F}_{K_1}] = X_{K_1} \quad \mathbf{P} - a. \ s.$$

Theorem 2. Let Δ_1 , Δ_2 be two a. s. compact stopping sets such that $\Delta_1 \subseteq \Delta_2$ almost surely. Let X_K be a uniformly integrable martingale (we omit details here!). Then

$$\mathbf{E}\left[X_{\Delta_2} \mid \mathcal{F}_{\Delta_1}\right] = X_{\Delta_1} \ a. \ s. \tag{10}$$

provided $\mathbf{E} |X_{\Delta_2}| < \infty$.

Likelihood ratio

An important example of a uniformly integrable martingale is provided by a *likelihood ratio*. Namely, let \mathbf{Q} and \mathbf{P} be two probability measures on \mathcal{F} such that $\mathbf{Q} \ll \mathbf{P}$, i. e. for any $K \in \mathbb{K}$ the restriction \mathbf{Q}^K of \mathbf{Q} onto \mathcal{F}_K is absolutely continuous with respect to the restriction \mathbf{P}^K of \mathbf{P} onto the same σ -algebra. Denote the likelihood ratio by

$$L_K = \frac{d\mathbf{Q}^K}{d\mathbf{P}^K} \,,$$

For Poisson processes we have that

$$L_K = \frac{d\mathbf{P}_{\lambda}^K}{d\mathbf{P}_{\rho}^K}(\Pi) = \left(\frac{\lambda}{\rho}\right)^{\Pi(K)} e^{-(\lambda - \rho)\ell(K)}, \, \forall K \in \mathbb{K}.$$
(11)

Gamma-type result

Theorem 3. Let Δ be an a. s. compact stopping set with respect to the natural filtration of a homogeneous Poisson process Π with density λ in \mathbb{R}^d . Assume that

$$\mathbf{P}_{\lambda}{\Pi(\Delta) = n} > 0$$
 and does not depend on λ . (12)

Then $\ell(\Delta)$ given $\Pi(\Delta) = n$ has $\operatorname{Gamma}(n, \lambda)$ distribution.

Remark. Condition (12) is satisfied if $\Delta(\Pi)$ is equivariant under scaling: $\Delta(t\Pi) = t\Delta(\Pi)$ for all Π and t > 0.

Examples

The minimal closed ball centred in the origin and containing exactly nPoisson process points is a stopping set and its volume conforms to $Gamma(n, \lambda)$ distribution (this is trivial).

A typical Voronoi flower is a stopping set and its volume given that the corresponding Voronoi cell has n sides, is $\text{Gamma}(n, \lambda)$ -distributed.

Proof of the Gamma-type result

Kurtz-Doob theorem 2 implies

$$\mathbf{E}_{\lambda} F = \mathbf{E}_{\rho} \left(\frac{\lambda}{\rho}\right)^{\Pi(\Delta)} e^{-(\lambda - \rho)\ell(\Delta)} F$$
(13)

for any $\mathcal{F}_\Delta\text{-measurable}\ F.$ By (13) for any z we can write

$$\begin{split} \mathbf{E}_{\lambda} \left[e^{z\ell(\Delta)} \mid \Pi(\Delta) = n \right] &= \frac{\mathbf{E}_{\lambda} \left[e^{z\ell(\Delta)} \, \mathrm{I\!I} \{ \Pi(\Delta) = n \} \right]}{\mathbf{P}_{\lambda} \{ \Pi(\Delta) = n \}} \\ &= \frac{\mathbf{E}_{\rho} \left[e^{z\ell(\Delta)} \, \mathrm{I\!I} \{ \Pi(\Delta) = n \} \lambda^{n} \rho^{-n} e^{-(\lambda - \rho)\ell(\Delta)} \right]}{\mathbf{P}_{\rho} \{ \Pi(\Delta) = n \}} \end{split}$$

Choosing now $\rho = \lambda - z$ we see that the last expression simplifies to $(1 - z/\lambda)^{-n}$ which is the Laplace transform for $\text{Gamma}(n, \lambda)$.

References

- D. J. Daley and D. Vere-Jones. An Introduction to the Theory of Point Processes.
 NY, Springer (1988)
- J. Mecke. Stationäre zufällige Masse auf localcompakten Abelischen Gruppen.
 Z. Wahrsch. verw. Gebiete, 9, 36–58 (1967)
- S. Zuyev. Russo's Formula for the Poisson Point Processes and its Applications. Discrete Math. and Applications, 3, 355-366 (1993)
- I. Molchanov and S. Zuyev. Variational analysis of functionals of a Poisson process. *Math. Oper. Research*, 25, 485–508 (2000)
- S. Zuyev. Stopping sets: Gamma-type results and hitting properties. Adv. Appl. Prob., 31, 63–73 (1999)