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Finite Poisson processes

Poisson process models an array of points scattered randomly and

independently with a density proportional to µ(dx) in a given region X .

More exactly:

Definition: Π is a Poisson process in [X,B] with the intensity measure µ:

µ(X) <∞ if for any disjoint B1, . . . , Bn ∈ B, the number of points of Π
in these sets are independent Poisson random variables

Π(B1), . . . ,Π(Bn) with parameters µ(B1), . . . , µ(Bn).
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The definition implies:

• If µ is diffuse, i. e. µ({x}) = 0 for any singleton {x}, then with

probability 1 no realisation of Π contains multiple points.

• EΠ(B) = µ(B), that is why µ(dx) is also called the mean measure.

❏ We treat each realisation {x1, . . . , xΠ(X)} of the process Π as a

(random) counting measure and write Π = P
i δxi

, so that Π(B) equals

the number of points in B and∫
f(x) Π(dx) =

∑
xi∈Π

f(xi) .
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Palm distribution

Given an event Ξ, for every B ∈ B one can define Campbell measure

C(Ξ, B) = Eµ 1IΞ(Π)Π(B). This is a measure on B and

C(Ξ, • )� µ( • ), therefore there exists a Radon-Nikodym derivative

dC(Ξ, • )
dµ

(x) = Px
µ(Ξ)

which can be chosen to be a probability distribution on events Ξ. Px
µ is

called the Palm distribution of Π and has a meaning of the conditional

distribution of Π ‘given there is a point of the process in x’.

Another interpretation is that of the distribution of a configuration seen from

a typical point of the process.
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Campbell formula

From definition

E
∫

B

1IΞ(Π)Π(dx) =
∫

B

C(Ξ, dx) =
∫

B

Px
µ(Ξ)µ(dx)

and thus by the standard monotone class argument

Eµ

∫
f(x,Π) Π(dx) =

∫
Ex

µ f(x,Π)µ(dx) (1)

which is known as Refined Cambell formula – continuous analog of the full

probability formula. In particular, we have Campbell formula:

Eµ

∑
xi∈Π

f(xi) = Eµ

∫
f(x) Π(dx) =

∫
f(x)µ(dx) .
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Slivnyak’s theorem and Mecke’s characterisation

As the points in Poisson process are independent, we should have that the

distribution of Π− δx under Px
µ should be just Pµ. This is known as

Slivnyak’s theorem and equivalent to the following form of Campbell

formula (1): for any process f(x,Π), one has

Eµ

∫
f(x,Π) Π(dx) = Eµ

∫
f(x,Π + δx)µ(dx) . (2)

Mecke established that (2), in fact, caracterises a Poisson process.
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Expectation

Given a functional F = F (Π), by the full probability formula

Eµ F =
∞∑

n=0

(µ(X))n

n!
e−µ(X)

∫
Xn

F
( nP
i=1

δxi

) µ(dx1)
µ(X)

. . .
µ(dxn)
µ(X)

= e−µ(X)
∞∑

n=0

1
n!

∫
Xn

F
( nP
i=1

δxi

)
µ(dx1) . . . µ(dxn)a . (3)

❏ We view Eµ F as a function ψ(µ) of the intensity measure.

aBy definition we have F (∅) for n = 0 in the sum above.
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Variation analysis

Substituting µ← (µ+ η) into (3) and assuming, for simplicity, that F is

bounded we get

Eµ+η F = e−µ(X)(1− η(X) + o(‖η‖))×[
F (∅) +

∑
n=1

1
n!

∫
Xn

F (
nP

i=1
δxi) (µ+ η)(dx1) . . . (µ+ η)(dxn)

]
= Eµ F+e−µ(X)

∑
n=1

n

n!

∫
Xn

F (
nP

i=1
δxi

)µ(dx1) . . . µ(dxn−1)η(dxn)

−η(X)e−µ(X)
∑
n=0

1
n!

∫
Xn

F (
nP

i=1
δxi)µ(dx1) . . . µ(dxn) +o(‖η‖)
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Thus

Eµ+η F −Eµ F

= e−µ(X)
∑
n=0

1
n!

∫
Xn+1

F (
nP

i=1
δxi

+ δx)µ(dx1) . . . µ(dxn)η(dx)

−e−µ(X)
∑
n=0

1
n!

∫
Xn+1

F (
nP

i=1
δxi

)µ(dx1) . . . µ(dxn)η(dx) +o(‖η‖)

= Eµ

∫
X

[F (Π + δx)− F (Π)] η(dx) + o(‖η‖)

We see that Eµ F is differentiable and possesses a gradient function

∆µ (x) = Eµ[F (Π + δx)− F (Π)]

which we call the expected first difference.
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Analyticity of the expectation

Theorem 1. Assume that there exist a constant b > 0 such that

|F
( Pn

i=1 δxi

)
| ≤ bn for all n ≥ 0 and (x1, . . . , xn) ∈ Xn. Then

ψ(µ) = Eµ F (Π) is analytic on M+ and

Eµ+η F =
∞∑

n=0

1
n!

∫
Xn

∆n
µ(x1, . . . , xn) ηn(dx1 . . . dxn) , (4)

where

∆n
µ(x1, . . . , xn) = Eµ ∆n

µ(x1, . . . , xn; Π)

= Eµ

[
n∑

m=0

(−1)n−m

(
n

m

)
F

(
Π +

mP
j=1

δxj

)]
. (5)
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First Fr échet derivatives

In particular,

∆µ (x) = Eµ[F (Π + δx)− F (Π)] gradient function

∆2
µ(x1, x2) = Eµ

[
F (Π + δx1 + δx2)− 2F (Π + δx1) + F (Π)

]
etc.

❏ We call ∆n
µ(x1, . . . , xn) the expected nth order difference.
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Perturbation analysis

Consider the case a homogeneous Poisson process with intensity λ in a

compact X ⊂ Rd so that the intensity measure is λ` (` is the Lebesgue

measure). Slightly abusing notation, write simply Eλ instead of Eλ`. Then

d

dλ
Eλ F = lim

t↓0

1
t

[
Eλ+tF −Eλ F

]
= lim

t↓0

1
t

[
DEλ F [t`] + o(t)

]
=

∫
X

Eλ[F (Π + δx)− F (Π)] dx
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Russo’s formula for Poisson processes

Let F (Π) = 1IΞ(Π) for some event Ξ and let

Υ(Π) = {x ∈ X : 1IΞ(Π + δx) 6= 1IΞ(Π)}. Then

d

dλ
Pλ(Ξ) =

∫
X

Eλ[1IΞ(Π + δx)− 1IΞ(Π)] dx

= Eλ

∫
X

[1IΞ(Π + δx)− 1IΞ(Π)] 1IΥ(Π)(x) dx

= Eλ

∫
X

1IΞ(Π + δx) 1IΥ(Π)(x) dx−Eλ

∫
X

1IΞ(Π) 1IΥ(Π)(x) dx
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By Slivnyak’s theorem (2)

Eλ

∫
X

1IΞ(Π + δx) 1IΥ(Π)(x) dx

=
1
λ

Eλ

∫
X

1IΞ(Π) 1IΥ(Π−δx)(x)Π(dx)

=
1
λ

Eλ 1IΞ(Π)NΞ(Π) ,

where NΞ(Π) = card{xi ∈ Π : 1IΞ(Π) 6= 1IΞ(Π− δxi
)} is the

number of pivotal points for event Ξ in configuration Π, i. e. the points which

removal would break the occurence of Ξ.
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Eλ

∫
X

1IΞ(Π) 1IΥ(Π)(x) dx = Eλ 1IΞ(Π)VΞ(Π) ,

where VΞ(Π) = vol{x ∈ X : 1IΞ(Π + δx) 6= 1IΞ(Π)} is the volume of

the pivotal locations, where adding a point would break the occurence of Ξ.

Finally,

d

dλ
Pλ(Ξ) = Eλ 1IΞ(Π)[λ−1NΞ(Π)− VΞ(Π)] (6)

d

dλ
log Pλ(Ξ) = Eλ

[
λ−1NΞ − VΞ Ξ

]
(7)

Pλ2(Ξ) = Pλ1(Ξ) exp
{∫ λ2

λ1

Eλ

[
λ−1NΞ − VΞ Ξ

]
dλ

}
. (8)
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Toy example

Consider a set B of volume V and let Ξ = {Π(B) = k}. Surely,

Pλ(Ξ) =
(λV )k

k!
exp{−λV }.

Thus
d

dλ
log Pλ(Ξ) =

k

λ
− V . (9)

On the other hand, when Ξ occurs, there are k points in B and removing

any of them would break occurence of Ξ. Thus on Ξ,

NΞ = Eλ[NΞ Ξ] = k. Similarly, no additional point could be added

anywhere in B without breaking the occurence of Ξ. So on Ξ,

VΞ = Eλ[VΞ Ξ] = V and (7) is seen to be equivalent to (9).
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Voronoi flower

By similar method one may de-

rive that the conditional distribu-

tion of the volume of a typical

Voronoi flower (the one at the

origin under P0) given the cor-

responding Voronoi cell has n

sides is Gamma(n, λ).
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Set indexed filtration

Consider a continuous time process ξt, t ≥ 0 and filtration

F[0,t] = σ{ξs, 0 ≤ s ≤ t}. τ is a stopping time if {τ ≤ t} ∈ F[0,t] ∀t
or equivalently, random set [0, τ ] is such that {[0, τ ] ⊆ [0, t]} ∈ F[0,t] ∀t.

Consider now a homogeneous Poisson process Π in Rd and let

FB = σ{Π(A), A ⊆ B} be the natural filtration. We have

• monotonicity: FK1 ⊆ FK2 for any two compact K1 ⊆ K2;

• continuity from above: FK = ∩∞n=1FKn
if Kn ↓K .
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Stopping sets

Definition: A random compact set ∆ is called a stopping set (more

precisely, {FK}-stopping set) if the event {∆ ⊆ K} is FK measurable

for all compact K .

Let F = ∨K∈KFK , where K is the collections of compact sets. The

stopping σ-algebra is the following collection:

F∆ = {A ∈ F : A ∩ {∆ ⊆ K} ∈ FK ∀K ∈ K} .
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Set-indexed martingales

Definition. A set indexed random process XK , K ∈ K is called a

martingale (more precisely, a
(
P, {FK}

)
-martingale) if for all

K1, K2 ∈ K such that K1 ⊆ K2 one has

E[XK2 FK1 ] = XK1 P−a. s.

Theorem 2. Let ∆1, ∆2 be two a. s. compact stopping sets such that

∆1 ⊆ ∆2 almost surely. Let XK be a uniformly integrable martingale (we

omit details here!). Then

E
[
X∆2 F∆1

]
= X∆1 a. s. (10)

provided E |X∆2 | <∞.
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Likelihood ratio

An important example of a uniformly integrable martingale is provided by a

likelihood ratio. Namely, let Q and P be two probability measures on F
such that Q�

loc
P, i. e. for any K ∈ K the restriction QK of Q onto FK

is absolutely continuous with respect to the restriction PK of P onto the

same σ-algebra. Denote the likelihood ratio by

LK =
dQK

dPK
,

For Poisson processes we have that

LK =
dPK

λ

dPK
ρ

(Π) =
(
λ

ρ

)Π(K)

e−(λ−ρ)`(K), ∀K ∈ K . (11)
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Gamma-type result

Theorem 3. Let ∆ be an a. s. compact stopping set with respect to the

natural filtration of a homogeneous Poisson process Π with density λ in

Rd. Assume that

Pλ{Π(∆) = n} > 0 and does not depend on λ. (12)

Then `(∆) given Π(∆) = n has Gamma(n, λ) distribution.

Remark. Condition (12) is satisfied if ∆(Π) is equivariant under scaling:

∆(tΠ) = t∆(Π) for all Π and t > 0.
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Examples

❏ The minimal closed ball centred in the origin and containing exactly n

Poisson process points is a stopping set and its volume conforms to

Gamma(n, λ) distribution (this is trivial).

❏ A typical Voronoi flower is a stopping set and its volume given that the

corresponding Voronoi cell has n sides, is Gamma(n, λ)-distributed.
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Proof of the Gamma-type result

Kurtz-Doob theorem 2 implies

Eλ F = Eρ

(
λ

ρ

)Π(∆)

e−(λ−ρ)`(∆)F (13)

for any F∆-measurable F . By (13) for any z we can write

Eλ

[
ez`(∆) Π(∆) = n

]
=

Eλ

[
ez`(∆) 1I{Π(∆) = n}

]
Pλ{Π(∆) = n}

=
Eρ

[
ez`(∆) 1I{Π(∆) = n}λnρ−ne−(λ−ρ)`(∆)

]
Pρ{Π(∆) = n}

.

Choosing now ρ = λ− z we see that the last expression simplifies to

(1− z/λ)−n which is the Laplace transform for Gamma(n, λ).
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