Spectral Properties of Toeplitz Operators on the
Unit Sphere and on the Unit Ball

Z. Akkar E. Albrecht

Universitat des Saarlandes

LIS A ]
wu uu'uu llllll

BANACH ALGEBRAS AND APPLICATIONS
dedicated to the memory of William G. Bade
Goteborg, July 29 - August 4, 2013






Weighted Bergman spaces
By :={zeCN;|z| < 1}
For A > —1 consider the closed subspace
A3(By) := L2(Bp, dv) N O(By) of L2(By, dvi) with respect to

TN+ AX+1)

avil(2) = ANFO 1 1)

(1 - 1z[*)*dVn(2),

where V), is the Lebesgue measure in CV.

An orthonormal basis (e&A’N))QEZﬁ for A2(By) is given by

e(2) =

(F(N+)\+\a|+1)>1/22a. )

all(N+X+1)
The Toeplitz operator with symbol ¢ € L>°(By) is defined by
T.f:=Pi(ef).  (fe A (Bn)),

P, the orthogonal projection from L2(By, v&) onto A2(By).



The Hardy space

doy normalised surface measure on Sy = {z € CN; |z| = 1}.
H?(Sy) is the closure in L2(Sy, doy) of C[(, ..., (N
The functions

A TN+ Ja)\ 12,0 _ ((N=1+]a)\ 12,
s (Cormy ) ¢ o) ¢ @

form a orthonormal basis (e,(;“N))anﬂ in H2(Sy).
For ¢ € L>°(Sy), the Toeplitz operator T,, € L(H?(Sy)) is:
T.fi=Po(of),  (f e H(By)),

P_4 is the orthogonal projection from L2(Sy, doy) onto H?(Sy).



Spectral inclusion estimates

If A C L>°(By) (resp. A C L>®(Sy)), then T(A) denotes the
closed C*-algebra generated by {7, ; ¢ € A}.
Let ¢ be the closed two-sided ideal in 7(L>°(Sy)) generated by

the set of all semi-commutators Ty, — T, Ty, ¢, v € L>(Sy).
Davie and Jewell (1977):
1. The continuous, unital, x-linear mapping 7 : ¢ — T,
induces an isometric x-isomorphism
e+ L(Sn) — T(L>(Sn))/ €.
2. Forall ¢ € L*(Sy)) we have the inclusions

R(p) € spe(Ty) S sp(Ty) S co(R(p)). 3)



Joint spectra
Let A be a unital Banach algebra and a € A". We define

spi(a.A)={zeC"; ) Az - a) +# A},
j=1

spp(a. A) :={zeC";) (z— a)A+ A},
j=1

n
Spo sg(@A):={z€C"; Y Az - a)A # A}, and
=1
SpH(av A) = SpL(av "4) U SpR(a7 A)

These sets are compact and satisfy

n
SP2_sid(a, A) € sp.(a, A)Nspgr(a, A) C spy(a, A) C H p(a), A



Coburn (1973):
K(H?(Sn)) € T(C(Sw)),  K(AX(Bw)) C T(C(BN)).
The quotient algebras 7o(C(By)) := T(C(Bn))/K(A3(By)) and

To(C(Sy)) := T(C(Sn))/K(H?(By)) are isometrically
x-isomorphic to C(Sy) and contained in the center of

To(L™(Sn)) =T (L™(Sn))/K(H?(Sn)),
To(L*(By)) =T (L™(Bn))/K(AX (BN)).



Coburn (1973):
K(H?(Sn)) € T(C(Sw)),  K(AX(Bw)) C T(C(BN)).
The quotient algebras 7o(C(By)) := T(C(Bn))/K(A3(By)) and

To(C(Sy)) := T(C(Sn))/K(H?(By)) are isometrically
x-isomorphic to C(Sy) and contained in the center of

To(L™(Sn)) =T (L™(Sn))/K(H?(Sn)),
To(L*(By)) =T (L™(Bn))/K(AX (BN)).

Proposition
Forall p = (p1,...,¢n) € L(Syn)" we have

R(p) € sP2—sia([Te], To(L7(S))) < spu([Te], To(L™(Sw))) €

C spyy(T,. L(HA(Sw))) C co(R(p)). )



The Local Principle
For A > —1: H := A2(By), L := L®(By), C := C(Bn).
For A\ = —1: H := H?(Sy), L™ := L*(Sy), C := C(Sn)-

Forw € Sy let Zp(w) be the closed 2-sided ideal in To(L>)
generated by

{T, + K(H); ¢ € C,p(w) = 0}
The local algebra over w is defined as
T(w) :=To(L™)/Io(w).
If Z(w) denotes the closed 2-sided ideal in 7(L>°) generated by
{TSO; 90 € Ca QO((U) = O}v
then we have a natural isomorphisms

T(w) = T(L*)/Z(w)-



Mot To(L™) = T(w)

denotes the canonical unital x-epimorphisms onto the local
algebra. For T € T(L*>) we write

sp.,(T) = sp(Fu([T]), T(w))

for the spectrum in the local algebra. The unit element in the
local algebras is 1,, := [, ([/]).

w € Sy will be called a point of continuity for a symbol ¢ € L)
if there exists some y,, € C such that

5'2‘; lolus(w) — Yeollo = 0.

We then put p(w) := Y.



Theorem

M To(L™) = @@ Tw), [Tl (Fu([T]))wesn

weSy
is an isometric x-monomorphism. For all T € T(L*) we have:
1. The functionw — ||T,([T])| is upper semi-continuous.
2. {(w, ) €Sy x C; (1, — TL([T])) " exists in T(w)} is
openinSy x C.
3. T is a Fredholm operator if and only ifT,,([T])) is invertible
inT(w)) for all w € Sy. In particular,

spe(T) = | sp.(T)):

wESy

4. If w € Sy is a point of continuity for p € L*° then
Fu([Te]) = (w)1w. Hence, sp,,(T,) = {¢(w)}-



Local spectral inclusion estimates

For ¢ € L*(Sy)" and w € Sy we define the local essential
range of p at w by

Ru(p) == () Relupw))-
>0

R, (p) is a non-empty compact set satisfying

max |w| = inf max |w|=Ilim max |w|.
Wemw(g&) e>0 WG%(@IUE(W)) e—0 Wem(cplue(w))

Jw = {9 € L*(Sn); Ru(¢p) = {0}} is a closed ideal in L>(Sy)
and L2°(Sy) := L*(Sn)/J. is a commutative C*-algebra with

DMlloow :== ma bl = w LZOS .
I )lloco = max Iwl - ([V] =+ J € L(Sw))

For all ¢ € L*(Sn)" we have sp([¢]w, L (Sn)) = Ru(p).



Let now €, be the closed two-sided ideal in 7 (L>*(Sy))
generated by € + Z(w, Sy).

Theorem
The continuous, unital, -linear mapping n : ¢ — T, induces an
isometric x-isomorphism n¢ ., : L3 (Sn) — T (L>(Sn))/ €.

Theorem
Forall p = (p1,...,¢n) € L°(SN)", w € Sy, we have with

Fo([Te]) = (To([TerD) -5 T Ten]))s

Ru(9) € SP2—sia(Mw([Te]), T(w)) € sPu(Mu([Te]), T(w))

C co(9R (). )



Symbols which are independent with respect to some
variables

Let A > —1. As before we put: o

For A > —1: H := A2(By), L := L®(By), C := C(Bp).

ForA=—-1:H:= HZ(SN), L> .= LOO(SN), C = C(SN)

Let N, k be integers with 1 < k < N. We consider symbols

¢ € L* that are independent of the first k variables, i.e. with

some a, € L~ (By_x), we have

©(2) = a,(Z" (6)

forallz=(Z',Z") e By resp. z=(Z/,Z") € Sy with
Z e Ck, 2/ e CN-k,

For o € ZX we define H(a) := r{egi;?,,) ;o € ZNKy. Thus,



Theorem (Quiroga-Barrasco and Vasilevski(2007))

If G is a maximal commutative subgroup of Aut(By), then the
C*-subalgebra g in L(A3(By)) generated by all Toeplitz
operators with G-invariant symbols is commutative.

Using
A2(By) = O(Bn) N L2(By, dvy) = L2(By, drg) Nkerd

and appropriate Fourier- and Mellin-transforms they obtained
for each such maximal commutative subgroup G an explicit
spectral representation of 2.

A corresponding result is true in the Hardy space situation
(Akkar 2012).



Theorem
If p € L is independent of the first k variables such that there
is a function a, € L>=°(By_) satisfying (6). Then:

1. Each H(<'), o/ € ZX, is a reducing subspace for T,,.

2. Forallo' € Z’jr the restriction T | a1y is unitarily equivalent
to the Toeplitz operator T,, on the weighted Bergman
space A%, . (Br-k)-

3. If G is any maximal commutative subgroup of Aut(By_x)
then the C*-subalgebra generated in L(H) by all such
symbols ¢ for which a, is G-invariant is commutative.



Application to certain piecewise continuous symbols

McDonald (1979) considered piecewise continuous symbols
with discontinuities along hyperplanes of real codimension 1.

We say that a Jordan arc v : [0, 1] — C with v((0,1)) C D has
the graph property at z € v((0, 1)), if there exist some 6 > 0
with Us(t) C (0, 1) such that ~(Us(t)) is the graph of a
continuous function over some interval on a line through 0.

G(v) :={z €~((0,1)); v has the graph property at z}.

z € G(v) if and only if there exist some open interval

Iy € (—1,1), some « € [0, 27), a bijective, monotone increasing
continuous function u : Us(t) — Iy and a function v € C(lp, R)
such that

Vse Us(t): ~(s) = e(u(s) + iv(u(s)))

g oo 7)
VEe s (U (€)= €°(E + iv(€)).



Let now v : [0, 1] — C be a Jordan arc with |y(0)| = |y(1)| =1
and ~((0,1)) c D. Let also E be a linear subspace in CN of
(complex) codimension 1, let uy € E* with |u”| = 1 and
consider

E,:={U+~(t)u; v € E, te]0,1]}.

As in the hyperplane situation considered by McDonald, the set
By \ E; (respectively Sy \ E,) consists of two connected
components which will be denoted by B and B (respectively
S;and S)).

Note, that ([0, 1]) may have positive area measure.



If o € C(BY) and ¢_ € C(By) are given and if v([0, 1]) has
area measure 0, then there exists precisely one element

€ L>=(By) with ‘P‘B¢ = o1 and ‘P‘B; =¢_.

If v([0, 1]) has positive area measure this is no longer true. In
this case By N E, and Sy N E,, have positive volume
respectively surface measure. We therefore consider the
following symbol classes

HCY (BN) == {p+xgr + ¢~ ¢+.9- € C(BN)}

and
PCI(Sn) == {pixgr +9-5 10— € CSN)}

where s denotes the characteristic function of the
corresponding set M.



Theorem
Let~, E, be as above and suppose that G(v) is dense in

V([0 1])- I = pixgy + o € HCT (By) with o4, o € C(Bw)

or o = pixgr + - € PCY(Sy) with o1, € C(Sn) then, in
vy

both situations, we obtain

$Pe(T,) = (STUS, )U{tp s (w)+o-(w); 0 < t < 1,w € E,NSy}.

Remark (Lance and Thomas, 1991)

There exist Jordan arcs with strictly positive area measure
satisfying the assumptions of this theorem.



Symbols that are uniformly continuous on sectors

Let @ := (o, 64,...,6pn) € [0,2x]"" with 6y = 0,60, = 27 and
0j—1 < bjforj=1,..., n. We define the sectors

S={(Z,re®); Zec’ " 0<r<1,0,1<s<0} (j=1,...,n

Sp := Sp, and consider the symbol classes PCy(By) of all those
L>*-functions ¢, that are uniformly continuous on S; N By for all
j=1,...,n. We write ¢; for the continuous extension of ¢[gp,
to Sj NBy.

Forw’ € Sy_1 let 4, . : [0,27] — C be a parametrisation of the
closed polygon with the corners v, ./ ((6; + 0j—1)/2) = @;(w', 0),
j=1,...,n



Proposition
Consider ¢ € PCy(B,) and w = (w',wn) € Sp.
1. Ifw e §;forsomej e {1,...,n}, thensp (T,) = {o(w)}.
2. Ifwe §NS;_y forsomeje{1,...,n} andwy # 0, then
P, (7)) = [Bj-1(w), &j(w)]-
3. Ifwn =0 then

Zw(@) ::’Yt,o,w’([ov 27T]) U {W eC \ ’ch,w’([o7 277]) ; n(’y%w" W) 7& O}
Cspy(To,)-



Proposition
Consider ¢ € PCy(B,) and w = (w',wn) € Sp.
1. Ifw e §;forsomej e {1,...,n}, thensp (T,) = {o(w)}.
2. Ifwe §NS;_y forsomeje{1,...,n} andwy # 0, then
P, (7)) = [Bj-1(w), &j(w)]-
3. Ifwy =0 then

Zw(@) ::’Yt,o,w’([ov 27T]) U {W eC \ 7¢,w’([07 277]) ; n(’y%w'ﬂ W) 7& O}
Cspy(To,)-

Note, that X, (¢) contains R, (). Hence, if £, (¢) is convex,
then equality holds in statement 3 of the proposition.

In the cases n = 2 and n = 3, this is always the case.

For n > 4, the set £,(¢) need no longer to be convex and it is
not clear wether we have equality in 3.



Symbols with weaker invariance properties

Following a suggestion of Davie and Jewell, we consider
symbols ¢ € L>°(Sy) with the weaker symmetry property

VoeR,zeSy: ¢(e%z2) = ¢(2). (8)

Proposition
If ¢ satisfies (8), then for all m € 7. the space H, of all
m-homogeneous holomorphic polynomials is a finite
dimensional reducing subspace for Ty. In particular, we have
1. spp(Ty) is countable.
2. T, and T} have the SVEP.



Example
Consider the case N = 2 and the symbol ¢ with

Z1Zp
(21, 20) = .
(21, 22) |21 22

Then T4 has the additional properties:
1. spp(T¢) = {0}.
2. Xr,({0}) is dense in H*(S).
3. spe(Ty) =sp(T) =D.
4. Ty is a Cyp o contraction.

In particular, T, is a universal dilation in the sense of Bercovici,
Foias and Pearcy.



