C^{*}-algebras of 2-groupoids

Massoud Amini

Tarbiat Modares University Institute for Fundamental Researches (IPM)

> Banach Algebras 2013 Gothenburg, Sweden July 30, 2013

3

< 🗇 🕨

Table of contents

- 1 Abstract
 - motivation

2 2-groupoids

- 2-categories
- algebraic 2-groupoids
- topological 2-groupoids and 2-Haar systems
- **3** C^* -algebras of 2-groupoids
 - quasi-invariant measures
 - full C^* -algebras
 - \bullet induced representations and reduced $C^*\mbox{-algebras}$
 - *r*-discrete principal 2-groupoids

프 > - * 프 >

3

motivation

Abstract

We define topological 2-groupoids and study locally compact 2-groupoids with 2-Haar systems. We consider quasi-invariant measures on the sets of 1-arrows and unit space and build the corresponding vertical and horizontal modular functions. For a given 2-Haar system we construct the vertical and horizontal full C^* -algebras of a 2-groupoid and show that its is unique up to strong Morita equivalence, and make a correspondence between their bounded representations on Hilbert spaces and those of the 2-groupoid on Hilbert bundles.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 12

 ${\color{black} {Abstract}}\ 2-groupoids \ {\mathcal C}^*-algebras of 2-groupoids \ References \ References$

motivation

Abstract

We define topological 2-groupoids and study locally compact 2-groupoids with 2-Haar systems. We consider quasi-invariant measures on the sets of 1-arrows and unit space and build the corresponding vertical and horizontal modular functions. For a given 2-Haar system we construct the vertical and horizontal full C^* -algebras of a 2-groupoid and show that its is unique up to strong Morita equivalence, and make a correspondence between their bounded representations on Hilbert spaces and those of the 2-groupoid on Hilbert bundles.

We show that representations of certain closed 2-subgroupoids are induced to representations of the 2-groupoid and use regular representation to build the vertical and horizontal reduced C^* -algebras of the 2-groupoid. We establish strong Morita equivalence between C^* -algebras of the 2-groupoid of composable pairs and those of the 1-arrows and unit space. We describe the reduced C^* -algebras of **r**-discrete principal 2-groupoids and find their ideals and masas.

ヘロト 人間 とくほと くほど

 $\begin{array}{c} \textbf{Abstract}\\ \textbf{2-groupoids}\\ \textit{C}^*\text{-algebras of }\textbf{2-groupoids}\\ \text{References} \end{array}$

Motivation

In noncommutative geometry, certain quotient spaces are described by non-commutative C^* -algebras, when the symmetry groups of such quotient spaces are non Hausdorff, it is more appropriate to describe such symmetry groups and groupoids using crossed modules of groupoids (Buss-Meyer-Zhu, 2012).

-

 ${\color{black} {Abstract}}\ 2-groupoids \ C^*-algebras of 2-groupoids \ References$

Motivation

In noncommutative geometry, certain quotient spaces are described by non-commutative C^* -algebras, when the symmetry groups of such quotient spaces are non Hausdorff, it is more appropriate to describe such symmetry groups and groupoids using crossed modules of groupoids (Buss-Meyer-Zhu, 2012).

One motivating example is the gauge action on the irrational rotation algebra A_{ϑ} , which is the universal C*-algebra generated by two unitaries U and V satisfying the commutation relation $UV = \lambda VU$ with $\lambda := \exp(2\pi i \vartheta)$. Since A_{ϑ} is the crossed product $C(\mathbb{T}) \rtimes_{\lambda} \mathbb{Z}$, for the canonical action of \mathbb{Z} on \mathbb{T} by $n \cdot z := \lambda^n \cdot z$, it could be viewed as the noncommutatove analog of the non Hausdorff quotient space $\mathbb{T}/\lambda^{\mathbb{Z}}$. This latter group acts on itself by translations, thus $\mathbb{T}/\lambda^{\mathbb{Z}}$ is a symmetry group of A_{ϑ} .

・ロト ・ 一下・ ・ ヨト・

3

Motivation

More generally, one may define actions of crossed modules on C^* -algebras similar to the twisted actions in the sense of Philip Green (Green, 1978) and build crossed products for such actions. The resulting crossed product is functorial: If two actions are equivariantly Morita equivalent in a suitable sense, their crossed products are Morita–Rieffel equivalent C^{*}-algebras.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 12

Motivation

More generally, one may define actions of crossed modules on C^* -algebras similar to the twisted actions in the sense of Philip Green (Green, 1978) and build crossed products for such actions. The resulting crossed product is functorial: If two actions are equivariantly Morita equivalent in a suitable sense, their crossed products are Morita–Rieffel equivalent C^{*}-algebras.

Crossed modules of discrete groups are used in homotopy theory to classify 2-connected spaces up to homotopy equivalence. They are equivalent to strict 2-groups (Baez, 1997, Noohi, 2007).

- 4 回 ト - 4 回 ト

 $\begin{array}{c} \textbf{Abstract}\\ \textbf{2-groupoids}\\ \textit{C}^*-\textbf{algebras of 2-groupoids}\\ \textbf{References}\end{array}$

motivation

Motivation

One could write every locally Hausdorff groupoid as the truncation of a Hausdorff topological weak 2-groupoid. Also the crossed modules of topological groupoids are equivalent to strict topological 2-groupoids.

(E) < E)

-

 ${\color{black} {Abstract}}\ 2-groupoids \ {\mathcal C}^*-algebras of 2-groupoids \ References \ References$

Motivation

One could write every locally Hausdorff groupoid as the truncation of a Hausdorff topological weak 2-groupoid. Also the crossed modules of topological groupoids are equivalent to strict topological 2-groupoids.

For a Hausdorff étale groupoid G and the interior $H \subseteq G$ of the set of loops (arrows with same source and target) in G, the quotient G/H is a locally Hausdorff, étale groupoid, and the pair (G, H) together with the embedding $H \to G$ and the conjugation action of G on H is a crossed module of topological groupoids. The corresponding C^{*}-algebra C^{*}(G, H) is the C^{*}-algebra of foliations in the sense of Alan Connes (Connes, 1982). The C^{*}-algebra of general (non Hausdorff) groupoids are studied in details by Jean Renault (Renault, 1980).

・ロト ・同ト ・ヨト ・ヨト

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

A B > A B >

-

strict 2-category

We define a strict 2-category as a category enriched over categories. We adapt the notations and terminology of (Buss-Meyer-Zhu, 2013); see also (Baez, 1997). For two objects x and y of the first order category, we have a category of morphisms from x to y, and the composition of morphisms lifts to a bifunctor between these morphism categories.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

・ロト ・ 一 ・ ・ ヨ ・ ・ ヨ ・ ・

3

strict 2-category

We define a strict 2-category as a category enriched over categories. We adapt the notations and terminology of (Buss-Meyer-Zhu, 2013); see also (Baez, 1997). For two objects x and y of the first order category, we have a category of morphisms from x to y, and the composition of morphisms lifts to a bifunctor between these morphism categories.

The arrows between objects $u : x \to y$ are called 1-morphisms. We write x = d(u) and y = r(u). The arrows between arrows

are called 2-morphisms (or bigons). We write u = d(a), v = r(a) and $x = d^2(a)$, $y = r^2(a)$.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

イロト イポト イヨト イヨト

-

Composition

The category structure on the space of arrows $x \to y$ gives a vertical composition of 2-morphisms

Abstract 2-groupoids C*-algebras of 2-groupoids References Abstract 2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Composition

The vertical product $a \cdot_{v} b$ is defined if r(b) = d(a). The composition functor between the arrow categories gives a composition of 1-morphisms

 $z \stackrel{u}{\longleftarrow} y \stackrel{v}{\longleftarrow} x \quad \mapsto \quad z \stackrel{uv}{\longleftarrow} x,$

which is defined if r(v) = d(u), and a horizontal composition of 2-morphisms

The horizontal product $a \cdot_{\mathbf{h}} b$ is defined if $r^2(b) = d^2(a)$.

・ロト ・四ト ・ヨト ・ヨト

 Abstract
 2-categories

 2-groupoids
 algebraic 2-groupoids

 C*-algebras of 2-groupoids
 topological 2-groupoids and 2-Haar systems

Composition

These three compositions are assumed to be associative and unital, with the same units for the vertical and horizontal products. The horizontal and vertical products commute: given a diagram

composing first vertically and then horizontally or vice versa produces the same 2-morphism $u_1u_2 \Rightarrow v_1v_2$.

3

 Abstract
 2-categories

 2-groupoids
 algebraic 2-groupoids

 C*-algebras of 2-groupoids
 topological 2-groupoids and 2-Haar systems

Composition

These three compositions are assumed to be associative and unital, with the same units for the vertical and horizontal products. The horizontal and vertical products commute: given a diagram

composing first vertically and then horizontally or vice versa produces the same 2-morphism $u_1u_2 \Rightarrow v_1v_2$.

We denote the inverse of a 1-morphism u by u^{-1} and vertical and horizontal inverses of a 2-morphism a by a^{-v} and a^{-h} .

・ロト ・同ト ・ヨト ・ヨト

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

イロト イヨト イヨト

-

Examples

Categories form a strict 2-category with small categories as objects, functors between categories as arrows, and natural transformations between functors as 2-morphisms. The composition of 1-morphisms is the composition of functors and the vertical composition of 2-morphisms is the composition of natural transformations. The horizontal composition of 2-morphisms yields a canonical natural transformation. Another example of a strict 2-category has C*-algebras as objects, non-degenerate *-homomorphisms as 1-morphisms, and unitary intertwiners between such *-homomorphisms as 2-morphisms.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

イロト イボト イヨト イヨト

3

Definition

A (strict) 2-groupoid is a strict 2-category in which all 1-morphisms and 2-morphisms are invertible (both for the vertical and horizontal product).

イロト イヨト イヨト

Definition

A (strict) 2-groupoid is a strict 2-category in which all 1-morphisms and 2-morphisms are invertible (both for the vertical and horizontal product).

2-group

All 2-groupoids are assumed to be small 2-categories, namely the classes of objects and morphisms are sets. A (strict) 2-group is a strict 2-groupoid with a single object. Given a 2-groupoid \mathcal{G} , its objects \mathcal{G}^0 and 1-morphisms \mathcal{G}^1 form a groupoid, and so does the 1-morphisms and 2-morphisms \mathcal{G}^2 with vertical composition.

Abstract **2-groupoids** *C**-algebras of 2-groupoids References References **2-categories** algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Notation

We usually write $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ and denote the subset of composable elements in $\mathcal{G}^1 \times \mathcal{G}^1$ by $\mathcal{G}^{(1)}$ and the subsets of elements in $\mathcal{G}^2 \times \mathcal{G}^2$ which are vertically or horizontally composable by $\mathcal{G}^{(2v)}$ or $\mathcal{G}^{(2h)}$. We may use horizontal products with unit 2-morphisms to produce any 2-morphism from a 2-morphisms that starts at a unit 1-morphism:

4 3 5 4 3 5 5

Abstract 2-groupoids C*-algebras of 2-groupoids References References Abstract **2-categories** algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Crossed module

The 2-morphisms starting at the identity 1-morphisms at the object x form a group \mathcal{G}_x with respect to horizontal composition, and the range map is a homomorphism from the set of such 2-morphisms to the isotropy group bundle $H = \bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}_x$ of the groupoid $(\mathcal{G}^0, \mathcal{G}^1)$. This map is onto when \mathcal{G} is 2-transitive (i.e. for each $u, v \in \mathcal{G}^1$ there is $a \in \mathcal{G}^2$ with d(a) = u and r(a) = v). Furthermore, the groupoid \mathcal{G} acts on the group bundle H by horizontal conjugation:

- 4 同 6 4 日 6 4 日 6

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

- 4 同 6 4 日 6 4 日 6

Crossed module

We may consider the map

$$r: \bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}_x
ightarrow \bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}_x^x$$

and regard (H, \mathcal{G}^1, r) as a crossed module of groupoids. Conversely, for each crossed module (H, \mathcal{G}^1, r) where H is a bundle of groups, \mathcal{G}^1 is a groupoid and $r: H \to \mathcal{G}^1$ is a groupoid homomorphism, there is a unique 2-groupoid \mathcal{G} whose isotropic group bundle is isomorphic to H, whose set of 1-morphisms is isomorphic to \mathcal{G}^1 , and its range map realizes (after identification) as r.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

イロト イヨト イヨト

3

Example

As a concrete example, consider the map $r_{\theta} : \mathbb{Z} \to \mathbb{T}$; $n \mapsto e^{2\pi i n \theta}$ where $\theta \in \mathbb{R}$, then \mathbb{T} on \mathbb{Z} by conjugation and the corresponding crossed module is the symmetry of the rotation algebra A_{ϑ} . This gives a 2-groupoid with a single object, 1-morphisms \mathbb{T} and 2-morphisms $\mathbb{Z} \times \mathbb{T}$.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

3

algebraic 2-groupoid

Let $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ be a 2-groupoid, then \mathcal{G} is called 1-principal if the map $(r, d) : \mathcal{G}^1 \to \mathcal{G}^0 \times \mathcal{G}^0$ is one-to-one, 2-principal if the map $(r, d) : \mathcal{G}^2 \to \mathcal{G}^1 \times \mathcal{G}^1$ is one-to-one, and 1+2-principal if both 1-principal and 2-principal. If we replace one-to-one with onto, we get the notions of 1-transitive, 2-transitive, and 1+2-transitive. Note that 2-transitivity here is different from the property of each two nodes being connected by paths od length 2.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

< 回 > < 三 > < 三 >

algebraic 2-groupoid

Let $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ be a 2-groupoid, then \mathcal{G} is called 1-principal if the map $(r, d) : \mathcal{G}^1 \to \mathcal{G}^0 \times \mathcal{G}^0$ is one-to-one, 2-principal if the map $(r, d) : \mathcal{G}^2 \to \mathcal{G}^1 \times \mathcal{G}^1$ is one-to-one, and 1+2-principal if both 1-principal and 2-principal. If we replace one-to-one with onto, we get the notions of 1-transitive, 2-transitive, and 1+2-transitive. Note that 2-transitivity here is different from the property of each two nodes being connected by paths od length 2.

For each
$$x \in \mathcal{G}^0$$
 and $u \in \mathcal{G}^1$ $\mathcal{G}_x^x = \{u \in \mathcal{G}^1 : d(u) = r(u) = x\}$,
 $\mathcal{G}_u^u = \{a \in \mathcal{G}^2 : d(a) = r(a) = u\}$, and
 $\mathcal{G}_{u,x}^{u,x} = \{a \in \mathcal{G}^2 : d(a) = r(a) = u, d^2(a) = r^2(a) = x\}$.
We also have the isotropy groupoid $\mathcal{G}(x) = (\mathcal{G}^2(x), \mathcal{G}^1(x))$ where
 $\mathcal{G}^2(x) = \{a \in \mathcal{G}^2 : d^2(a) = r^2(a) = x\}$ and $\mathcal{G}^1(x) = \{r(a) : a \in \mathcal{G}^2(x)\}$
with vertical multiplication.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

・ロト ・ 一 ト ・ ヨト ・ ヨト

3

Example

We give three basic examples of 2-groupoids.

(i) (Transformation 2-group) Let S be an additive group with identity 0 acting from right on a set U and put $\mathcal{G}^1 = U \times S$ and $\mathcal{G}^0 = U \times \{o\}$. Let T be a multiplicative group with identity 1 acting from left on S and acting trivially from right on U and put $\mathcal{G}^2 = T \times U \times S$ and identify $U \times S \{1\} \times U \times S$. Assume that the left action of T on S is distributive

$$t \cdot (s + s') = t \cdot s + t \cdot s',$$

for $s, s' \in S$ and $t \in T$. Define r(u, s) = (u, 0) and $d(u, s) = (u \cdot s, 0)$ and partial multiplication by $(u, s) \cdot (u \cdot s, s') = (u, s + s')$ with $(u, s)^{-1} = (u \cdot s, -s)$. Also define r(t, u, s) = (1, u, s) and $d(t, u, s) = (1, t \cdot s)$ and vertical multiplication by $(t, u, t' \cdot s') \cdot_{v} (t', u, s') = (tt', u, s')$ with $(t, u, s)^{-v} = (t^{-1}, u, t \cdot s)$ and horizontal multiplication by $(t, u, s) \cdot_{h} (t, u \cdot s, s') = (t, u, s + s')$ with $(t, u, s)^{-h} = (t, u \cdot s, -s)$.

く 回 と く ヨ と く ヨ と …

Example

(ii) (Principal 2-groupoid) Let X be a set and put $\mathcal{G}^2 = X^{(5)}$, $\mathcal{G}^1 = X^{(3)}, \mathcal{G}^0 = X$. Define r(x, y, z) = z and d(, y, z) = x and $(x, y, z) \cdot (z, u, v) = (x, y, v)$ with $(x, y, z)^{-1} = (z, y, x)$. Define r(x, y, z, u, v) = (x, u, v) and d(x, y, z, u, v) = (x, y, v) and vertical multiplication by $(x, y, z, u, v) \cdot_v (x, u, s, t, v) = (x, y, z, t, v)$ with $(x, y, z, u, v)^{-v} = (x, u, z, y, v)$ and horizontal multiplication by $(x, y, z, u, v) \cdot_h (v, w, s, t, r) = (x, y, s, u, r)$ with $(x, y, z, u, v)^{-h} = (v, u, z, y, x)$. (iii) (Groupoid bundle) If $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ satisfies d(u) = r(u) for each $u \in \mathcal{G}^1$ then $\mathcal{G} = \bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}(x)$ is a groupoid bundle.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

◆□ ▶ ◆ □ ▶ ◆ □ ▶

Similarity

For 2-groupoids \mathcal{G} and \mathcal{H} , a vertical morphism $\varphi : \mathcal{G} \to \mathcal{H}$ of 2-groupoids is a pair $\varphi = (\varphi^2, \varphi^1)$ such that $\varphi^2(a \cdot b) = \varphi^2(a) \cdot \varphi^2(b)$ and $\varphi^1(uv) = \varphi^1(u)\varphi^2(v)$, for $a, b \in \mathcal{G}^2$ and $u, v \in \mathcal{G}^1$, whenever both sides are defined. Two vertical morphisms φ, ψ from \mathcal{G} to \mathcal{H} are called similar if there are maps $\vartheta^2 : \mathcal{G}^1 \to \mathcal{H}^2$ and $\vartheta^1 : \mathcal{G}^0 \to \mathcal{H}^1$ such that

$$d(\vartheta^2(u)) = \vartheta^1(d(u)), \ r(\vartheta^2(u)) = \vartheta^1(r(u))$$

and

$$\vartheta^2 \circ r(a) \cdot_{\mathrm{v}} \varphi^2(a) = \psi^2(a) \cdot_{\mathrm{v}} \vartheta^2 \circ d(a), \, \vartheta^1 \circ r(u) \varphi^1(u) = \psi^1(u) \vartheta^1 \circ r(u)$$

for $u \in \mathcal{G}^1$ and $a \in \mathcal{G}^2$. We write $\varphi \sim_v \psi$. We say that \mathcal{G} and \mathcal{H} are v-similar if there are vertical morphisms $\varphi : \mathcal{G} \to \mathcal{H}$ and $\psi : \mathcal{H} \to \mathcal{G}$ such that $\varphi \circ \psi \sim_v id_{\mathcal{H}}$ and $\psi \circ \varphi \sim_v id_{\mathcal{G}}$. The notions of horizontal morphisms and h-similarity are defined similarly and the latter is denoted by \sim_h .

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

・ 「 ト ・ ヨ ト ・ ヨ ト

3

Definition

Let $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ be a 2-groupoid and $\mathcal{E} = (\mathcal{E}^1, \mathcal{E}^0)$ with $\mathcal{E}^0 \subseteq \mathcal{G}^0$ and $\mathcal{E}^1 \subseteq \{u \in \mathcal{G}^1 : d(u), r(u) \in \mathcal{E}^0\}$, the 2-groupoid $\mathcal{G}_{\mathcal{E}} = (\mathcal{E}^2, \mathcal{E}^1, \mathcal{E}^0)$, where $\mathcal{E}^2 = \{a \in \mathcal{G}^2 : d(a), r(a) \in \mathcal{E}^1\}$, is called the restriction of \mathcal{G} to \mathcal{E} . We say that \mathcal{E} is full if \mathcal{E}^0 meets each equivalence class in \mathcal{G}^0 and \mathcal{E}^1 meets each equivalence class in \mathcal{G}^1 .

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

イロト イポト イヨト イヨト

I nar

The next lemma is proved by Ramsay for groupoids (Ramsay, 1971).

Lemma If \mathcal{E} is full then $\mathcal{G}_{\mathcal{E}} \sim_{v} \mathcal{G}$.

イロト イヨト イヨト

-

The next lemma is proved by Ramsay for groupoids (Ramsay, 1971).

Lemma

If \mathcal{E} is full then $\mathcal{G}_{\mathcal{E}} \sim_{v} \mathcal{G}$.

Corollary

Every 2-groupoid is v-similar to a groupoid bundle. A 2-groupoid is v-similar to a groupoid if and only if its objects consists of only one equivalence class.

Abstract **2-groupoids** *C**-algebras of 2-groupoids References *References* **2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems**

Identification

We identify \mathcal{G}^0 with a subset of \mathcal{G}^1 and \mathcal{G}^1 with a subset of \mathcal{G}^2 by identifying $x \in \mathcal{G}^0$ with 1_x and $u \in \mathcal{G}^1$ with 1_u .

Definition

A topological 2-groupoid is a 2-groupoid $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ and a topology on \mathcal{G}^2 such that (i) The maps $u \mapsto u^{-1}$ and $a \mapsto a^{-v}$, $a \mapsto a^{-h}$ are continuous on \mathcal{G}^1 and \mathcal{G}^2 . (ii) The maps $(u, v) \mapsto uv$ and $(a, b) \mapsto a \cdot_v b$, $(a, b) \mapsto a \cdot_h b$ are continuous on their domains.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うの()

(1* algebraic 2-groupoids		2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems
---------------------------	--	---

Lemma

For any topological 2-groupoid $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$, (i) The maps $u \mapsto u^{-1}$ and $a \mapsto a^{-v}$, $a \mapsto a^{-h}$ are homeomorphisms on \mathcal{G}^1 and \mathcal{G}^2 . (ii) The source and range maps d, r are continuous on \mathcal{G}^1 and \mathcal{G}^2 . (iii) If \mathcal{G}^1 is Hausdorff, $\mathcal{G}^0 \subseteq \mathcal{G}^1$ is closed, and if \mathcal{G}^2 is Hausdorff, $\mathcal{G}^0 \subseteq \mathcal{G}^1, \mathcal{G}^1 \subseteq \mathcal{G}^2$ and $\mathcal{G}^0 \subseteq \mathcal{G}^2$ are closed. (iv) If \mathcal{G}^0 is Hausdorff, $\mathcal{G}^{(1)} \subseteq \mathcal{G}^1 \times \mathcal{G}^1$ is closed, and if \mathcal{G}^1 is Hausdorff, $\mathcal{G}^{(2v)} \subseteq \mathcal{G}^2 \times \mathcal{G}^2$ and $\mathcal{G}^{(2h)} \subseteq \mathcal{G}^2 \times \mathcal{G}^2$ are closed. (v) For the range equivalence $a \sim_r b$ defined by r(a) = r(b), the orbit space \mathcal{G}^2/\sim_r is homeomorphic to \mathcal{G}^1 . Similarly \mathcal{G}^1/\sim_r is homeomorphic to \mathcal{G}^0 .

Definition

A locally compact 2-groupoid is a topological 2-groupoid $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ such that $\mathcal{G}^0, \mathcal{G}^1$ are Hausdorff Borel subsets of \mathcal{G}^2 and every point of \mathcal{G}^2 has an open, relatively compact, Hausdorff neighborhood.

-

Definition

A locally compact 2-groupoid is a topological 2-groupoid $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ such that $\mathcal{G}^0, \mathcal{G}^1$ are Hausdorff Borel subsets of \mathcal{G}^2 and every point of \mathcal{G}^2 has an open, relatively compact, Hausdorff neighborhood.

For the rest of this talk, ${\mathcal G}$ is a locally compact 2-groupoid. We put

 $C_c(\mathcal{G}) = \{f : \mathcal{G}^2 \to \mathbb{C} : f \text{ is continuous and } supp(f) \subseteq \mathcal{G}^2 \text{ is compact}\},\$

where supp(f) is the complement of the union of open Hausdorff subsets of \mathcal{G}^2 on which f vanishes. By assumption \mathcal{G}^2 is a union of compact Hausdorff sets K and on the algebraic direct limit $C_c(\mathcal{G})$ is endowed with an inductive limit topology.

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

・ロト ・ 一下・ ・ ヨト・

-

Definition

Let \mathcal{G} be a locally compact 2-groupoid. A continuous left 2-Haar system on \mathcal{G} consists of two families of positive Borel measures $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$ on \mathcal{G}^2 , where u ranges over \mathcal{G}^1 and x ranges over \mathcal{G}^0 , such that $(i) \ supp(\lambda_v^u) = \mathcal{G}^u$ and $supp(\lambda_h^x) = \mathcal{G}^x$, for each $u \in \mathcal{G}^1$ and $x \in \mathcal{G}^0$. (ii) For any $f \in C_c(\mathcal{G})$, the map $u \mapsto \int f d\lambda_v^u$ is continuous on \mathcal{G}^1 and the map $x \mapsto \int f d\lambda_h^x$ is continuous on \mathcal{G}^0 . (iii) For any $f \in C_c(\mathcal{G})$,

$$\int f(a \cdot_{\mathrm{v}} b) d\lambda_{\mathrm{v}}^{d(a)}(b) = \int f(b) d\lambda_{\mathrm{v}}^{r(a)}(b)$$

and

$$\int f(a \cdot_{\mathbf{h}} b) d\lambda_{\mathbf{h}}^{d^2(a)}(b) = \int f(b) d\lambda_{\mathbf{h}}^{r^2(a)}(b).$$

Abstract 2-groupoids C^* -algebras of 2-groupoids References

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Definition

Let \mathcal{G} be a locally compact 2-groupoid. A continuous left 2-Haar system on \mathcal{G} consists of two families of positive Borel measures $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$ on \mathcal{G}^2 , where u ranges over \mathcal{G}^1 and x ranges over \mathcal{G}^0 , such that $(i) \ supp(\lambda_v^u) = \mathcal{G}^u$ and $supp(\lambda_h^x) = \mathcal{G}^x$, for each $u \in \mathcal{G}^1$ and $x \in \mathcal{G}^0$. (ii) For any $f \in C_c(\mathcal{G})$, the map $u \mapsto \int f d\lambda_v^u$ is continuous on \mathcal{G}^1 and the map $x \mapsto \int f d\lambda_h^x$ is continuous on \mathcal{G}^0 . (iii) For any $f \in C_c(\mathcal{G})$,

$$\int f(a \cdot_{\mathrm{v}} b) d\lambda_{\mathrm{v}}^{d(a)}(b) = \int f(b) d\lambda_{\mathrm{v}}^{r(a)}(b)$$

and

$$\int f(a \cdot_{\mathrm{h}} b) d\lambda_{\mathrm{h}}^{d^2(a)}(b) = \int f(b) d\lambda_{\mathrm{h}}^{r^2(a)}(b).$$

$$\int f(uv)d\lambda_{\rm v}^{d(u)}(v) = \int f(v)d\lambda_{\rm v}^{r(u)}(v).$$

Abstract 2-categories algebraic 2-groupoids C*-algebras of 2-groupoids References 2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Proposition

If \mathcal{G} has a continuous 2-Haar system, we have the continuous surjections:

$$\lambda_{\mathrm{v}}: C_c(\mathcal{G}^2) \to C_c(\mathcal{G}^1); \ f \mapsto \lambda_{\mathrm{v}}(f), \ \lambda_{\mathrm{v}}(f)(u) = \int f d\lambda_{\mathrm{v}}^u,$$

and

$$\lambda_{\mathrm{h}}: C_c(\mathcal{G}^2) o C_c(\mathcal{G}^0); \ f \mapsto \lambda_{\mathrm{h}}(f), \ \lambda_{\mathrm{h}}(f)(x) = \int f d\lambda_{\mathrm{h}}^x.$$

Moreover the maps $r: \mathcal{G}^2 \to \mathcal{G}^1$, $r: \mathcal{G}^1 \to \mathcal{G}^0$ and $r^2: \mathcal{G}^2 \to \mathcal{G}^0$ are open and the associated equivalence relations on \mathcal{G}^1 and \mathcal{G}^0 are open.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Abstract 2-groupoids C*-algebras of 2-groupoids References References 2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Example

The 2-Haar systems of the above examples are as follows:

イロト イヨト イヨト イヨト

- 문

Abstract 2-groupoids C*-algebras of 2-groupoids References References

Example

The 2-Haar systems of the above examples are as follows:

(i) (Transformation 2-group) Let S, T be locally compact groups with Haar measures λ_S and λ_T acting continuously on a locally compact Hausdorff space U as in Example 3.1(i) and $\mathcal{G}^2 = T \times U \times S$, then the vertical and horizontal left Haar systems on \mathcal{G} are given by

$$\lambda_{\mathbf{v}}^{(1,u,s)} = \lambda_T \times \delta_u \times \lambda_1, \quad \lambda_{\mathbf{h}}^{(1,u,0)} = \lambda_2 \times \delta_u \times \lambda_S \quad (u \in U, s \in S),$$

where λ_1 , λ_2 are arbitrary Borel measures with full support on S, T, respectively.

- 4 同 6 4 日 6 4 日 6

Abstract 2-groupoids C^* -algebras of 2-groupoids References	2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems
itelei ences	

Example

(*ii*) (Principal 2-groupoid) Let X be a locally compact Hausdorff space and $\mathcal{G}^2 = X^{(5)}$. Consider the homeomorphism

$$d: \mathcal{G}^{(x,u,v)} \to X^{(2)}; \ (x,y,z,u,v) \mapsto (y,z),$$

let α be any Borel measure on $X^{(2)}$ with full support such that for each $f \in C_c(\mathcal{G})$, the map

$$(x,u,v)\mapsto \int f(x,y,z,u,v)dlpha(y,z)$$

is continuous on $X^{(3)}$, then $\int f d\lambda_v^{(x,u,v)} = \int f(x, y, z, u, v) d\alpha(y, z)$ defines a vertical left Haar system. The horizontal case is treated similarly.

Abstract 2-groupoids C*-algebras of 2-groupoids References References

Example

(*iii*) (Groupoid bundle) Let $\mathcal{G} = \bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}(x)$ be a locally compact groupoid bundle. The 2-Haar system is essentially unique (if it exists), that is any two systems $\{\lambda_v^u, \lambda_h^x\}$ and $\{\sigma_v^u, \sigma_h^x\}$ are related via $\lambda_v^u = h(u)\sigma_v^u$ and $\lambda_h^x = k(x)\sigma_h^x$, where $h \in C(\mathcal{G}^1)_+$ and $k \in C(\mathcal{G}^0)_+$.

・ロト ・ 一下・ ・ ヨト・

-

ebraic 2-groupoids pological 2-groupoids and 2-Haar systems

Definition

A locally compact 2-groupoid \mathcal{G} is called *r*-discrete if $\mathcal{G}^0 \subseteq \mathcal{G}^1$ and $\mathcal{G}^1 \subseteq \mathcal{G}^2$ are open.

Abstract **2-groupoids** *C**-algebras of 2-groupoids References *References* **2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems**

Definition

A locally compact 2-groupoid \mathcal{G} is called *r*-discrete if $\mathcal{G}^0 \subseteq \mathcal{G}^1$ and $\mathcal{G}^1 \subseteq \mathcal{G}^2$ are open.

Lemma

If \mathcal{G} is *r*-discrete, then (*i*) for each $u \in \mathcal{G}^1$ and $x \in \mathcal{G}^0$, \mathcal{G}^u and \mathcal{G}^x are open in \mathcal{G}^2 , (*ii*) if a continuous 2-Haar system exists, it is essentially the system of counting measures. In this case, $d, r : \mathcal{G}^2 \to \mathcal{G}^1$, $d, r : \mathcal{G}^1 \to \mathcal{G}^0$, and $d^2, r^2 : \mathcal{G}^2 \to \mathcal{G}^0$ are local homeomorphisms.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Abstract 2-groupoids C^* -algebras of 2-groupoids References

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Definition

Let \mathcal{G} be a locally compact 2-groupoid. A subset s of \mathcal{G}^2 is called a \mathcal{G}^1 -set if the restrictions of d and r to s are one-to-one. This is equivalent to $s \cdot_{\mathbf{v}} s^{-1}$ and $s^{-1} \cdot_{\mathbf{v}} s$ being contained in \mathcal{G}^1 . A subset s of \mathcal{G}^2 is called a \mathcal{G}^0 -set if the restrictions of d^2 and r^2 to s are one-to-one, or equivalently $s \cdot_{\mathbf{h}} s^{-1}$ and $s^{-1} \cdot_{\mathbf{h}} s$ are contained in \mathcal{G}^0 .

Abstract 2-groupoids C*-algebras of 2-groupoids References

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Definition

Let \mathcal{G} be a locally compact 2-groupoid. A subset s of \mathcal{G}^2 is called a \mathcal{G}^1 -set if the restrictions of d and r to s are one-to-one. This is equivalent to $s \cdot_{\mathbf{v}} s^{-1}$ and $s^{-1} \cdot_{\mathbf{v}} s$ being contained in \mathcal{G}^1 . A subset s of \mathcal{G}^2 is called a \mathcal{G}^0 -set if the restrictions of d^2 and r^2 to s are one-to-one, or equivalently $s \cdot_{\mathbf{h}} s^{-1}$ and $s^{-1} \cdot_{\mathbf{h}} s$ are contained in \mathcal{G}^0 .

In the above definition the products are considered as products of sets. Note that both \mathcal{G}^1 -sets and \mathcal{G}^0 -sets form an inverse semigroup, and for each $a \in \mathcal{G}^2$ and \mathcal{G}^1 -set s, if $d(a) \in r(s)$ (resp. $r(a) \in d(s)$) then the set $a \cdot_{\mathbf{v}} s$ (resp. $s \cdot_{\mathbf{v}} a$) is a singleton, and so defines an element of \mathcal{G}^2 denoted again by $a \cdot_{\mathbf{v}} s$ (resp. $s \cdot_{\mathbf{v}} a$). Also there is a map $r(s) \to d(s)$; $u \mapsto u \cdot s := d(u \cdot_{\mathbf{v}} s)$, satisfying $u \cdot (s \cdot_{\mathbf{v}} t) = (u \cdot s) \cdot_{\mathbf{v}} t$, for \mathcal{G}^1 -sets s, t. Similarly, for $a \in \mathcal{G}^2$ and \mathcal{G}^0 -set s with $d^2(a) \in r^2(s)$ (resp. $r^2(a) \in d^2(s)$) the element $a \cdot_{\mathbf{h}} s$ (resp. $s \cdot_{\mathbf{v}} a$) of \mathcal{G}^2 is defined, and the map $r^2(s) \to d^(s)$; $x \mapsto x \cdot s := d^2(x \cdot_{\mathbf{h}} s)$, satisfies $x \cdot (s \cdot_{\mathbf{h}} t) = (x \cdot s) \cdot_{\mathbf{h}} t$, for \mathcal{G}^0 -sets s, t. Abstract **2-groupoids** C^{*}-algebras of 2-groupoids References

2-categories algebraic 2-groupoids topological 2-groupoids and 2-Haar systems

Proposition

For a locally compact 2-groupoid \mathcal{G} , the following are equivalent: (*i*) \mathcal{G} is r-discrete and has a continuous left 2-Haar system, (*ii*) The maps $r : \mathcal{G}^2 \to \mathcal{G}^1$ and $r^2 : \mathcal{G}^2 \to \mathcal{G}^0$ are local homeomorphisms, (*iii*) The product maps $\mathcal{G}^{(1)} \to \mathcal{G}^1$, $\mathcal{G}^{(2v)} \to \mathcal{G}^1$ and $\mathcal{G}^{(2h)} \to \mathcal{G}^0$ are local homeomorphisms, (*iv*) \mathcal{G}^2 has an open basis consisting of open \mathcal{G}^1 -sets and one consisting of open \mathcal{G}^0 -sets.

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Associated measures

Let \mathcal{G} be a locally compact 2-groupoid with continuous left 2-Haar system $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$, let $\{\lambda_{vu}\}$ and $\{\lambda_{hx}\}$ be the images of this system under the inverse maps $a \mapsto a^{-v}$ and $a \mapsto a^{-h}$. Then the latter is a continuous right 2-Haar system. Borel measures μ^1 and μ^0 on \mathcal{G}^1 and \mathcal{G}^0 induce measures

$$u_{
m v}=\int\lambda_{
m v}^{u}d\mu^{1}(u),\,\,
u_{
m h}=\int\lambda_{
m h}^{x}d\mu^{0}(x)$$

with images

$$u_{\mathrm{v}}^{-1} = \int \lambda_{\mathrm{v}u} d\mu^{1}(u), \ \nu_{\mathrm{h}}^{-1} = \int \lambda_{\mathrm{h}x} d\mu^{0}(x)$$

and induced measures

$$u_{
m v}^2 = \int \lambda_{
m v}^u imes \lambda_{
m v u} \, d\mu^1(u), \,\,
u_{
m h}^2 = \int \lambda_{
m h}^x imes \lambda_{
m h x} \, d\mu^0(x).$$

(E)

э

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Definition

The Borel measure μ^1 on \mathcal{G}^1 is called quasi-invariant if $\nu_v \sim \nu_v^{-1}$. The Borel measure μ^0 on \mathcal{G}^0 is called quasi-invariant if $\nu_h \sim \nu_h^{-1}$.

글 > : < 글 > : :

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C [*] -algebras
References	<i>r</i> -discrete principal 2-groupoids

Definition

The Borel measure μ^1 on \mathcal{G}^1 is called quasi-invariant if $\nu_v \sim \nu_v^{-1}$. The Borel measure μ^0 on \mathcal{G}^0 is called quasi-invariant if $\nu_h \sim \nu_h^{-1}$.

from the uniqueness of the Radon-Nikodym derivative we have the following result which defines vertical and horizontal modular functions. We put $\nu_{\rm v0} = D_{\rm v}^{\frac{1}{2}} \nu_{\rm v}$ and $\nu_{\rm h0} = D_{\rm h}^{\frac{1}{2}} \nu_{\rm h}$.

∃→ ∢∃→

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Proposition

For quasi-invariant measure μ^1 on \mathcal{G}^1 , there is a locally $\nu_{\rm v}$ -integrable positive function $D_{\rm v}$ such that $\nu_{\rm v} = D_{\rm v} \nu_{\rm v}^{-1}$ and (i) $D_{\rm v}(a \cdot {}_{\rm v} b) = D_{\rm v}(a) D_{\rm v}(b) (\nu_{\rm v}^2 - a.e), D_{\rm v}(a^{-\rm v}) = D_{\rm v}(a)^{-1} (\nu_{\rm v} - a.e),$ (ii) if $\mu'^1 = g^1 \mu^1$ where g^1 is positive and locally μ^1 -integrable then $D'_{\rm v} = (g^1 \circ r) D_{\rm v}(g^1 \circ d)^{-1}$ satisfies $\nu'_{\rm v} = D'_{\rm v} \nu'_{\rm v}^{-1}$. Similarly, for quasi-invariant measure μ^0 on \mathcal{G}^0 , there is a locally $\nu_{\rm v}$ -integrable positive function $D_{\rm h}$ such that $\nu_{\rm h} = D_{\rm h} \nu_{\rm h}^{-1}$ and relations similar to (i) and (ii) above hold.

BA 4 BA

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C [*] -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Non singular units

For locally compact topological spaces X and Y and surjective map $p: X \to Y$, a measure class C on X and (probability) measure $\mu \in \mathbb{C}$, $p_*\mathbb{C}$ is the measure class of $p_*\mu := \mu \circ p^{-1}$. A pseudo-image of $\mu \in \mathbb{C}$ is a measure in $p_*\mathbb{C}$. If (X, μ) and (Y, ν) are measure spaces and $s: X \to Y; x \mapsto x \cdot s$ is a bi-measurable bijection, then μ lifts to a measure $\mu \cdot s$ on Y defined by

$$\int f(y)d\mu \cdot s(y) = \int f(x \cdot s)d\mu(x) \quad (f \in C_c(Y))$$

and when $\mu \cdot s \ll \nu$ we denote the corresponding Radon-Nikodym derivative by $d\mu \cdot s/d\nu$ and say that s is non singular if it induces an isomorphism of the corresponding measure algebras.

通 とう きょう うちょう 日本

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C [*] -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Ergodic measures

For quasi-invariant measures μ^1 and μ^0 , subsets $A^1 \subseteq \mathcal{G}^1$ and $A^0 \subseteq \mathcal{G}^0$ are called almost invariant if $r(a) \in A^1$ is equivalent to $d(a) \in A^1$ $(\nu_{v}\text{-a.e.})$ and $r^2(a) \in A^0$ is equivalent to $d^2(a) \in A^0$ $(\nu_{h}\text{-a.e.})$. The measures μ^1 and μ^0 are called ergodic if every almost invariant set is null or co-null.

For arbitrary Borel measures μ^1 and μ^0 , the pseudo-images $[\mu^1]$ and $[\mu^0]$ of ν_v and ν_h under d and d^2 are quasi-invariant and in the same measure class as μ^1 and μ^0 if and only if μ^1 and μ^0 are quasi-invariant. If α_v^u and α_h^x are a pseudo-images of λ_v^u and λ_h^x then the measure class of α_v^u and α_h^x depend only on the orbits of u and x in \mathcal{G}^1 and \mathcal{G}^0 and α_v^u and α_h^x are ergodic, and every quasi-invariant pair carried by the orbits of u and x are equivalent to α_v^u and α_h^x .

通 と く ヨ と く ヨ と

- 10

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Modular functions

Let μ^1 be a Borel measure on \mathcal{G}^1 with induced measure ν_v and s be a ν_v -measurable \mathcal{G}^1 -set. The measure ν_v is called quasi-invariant under s if the map $a \mapsto a \cdot_v s^{-v}$ is non singular from $(d^{-1}(d(s)), \nu_v)$ to $(d^{-1}(r(s)), \nu_v)$. Let $\delta_v(\cdot, s) = d(\nu_v \cdot s^{-v})/d\nu_v$ be the corresponding Radon-Nikodym derivative. The measure μ^1 is called quasi-invariant under s if the map $u \mapsto u \cdot s^{-v}$ is non singular from $d(s), \mu^1$ to $r(s), \mu^1$ and $\Delta_v(\cdot, s) = d(\mu^1 \cdot s^{-v})/d\mu^1$ is the corresponding Radon-Nikodym derivative. For a Borel measure μ^0 on \mathcal{G}^0 , The horizontal functions δ_h and Δ_h are defined similarly.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Lemma

Under the above quasi-invariance properties, (i) $\delta_{v}(s(a), s) = \delta_{v}(a, s)$ (ν_{v} -a.e. $a \in d^{-1}(r(s))$, (ii) $\delta_{v}(u, s) = D_{v}(u \cdot s)\Delta_{v}(u, s)$ (μ^{1} -a.e. $u \in r(s)$), and the same for δ_{h} and Δ_{h} .

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Invariant sets

A \mathcal{G}^1 -set *s* is said to be Borel (continuous) if the restrictions of *d* and *r* to *s* are Borel isomorphisms (homeomorphisms) onto a Borel (open) subset of G^1 . It is called non singular if there is a Borel (continuous) positive function $\delta_v(\cdot, s)$ on r(s), bounded above and below on compact subsets of \mathcal{G}^1 , such that $\delta_v(d(a), s) = d(\lambda_v^u \cdot s^{-v})/d\lambda_v^u(a)$ for every $u \in \mathcal{G}^1$ and λ_v^u -a.e. $a \in d^{-1}(r(s))$. A non singular Borel \mathcal{G}^1 -set *s* is also non singular with respect to the induced measure ν_v of any Borel measure μ^1 on \mathcal{G}^1 and $\delta_v(d(a), s) = d(\nu_v \cdot s^{-v})/d\nu_v(a)$ for ν_v -a.e. $a \in d^{-1}(r(s))$. The set of non singular Borel \mathcal{G}^1 -sets also form an inverse semigroup and

$$\delta_{\mathrm{v}}(u, s \cdot_{\mathrm{v}} t) = \delta_{\mathrm{v}}(u, s) \delta_{\mathrm{v}}(u \cdot s, t) \ (u \in r(s \cdot_{\mathrm{v}} t),$$

$$ddv(u, s^{-v}) = \delta_v(u \cdot s^{-v}, s)^{-1} \ (u \in d(s)).$$

∃ ► < ∃ ►</p>

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C*-algebras of 2-groupoids	induced representations and reduced C [*] -algebras
References	r-discrete principal 2-groupoids

Notation

Let \mathcal{G} be a locally compact 2-groupoid with a fixed continuous left 2-Haar system $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$, for $f, g \in C_c(\mathcal{G})$ put

$$f *_{v} g(a) = \int f(a \cdot_{v} b) g(b^{-v}) d\lambda_{v}^{d(a)}(b), \quad f^{*_{v}}(a) = \overline{f}(a^{-v}),$$

and

$$f *_{\mathrm{h}} g(a) = \int f(a \cdot_{\mathrm{h}} b) g(b^{-\mathrm{h}}) d\lambda_{\mathrm{h}}^{d^{2}(a)}(b), \ f *_{\mathrm{h}}(a) = \overline{f}(a^{-\mathrm{h}}),$$

for each $a \in \mathcal{G}^2$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C [*] -algebras of 2-groupoids References	induced representations and reduced C^* -algebras <i>r</i> -discrete principal 2-groupoids
References	<i>r</i> -discrete principal <i>z</i> -groupoids

Lemma

 $C_c(\mathcal{G})$ is a topological *-algebra with respect to both of the vertical and horizontal convolutions and involutions, denoted by $C_{cv}(\mathcal{G})$ and $C_{ch}(\mathcal{G})$, respectively.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Representation

A representation of $C_{cv}(\mathcal{G})$ on a Hilbert space H is a *-homomorphism $L: C_{cv}(\mathcal{G}) \to B(H)$ which is continuous in the inductive limit topology on the domain and weak operator topology on the range. We have the same definition for representations of $C_{ch}(\mathcal{G})$. We only work with non-degenerate representations.

글 > - < 글 >

- 12

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Representation

A representation of $C_{cv}(\mathcal{G})$ on a Hilbert space H is a *-homomorphism $L: C_{cv}(\mathcal{G}) \to B(H)$ which is continuous in the inductive limit topology on the domain and weak operator topology on the range. We have the same definition for representations of $C_{ch}(\mathcal{G})$. We only work with non-degenerate representations.

Boundedness

For $f \in C_{cv}(\mathcal{G})$ put $\|f\|_{\mathbf{v},r} = \sup_{u \in \mathcal{G}^1} \int |f| d\lambda_{\mathbf{v}}^u, \quad \|f\|_{\mathbf{v},d} = \sup_{u \in \mathcal{G}^1} \int |f| d\lambda_{\mathbf{v}u}$ and $\|f\|_{\mathbf{v}} = max\{\|f\|_{\mathbf{v},r}, \|f\|_{\mathbf{v},d}\}.$

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Boundedness

For $f \in C_{cv}(\mathcal{G})$ put

$$||f||_{\mathbf{v},r} = \sup_{u \in \mathcal{G}^1} \int |f| d\lambda_{\mathbf{v}}^u, \quad ||f||_{\mathbf{v},d} = \sup_{u \in \mathcal{G}^1} \int |f| d\lambda_{\mathbf{v}u}$$

and $||f||_{v} = max\{||f||_{v,r}, ||f||_{v,d}\}$. This is a norm on $C_{cv}(\mathcal{G})$ defining a topology coarser than the inductive limit topology. We say that a representation L is v-bounded if there is a constant M > 0 such that $||L(f)|| \leq M||f||_{v}$, for each $f \in C_{cv}(\mathcal{G})$. We put $||f||^{v} = \sup_{L} ||L(f)||$, where the supremum is taken over all v-bounded non-degenerate representations. This is a C^* -seminorm on $C_{cv}(\mathcal{G})$ and $||f||^{v} \leq ||f||_{v}$, for each $f \in C_{cv}(\mathcal{G})$. The norms $||f||_{h}$ and $||f||^{h}$ are defined similarly on $C_{ch}(\mathcal{G})$ using h-bounded representations.

通 とう きょう うちょう 日本

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Definition

A vertical representation of \mathcal{G} (abbreviated as v-representation) consists of a quasi-invariant Borel measure μ^1 on \mathcal{G}^1 , a \mathcal{G}^1 -Hilbert bundle \mathcal{H} over (\mathcal{G}^1, μ^1) , and a map $\pi : \mathcal{G}^2 \to Iso(\mathcal{H})$ such that $(i) \pi(a)$ is a map from $\mathcal{H}_{d(a)}$ to $\mathcal{H}_{d(a)}$ and $\pi(u) = id_{\mathcal{H}_u}$, for all $a \in \mathcal{G}^2$ and $u \in \mathcal{G}^1$, $(ii) \pi(a \cdot b) = \pi(a)\pi(b)$ for ν_v^2 -a.e. (a, b), $(iii) \pi(a^{-v}) = \pi(a)^{-1}$ for ν_v -a.e. a, $(iv) a \mapsto \langle \pi(a)\xi \circ d(a), \eta \circ r(a) \rangle$ is measurable on \mathcal{G}^2 for all measurable sections ξ, η . h-representations are defined similarly using Hilbert bundles over (\mathcal{G}^0, μ^0) .

- 10

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Equivalence

Two v-representations $(\pi_1, \mathcal{H}_1, \mu_1^1)$ and $(\pi_2, \mathcal{H}_2, \mu_2^1)$ are equivalent if $\mu_1^1 \sim \mu_2^1$ and there is an isomorphism ϕ of Hilbert bundles from \mathcal{H}_1 onto \mathcal{H}_2 which intertwines π_1 and π_2 , that is

$$\pi_2(a)\phi\circ d(a)=\phi\circ r(a)\pi_1(a) ext{ for }
u_{ ext{v}} ext{-a.e. } a\in \mathcal{G}^2.$$

글 > - + 글 >

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Equivalence

Two v-representations $(\pi_1, \mathcal{H}_1, \mu_1^1)$ and $(\pi_2, \mathcal{H}_2, \mu_2^1)$ are equivalent if $\mu_1^1 \sim \mu_2^1$ and there is an isomorphism ϕ of Hilbert bundles from \mathcal{H}_1 onto \mathcal{H}_2 which intertwines π_1 and π_2 , that is

$$\pi_2(a)\phi \circ d(a) = \phi \circ r(a)\pi_1(a) \text{ for } \nu_{v}\text{-a.e. } a \in \mathcal{G}^2.$$

Let $(\pi, \mathcal{H}, \mu^1)$ be a v-representation and $\Gamma_v(\mathcal{H})$ be the Hilbert space of square integrable sections with respect to μ^1 .

ヨトィヨト

 $\begin{array}{c|c} & Abstract & quasi-invariant measures \\ & 2-groupoids & full <math>C^*\text{-algebras} \\ C^*\text{-algebras of 2-groupoids} & induced representations and reduced C^*-algebras} \\ & References & r-discrete principal 2-groupoids \\ \end{array}$

Lemma

Let $(\pi, \mathcal{H}, \mu^1)$ be a v-representation of $\mathcal{G}, f \in C_{cv}(\mathcal{G})$ and $\xi, \eta \in \Gamma_v(\mathcal{H})$, then

$$\langle ilde{\pi}(f) \xi, \eta
angle = \int f(a) \langle \pi(a) \xi \circ d(a), \eta \circ r(a)
angle d
u_{
m v0}(a)$$

defines a v-bounded representation of $C_{cv}(\mathcal{G})$ on $\Gamma_v(\mathcal{H})$, and two equivalent v-representations of \mathcal{G} induce equivalent v-bounded representations of $C_{cv}(\mathcal{G})$ as above.

When $\dim(\mathcal{H}_u)$ is constant, namely there is a Hilbert space H with $\mathcal{H}_u \simeq H$, for all $u \in \mathcal{G}^1$,

$$ilde{\pi}(f)\xi(u)=\int f(a)\pi(a)\xi\circ d(a)D_{\mathrm{v}}^{rac{1}{2}}(a)d\lambda_{\mathrm{v}}^{u}(a),$$

 μ^1 -a.e., for $f \in C_{cv}(\mathcal{G})$ and $\xi \in L^2(\mathcal{G}^1, \mu^1, H)$. In general $\tilde{\pi}$ is a direct sum of representations on constant fields over all possible dimensions. Similar statements hold for h-representations $(\pi, \mathcal{H}, \mu^0)$ and Hilbert space $\Gamma_{\rm h}(\mathcal{H})$ of square integrable sections with respect to μ^0 .

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Regular representation

Consider the measurable field of Hilbert spaces $L^2(\mathcal{G}^2, \lambda_v^u)$ with square integrable sections $L^2(\mathcal{G}^2, \nu_v) = \int^{\oplus} L^2(\mathcal{G}^2, \lambda_v^u) d\mu^1(u)$ where μ^1 is a quasi-invariant Borel measure on \mathcal{G}^1 . Then $\pi(a) : L^2(\mathcal{G}^2, \lambda_v^{d(a)}) \to L^2(\mathcal{G}^2, \lambda_v^{r(a)}); \pi(a)\xi(b) = \xi(a^{-v} \cdot_v b)$ is a v-representation of \mathcal{G} and

$$a\mapsto \langle \pi(a)\xi\circ d(a),\eta\circ r(a)
angle =\int \xi(a^{-\mathrm{v}}\cdot_{\mathrm{v}}b)ar\eta(b)d\lambda_{\mathrm{v}}^{r(a)}(b)$$

is continuous for $\xi, \eta \in \mathbb{C}_c(\mathcal{G})$ and measurable for $\xi, \eta \in L^2(\mathcal{G}^2, \nu_v)$. This is called the left regular representation of \mathcal{G} with respect to μ^1 . Similarly we could define the left regular representation of \mathcal{G} with respect to a quasi-invariant measure μ^0 on \mathcal{G}^0 .

Abstract 2-groupoids	quasi-invariant measures full C^* -algebras
C*-algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Lemma

The topological algebra $C_{cv}(\mathcal{G})$ has a left approximate identity in the inductive limit topology. Same holds for $C_{ch}(\mathcal{G})$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C [*] -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Modular function

The above lemma implies that v-left regular representations with respect to all quasi-invariant measures on \mathcal{G}^1 induce a faithful family of v-bounded representations of $C_{cv}(\mathcal{G})$. Also, for each quasi-invariant measure μ^1 on \mathcal{G}^1 , $C_{cv}(\mathcal{G})$ is a generalized Hilbert algebra under the inner product of $L^2(\mathcal{G}^2, \nu_v^{-1})$ whose left regular representation is equivalent to the v-left regular representation with respect to μ^1 [7, 2.1.10] and by Tomita-Takesaki theory we have a modular function $J_v: L^2(\mathcal{G}^2, \nu_v^{-1}) \to L^2(\mathcal{G}^2, \nu_v^{-1}); J_v\xi(a) = D_v^{\frac{1}{2}}(a)\bar{\xi}(a^{-v})$ and the modular operator

$$egin{aligned} \Delta_{\mathrm{v}} &: L^2(\mathcal{G}^2,
u_{\mathrm{v}}) \cap L^2(\mathcal{G}^2,
u_{\mathrm{v}}^{-1}) o L^2(\mathcal{G}^2,
u_{\mathrm{v}}) \cap L^2(\mathcal{G}^2,
u_{\mathrm{v}}^{-1}); \ & \Delta_{\mathrm{v}}\xi(a) = D_{\mathrm{v}}(a)\xi(a). \end{aligned}$$

The same observations hold for $C_{ch}(\mathcal{G})$.

(B)

Abstract 2-groupoids	quasi-invariant measures full C^* -algebras
C [*] -algebras of 2-groupoids References	induced representations and reduced C^* -algebras r -discrete principal 2-groupoids

Definition

The full vertical (resp. horizontal) C^* -algebra of \mathcal{G} is the completion of $C_{cv}(\mathcal{G})$ (resp. $C_{ch}(\mathcal{G})$) in $\|.\|^v$ (resp. $\|.\|^v$).

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Lemma

Let $\{L, H\}$ be a representation of $C_{cv}(\mathcal{G})$, there is a unique representation $\{L^1, H^1\}$ of $C_c(\mathcal{G}^1)$ such that

 $L(hf) = L^1(h)L(f), \quad L(fh) = L(f)L^1(h) \quad (h \in \mathbb{C}_c(\mathcal{G}^1), f \in C_{cv}(\mathcal{G}))$

where

$$hf(a)=h\circ r(a)f(a), \ \ fh(a)=f(a)h\circ d(a) \ \ \ (a\in \mathcal{G}^2).$$

Moreover for $f, g \in C_{cv}(\mathcal{G}), h \in \mathbb{C}_c(\mathcal{G}^1)$,

$$f *_{v} hg = fh *_{v} g, \ hf *_{v} g = h(f *_{v} g), \ (hf)^{*_{v}} = f^{*_{v}} h^{*},$$

where $h^*(u) = \bar{h}(u)$, for $u \in \mathcal{G}^1$. There is a representation $\{L^0, H^0\}$ of $C_c(\mathcal{G}^0)$ with similar relations to the horizontal convolution.

Corollary

 $C^*(\mathcal{G}^1)$ and $C^*(\mathcal{G}^0)$ are subalgebras of the multiplier algebras $M(C^*_{\mathrm{v}}(\mathcal{G}))$ and $M(C^*_{\mathrm{v}}(\mathcal{G}))$, respectively.

글 > : < 글 > : :

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C*-algebras of 2-groupoids References	induced representations and reduced C^* -algebras <i>r</i> -discrete principal 2-groupoids
References	r-discrete principal 2-groupoids

Notation

Every representation of $C_c(\mathcal{G})$ extends to a representation of $B(\mathcal{G})$ of bounded Borel functions on \mathcal{G}^2 with vertical or horizontal convolution. For a non singular Borel \mathcal{G}^1 -set s and $f \in B(\mathcal{G})$ we define $s \cdot_{v} f(a) = \delta_v^{\frac{1}{2}}(r(a), s)$ for $a \in r^{-1}(r(s))$, and zero otherwise, and $f \cdot_{v} s(a) = \delta_v^{\frac{1}{2}}(d(a), s^{-v})$ for $a \in d^{-1}(d(s))$, and zero otherwise, then $(s \cdot_{v} (t \cdot_{v} f) = (st) \cdot_{v} f, (f \cdot_{v} s) *_{v} g = f *_{v} (s \cdot_{v} g), (s \cdot_{v} f) *_{v} g = s \cdot_{v} (f *_{v} g)$ and $(f \cdot_{v} s)^* = s^{-v} \cdot_{v} f^*$, for non singular \mathcal{G}^1 -sets s, t and $f, g \in B(\mathcal{G})$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C*-algebras of 2-groupoids References	induced representations and reduced C^* -algebras <i>r</i> -discrete principal 2-groupoids

Notation

We denote $B(\mathcal{G})$ with vertical convolution by $B_{v}(\mathcal{G})$. Same relations hold for $B_{h}(\mathcal{G})$, that is $B(\mathcal{G})$ with horizontal convolution. Also we could find a unique representation V^{1} of the Borel ample semigroup of non singular \mathcal{G}^{1} -sets such that

$$L(s \cdot f) = V^{1}(s)L(f), \ L(f \cdot s) = L(f)V^{1}(s), \ V^{1}(s)L^{1}(h)V^{1}(s)^{*} = L^{1}(h^{s}),$$

for non singular \mathcal{G}^1 -set $s, f \in B_v(\mathcal{G})$ and $h \in C_c(\mathcal{G}^1)$, where $h^s(u) = h(us)$ for $u \in r(s)$, and zero otherwise. same holds for representations L, L^0 and a representation V^0 of the Borel ample semigroup of non singular \mathcal{G}^0 -sets.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- 12

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Theorem

If \mathcal{G} is a locally compact second countable 2-groupoid with left 2-Haar system $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$ with sufficiently many non singular \mathcal{G}^1 -sets (resp. \mathcal{G}^0 -sets) then every v-bounded (resp. h-bounded) representation of $C_{cv}(\mathcal{G})$ (resp. $C_{ch}(\mathcal{G})$) on a separable Hilbert space is the integration of a v-representation (resp. an h-representation) of \mathcal{G} .

Abstract	quasi-invariant measures
2 -groupoids C^* -algebras of 2-groupoids	full C^* -algebras induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Corollary

When \mathcal{G} is second countable with sufficiently many non singular \mathcal{G}^1 -sets (resp. \mathcal{G}^0 -sets), every representation of $C_{cv}(\mathcal{G})$ (resp. $C_{ch}(\mathcal{G})$) on a separable Hilbert space is v-bounded (resp. h-bounded) and there is a one-to-one correspondence between \mathcal{G}^1 -Hilbert bundles (resp. \mathcal{G}^0 -Hilbert bundles) and separable Hermitian $\mathbb{C}^*_v(\mathcal{G})$ -modules (resp. $\mathbb{C}^*_v(\mathcal{G})$ -modules) preserving intertwining operators.

- 12

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C*-algebras of 2-groupoids References	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Quotients

Let $\mathcal{G} = (\mathcal{G}^2, \mathcal{G}^1, \mathcal{G}^0)$ be a locally compact 2-groupoid with left 2-Haar system $\{\lambda_v^u\}$ and $\{\lambda_h^x\}$ and $\mathcal{H} = (\mathcal{H}^2, \mathcal{H}^1, \mathcal{H}^0)$ be a closed 2-subgroupoid, that is a 2-subgroupoid such that $\mathcal{H}^i \subseteq \mathcal{G}^i$ is closed for i = 0, 1, 2, with left 2-Haar system $\{\sigma_v^u\}$ and $\{\sigma_h^x\}$ such that $\mathcal{G}^1 \subseteq \mathcal{H}^2$ and $\mathcal{G}^0 \subseteq \mathcal{H}^1$. For the equivalence relations $a \sim_v b$ iff d(a) = r(b) and $a \cdot_v b \in \mathcal{H}^2$ and $a \sim_h b$ iff $d^2(a) = r^2(b)$ and $a \cdot_h b \in \mathcal{H}^2$, for $a, b \in \mathcal{G}^2$, the quotient space $\mathcal{H} \setminus \mathcal{G}$ is Hausdorff and locally compact and the quotient map: $\mathcal{G} \to \mathcal{H} \setminus \mathcal{G}$ is open. Also there are continuous open surjections from the quotient spaces to \mathcal{G}^1 and \mathcal{G}^0 induced by d and d^2 , respectively.

4 3 5 4 3 5 5

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C [*] -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Lemma

There are Bruhat approximate vertical and horizontal cross-sections for \mathcal{G} over $\mathcal{H}\backslash\mathcal{G}$, that is non negative continuous functions $b_{\rm v}$, $b_{\rm h}$ on \mathcal{G} whose supports have compact intersections respectively with $\mathcal{H}^2 \cdot_{\rm v} K$ and $\mathcal{H}^2 \cdot_{\rm h} K$ for each compact subset K of \mathcal{G}^2 such that

$$\int b_{\rm v}(c^{-{\rm v}}\cdot_{\rm v} a)d\sigma_{\rm v}^{r(a)}(c) = 1, \quad \int b_{\rm h}(c^{-{\rm h}}\cdot_{\rm h} a)d\sigma_{\rm h}^{r^2(a)}(c) = 1,$$

for each $a \in \mathcal{G}^2$.

- ∢ ≣ →

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Quotients

Consider equivalence relations on $\mathcal{G}^{(2v)}$ and $\mathcal{G}^{(2h)}$, $(a_1, b_1) \sim_v (a_2, b_2)$ iff $b_1 = b_2$ and $a_1 \cdot_v a_2^{-v} \in \mathcal{H}^2$ and $(a_1, b_1) \sim_h (a_2, b_2)$ iff $b_1 = b_2$ and $a_1 \cdot_h a_2^{-h} \in \mathcal{H}^2$, then the quotient spaces $\mathcal{H} \setminus \mathcal{G}^{(2v)}$ and $\mathcal{H} \setminus \mathcal{G}^{(2h)}$ are locally compact 2-groupoids with set of 1-morphisms $\mathcal{H} \setminus \mathcal{G}^1$ and $\mathcal{H} \setminus \mathcal{G}^0$ with left 2-Haar systems $\{\delta_{\dot{a}} \times \lambda_v^{d(\dot{a})}\}$ and $\{\delta_{\dot{a}} \times \lambda_h^{d^2(\dot{a})}\}$ with a ranging respectively over $\mathcal{H} \setminus \mathcal{G}^{(2v)}$ and $\mathcal{H} \setminus \mathcal{G}^{(2h)}$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

For $\varphi \in C_c(\mathcal{H})$ and $f \in C_c(\mathcal{G})$,

$$\varphi \cdot_{\mathrm{v}} f(a) = \int \varphi(c) f(c^{-\mathrm{v}} \cdot_{\mathrm{v}} a) d\sigma_{\mathrm{v}}^{r(a)}(c),$$

$$f \cdot_{\mathrm{v}} \varphi(a) = \int f(a \cdot_{\mathrm{v}} c) \varphi(c^{-\mathrm{v}}) d\sigma_{\mathrm{v}}^{d(a)}(c),$$

and

$$arphi \cdot_{\mathrm{h}} f(a) = \int \varphi(c) f(c^{-\mathrm{h}} \cdot_{\mathrm{h}} a) d\sigma_{\mathrm{h}}^{r^{2}(a)}(c),$$

 $f \cdot_{\mathrm{h}} \varphi(a) = \int f(a \cdot_{\mathrm{h}} c) \varphi(c^{-\mathrm{h}}) d\sigma_{\mathrm{h}}^{d^{2}(a)}(c),$

for $a \in \mathcal{G}^2$.

□ > < E > < E > ...

- 문

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Also for $\phi \in C_c(\mathcal{H} \setminus \mathcal{G}^{(2v)}), \psi \in C_c(\mathcal{H} \setminus \mathcal{G}^{(2v)})$ and $f \in C_c(\mathcal{G}),$

$$\phi \cdot_{\mathbf{v}} f(a) = \int \phi(\dot{a}^{-\mathbf{v}}, a \cdot_{\mathbf{v}} b) f(b^{-\mathbf{v}}) d\lambda_{\mathbf{v}}^{d(a)}(b),$$

$$f \cdot_{\mathrm{v}} \phi(a) = \int f(b) \phi(\dot{b}, b^{-\mathrm{v}} \cdot_{\mathrm{v}} a) d\lambda_{\mathrm{v}}^{r(a)}(b),$$

and

$$egin{aligned} &\psi \cdot_{\mathrm{v}} f(a) = \int \psi(\dot{a}^{-\mathrm{h}}, a \cdot_{\mathrm{h}} b) f(b^{-\mathrm{h}}) d\lambda_{\mathrm{h}}^{d^2(a)}(b), \ &f \cdot_{\mathrm{h}} \psi(a) = \int f(b) \psi(\dot{b}, b^{-\mathrm{h}} \cdot_{\mathrm{h}} a) d\lambda_{\mathrm{h}}^{r^2(a)}(b), \end{aligned}$$

for $a \in \mathcal{G}^2$.

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Then $X_{v} := C_{cv}(\mathcal{G})$ is a bimodule over $B_{v} := C_{c,v}(\mathcal{H})$ and $E_{v} := C_{c,v}(\mathcal{H} \setminus \mathcal{G}^{(2v)})$ with commuting actions on opposite sides and the action of $C_{c,v}(\mathcal{H})$ as double centralizers on $C_{cv}(\mathcal{G})$ extends to an action on $C_{v}^{*}(\mathcal{G})$, giving a *-homomorphism of $C_{c,v}(\mathcal{H})$ into the multiplier algebra $\mathcal{M}(C_{v}^{*}(\mathcal{G}))$, and the same holds for $C_{ch}(\mathcal{G})$.

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Consider $X_{\rm v}$ as a left $E_{\rm v}$ -module and right $B_{\rm v}$ -module with the following vector valued inner products $\langle f, g \rangle_{B_{\rm v}}(c) = \int \bar{f}(a^{-\rm v})g(a^{-\rm v} \cdot_{\rm v} c)d\lambda_{\rm v}^{r(c)}(a)$ and

$$\langle f,g\rangle_{E_{\mathrm{v}}}(\dot{a},a^{-\mathrm{v}}\cdot_{\mathrm{v}}b) = \int f(a^{-\mathrm{v}}\cdot_{\mathrm{v}}c)\overline{g}(b\cdot_{\mathrm{v}}c)d\sigma_{\mathrm{v}}^{r(a)}(c),$$

for $c \in \mathcal{H}^2$, $a, b \in \mathcal{G}^2$. Then

$$\langle f, gh \rangle_{B_{\mathbf{v}}} = \langle f, g \rangle_{B_{\mathbf{v}}} h, \ \langle ef, g \rangle_{B_{\mathbf{v}}} = \langle f, e^*g \rangle_{B_{\mathbf{v}}},$$

and

$$\langle ef, g \rangle_{E_{\mathbf{v}}} = e \langle f, g \rangle_{E_{\mathbf{v}}}, \ \langle f, gh \rangle_{E_{\mathbf{v}}} = \langle fh^*, g \rangle_{E_{\mathbf{v}}},$$

for $f, g \in X_v$, $h \in B_v$ and $e \in E_v$, and $f_1 \langle g, f_2 \rangle_{B_v} = \langle f_1, g \rangle_{E_v} f_2$, for $f_1, f_2, g \in X_v$. The same holds for the horizontal spaces and modules.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Lemma

The linear span of $\{\langle f, g \rangle_{E_{v}} : f, g \in X_{v}\}$ contains a left approximate identity for E_{v} in the inductive limit topology and is dense in E_{v} and $C_{v}^{*}(\mathcal{H} \setminus \mathcal{G}^{(2v)})$). Similarly the linear span of $\{\langle f, g \rangle_{B_{v}} : f, g \in X_{v}\}$ is dense in B_{v} and $C_{v}^{*}(\mathcal{H})$. Same holds for E_{h} B_{h} .

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	<i>r</i> -discrete principal 2-groupoids

Corollary

The C^* -algebras $C^*_{v}(\mathcal{G}^{(2v)})$ and $C^*_{v}(\mathcal{G}^1)$ are strongly Morita equivalent. Similarly, $C^*_{h}(\mathcal{G}^{(2h)})$ and $C^*_{v}(\mathcal{G}^0)$ are strongly Morita equivalent.

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Conditional expectation

Now by Rieffel construction, each v-representation of $C_v^*(\mathcal{G}^1)$ induces a v-representation of $C_v^*(\mathcal{G}^{(2v)})$ and then restricts to a v-representation of $C_v^*(\mathcal{G})$ which acts on $C_v^*(\mathcal{G}^{(2v)})$ as double centralizers, in other words, the restriction map $P_v: C_{c,v}(\mathcal{G}) \to C_{c,v}(\mathcal{G}^1)$ is a generalized conditional expectation in the sense of (Rieffel, 1974). Similarly we have a generalized conditional expectation $P_h: C_{c,h}(\mathcal{G}) \to C_{c,h}(\mathcal{G}^0)$.

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Conditional expectation

Now by Rieffel construction, each v-representation of $C_v^*(\mathcal{G}^1)$ induces a v-representation of $C_v^*(\mathcal{G}^{(2v)})$ and then restricts to a v-representation of $C_v^*(\mathcal{G})$ which acts on $C_v^*(\mathcal{G}^{(2v)})$ as double centralizers, in other words, the restriction map $P_v: C_{c,v}(\mathcal{G}) \to C_{c,v}(\mathcal{G}^1)$ is a generalized conditional expectation in the sense of (Rieffel, 1974). Similarly we have a generalized conditional expectation $P_h: C_{c,h}(\mathcal{G}) \to C_{c,h}(\mathcal{G}^0)$.

More generally, if \mathcal{G} is second countable and \mathcal{H} is a closed 2-subgroupoid such that both \mathcal{G} and \mathcal{H} have sufficiently many non singular Borel sets, the restriction map from $C_{cv}(\mathcal{G})$ to $C_{cv}(\mathcal{H})$ is a generalized conditional expectation, and the same for $C_{ch}(\mathcal{G})$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Induced representation

For the representation of $C_{\rm v}^*(\mathcal{G}^1)$ given by multiplication on $L^2(\mathcal{G}^1, \mu^1)$ the induced representation $Ind\mu^1$ acts on $L^2(\mathcal{G}^1, \nu_{\rm v}^{-1})$ by convolution on the left, namely

$$\langle Ind\mu^1(f)\xi,\eta\rangle = \int \int \int f(a\cdot_{\mathbf{v}} b)\xi(b^{-\mathbf{v}})\bar{\eta}(a)d\lambda^u_{\mathbf{v}}(b)\lambda_{\mathbf{v},u}(a)d\mu^1(u),$$

for $f \in C_{cv}(\mathcal{G})$ and $\xi, \eta \in L^2(\mathcal{G}^1, \nu_v^{-1})$. When μ^1 is quasi-invariant , $Ind\mu^1$ is just the left regular representation on μ^1 . In this case, $ker(Ind\mu^1)$ consists of those $f \in C_{cv}(\mathcal{G})$ that f = 0 on $supp(\nu_v^{-1})$. Since \mathcal{G}^1 has a faithful family of quasi-invariant measures, $C_{cv}(\mathcal{G})$ has a faithful family of v-bounded representations (consisting of induced representations of such quasi-invariant measures).

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Reduced C^* -algebras

In particular, $||f||_{red}^{\mathsf{v}} := \sup_{\mu^1} ||Ind\mu^1(f)||$ is a C^* -norm, where μ^1 ranges over all quasi-invariant Borel measures on \mathcal{G}^1 , and $||f||_{red}^{\mathsf{v}} \leq ||f||^{\mathsf{v}}$, for each $f \in C_{cv}(\mathcal{G})$. Similarly $||f||_{red}^{\mathsf{h}} := \sup_{\mu^0} ||Ind\mu^0(f)|| \leq ||f||^{\mathsf{h}}$ is a C^* -norm, where μ^0 ranges over all quasi-invariant Borel measures on \mathcal{G}^0 . The completions $C^*_{\mathsf{v},red}(\mathcal{G})$ and $C^*_{\mathsf{h},red}(\mathcal{G})$ of $C_{cv}(\mathcal{G})$ and $C_{ch}(\mathcal{G})$ with respect to these C^* -norms are called the vertical and horizontal reduced C^* -algebras of \mathcal{G} , which are quotients of the vertical and horizontal full C^* -algebras $C^*_{\mathsf{v}}(\mathcal{G})$ and $C^*_{\mathsf{h}}(\mathcal{G})$ of \mathcal{G} .

프 (프)

	uasi-invariant measures
C [*] -algebras of 2-groupoids in	ull C^* -algebras nduced representations and reduced C^* -algebras -discrete principal 2-groupoids

Proposition

If a second countable locally compact groupoid \mathcal{G} has two 2-Haar systems $\{\lambda_v^u\}$, $\{\lambda_h^x\}$ and $\{\sigma_v^u\}$, $\{\sigma_h^x\}$ and it has sufficiently many non singular Borel \mathcal{G}^1 -sets (resp. \mathcal{G}^0 -sets) with respect to both systems, then the corresponding C^* -algebras $C_v^*(\mathcal{G}, \lambda)$ and $C_v^*(\mathcal{G}, \sigma)$ (resp. $C_h^*(\mathcal{G}, \lambda)$ and $C_h^*(\mathcal{G}, \sigma)$) are strongly Morita equivalent.

∃→ ∢∃→

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

we describe the reduced C^* -algebras of *r*-discrete principal 2-groupoids and find their ideals and masa's.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

we describe the reduced C^* -algebras of *r*-discrete principal 2-groupoids and find their ideals and masa's.

Lemma

Let \mathcal{G} be an *r*-discrete 2-groupoids with 2-Haar system and $a \in \mathcal{G}^2$. Let $L = Ind\mu^1$ (resp. $L = Ind\mu^0$) be the representation of $C_{cv}(\mathcal{G})$ (resp. $C_{ch}(\mathcal{G})$) induced by the point mass $\mu^1 = \delta_{d(a)}$ (resp. $\mu^0 = \delta_{d^2(a)}$), then for every $f \in C_{cv}(\mathcal{G})$ (resp. $f \in C_{ch}(\mathcal{G})$),

$$f(a) = \langle L(f)\delta_u, \delta_a \rangle = L(f)\delta_u(a),$$

where u = d(a) (resp. $u = x := d^2(a)$) and δ_u, δ_a are regarded as unit vectors in $L^2(\mathcal{G}, \lambda_{vu})$ (resp. in $L^2(\mathcal{G}, \lambda_{hx})$). In particular, $max\{||f||_{\infty}, ||f||_2\} \leq ||f||_{red}^v$ (resp. the same for $||f||_{red}^h$) where $||.||_2$ is the norm in $L^2(\mathcal{G}, \lambda_{vu})$ (resp. in $L^2(\mathcal{G}, \lambda_{hx})$).

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

GNS-representation

Now the inclusion map $j_v: C_{cv}(\mathcal{G}) \to C_0(\mathcal{G})$ extends to a norm decreasing linear map $j_v: C^*_{v red}(\mathcal{G}) \to C_0(\mathcal{G})$. Let us observe that the latter map is still injective: consider the surjection $p: C_{cv}(\mathcal{G}) \to C_c(\mathcal{G}^1)$, for a quasi-invariant probability measure μ^1 on \mathcal{G}^1 , the induced representation $Ind\mu^1$ is the GNS-representation of $\mu^1 \circ p$, namely $\int p(f) d\mu^1 = \langle Ind\mu^1(f)\xi_0, \xi_0 \rangle$ and $Ind\mu^{1}(f)\xi_{0} = f *_{v}\xi_{0} = j_{v}(f)$ where $\xi_{0} \in L^{2}(\mathcal{G}, \nu_{v}^{-1})$ is the characteristic function of \mathcal{G}^1 and j_v is now considered as the inclusion from $C_{cv}(\mathcal{G})$ into $L^2(\mathcal{G}, \nu_v^{-1})$, now the above lemma shows that $Ind\mu^{1}(g)\xi_{0} = j_{v}(g)$ remains valid for $g \in C^{*}_{v,red}(\mathcal{G})$ and if $j_{v}(g) = 0$ then $Ind\mu^1(q) = 0$ as ξ_0 is a cyclic vector, and this, being true for all quasi-invariant probability measures μ^1 on \mathcal{G}^1 , implies that q = 0. Also $\|g\|_{\infty} \leq \|g\|_{red}^{v}$, where on the left hand side g is regarded as a continuous function on \mathcal{G} . The same observations hold for $C^*_{h red}(\mathcal{G})$.

御 と く き と く き と … ほ

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Principal 2-groupoid

A 2-groupoid \mathcal{G} is called essentially v-principal (resp. h-principal), if for every invariant closed subset F of \mathcal{G}^1 (resp. \mathcal{G}^0) the set of $u \in F$ (resp. $x \in F$) whose isotropy group \mathcal{G}_u^u (resp. \mathcal{G}_x^x) is a singleton, is dense in F. It is called essentially principal, if for every invariant closed subset F of \mathcal{G}^0 the set of $x \in F$ whose isotropy groupoid $\mathcal{G}(x)$ is a singleton, is dense in F.

4 萬市

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Lemma

Let \mathcal{G} be an *r*-discrete essentially v-principal (resp. h-principal) 2-groupoids with 2-Haar system and $a \in \mathcal{G}^2$. For any quasi-invariant measure μ^1 on \mathcal{G}^1 (resp. μ^0 on \mathcal{G}^0) with support F, any v-representation (resp. h-representation) π on μ^1 (resp. μ^0), and any $f \in C_{cv}(\mathcal{G})$ (resp. $f \in C_{ch}(\mathcal{G})$) we have $\sup_F f \leq \|\tilde{\pi}(f)\|$.

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Correspondence

Let \mathcal{G} be a locally compact groupoid with 2-Haar system. For an invariant open subset U of \mathcal{G}^1 (resp. \mathcal{G}^0) let $I_{cv}(U) = \{ f \in C_{cv}(\mathcal{G}) : f(u) = 0 \ (u \notin \mathcal{G}_{U}) \} \text{ (resp.)}$ $I_{ch}(U) = \{f \in C_{ch}(\mathcal{G}) : f(x) = 0 \ (x \notin \mathcal{G}_U)\}$ and $I_v(U)$ (resp. I_h) be its closure. Let F be the complement of U in \mathcal{G}^1 (resp. G^0) then it follows from [7, 2.4.5] that $I_{v}(U)$ (resp. I_{h}) is isomorphic to $C_{v red}^{*}(\mathcal{G}_{U})$ (resp. $C^*_{h red}(\mathcal{G}_U)$), and it is a closed ideal of $C^*_{v red}(\mathcal{G})$ (resp. $C^*_{h,red}(\mathcal{G})$ whose quotient is isomorphic to $C^*_{v,red}(\mathcal{G}_F)$ (resp. $C^*_{\mathrm{h}\ red}(\mathcal{G}_F)$). If μ^1 (resp. μ^0) is a quasi-invariant measure on \mathcal{G}^1 (resp. on \mathcal{G}^0) with support F, U is the complement of F, then $I_{\rm v}(U) = ker(Ind\mu^1)$ (resp. $I_{\rm h} = ker(Ind\mu^0)$). This provides a one-to-one correspondence between invariant open subsets of \mathcal{G}^1 (resp. (G^0) and a family of closed ideals of $C^*_{v,red}(\mathcal{G})$ (resp. $C^*_{h,red}(\mathcal{G})$). Both sets are a lattice with respect to inclusion.

同 ト イヨ ト イヨ ト 二 ヨ

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

GNS-representation

When \mathcal{G} is *r*-discrete and essentially v-principal (resp. h-principal), the above correspondence is an order preserving bijection, namely all closed ideals of $C_{v,red}^*(\mathcal{G})$ (resp. $C_{h,red}^*(\mathcal{G})$) are of the form $I_v(U)$ (resp. I_h) for some invariant open subset U of \mathcal{G}^1 (resp. G^0) and the correspondence $U \mapsto I_v(U)$ (resp. I_h) preserves inclusion. Indeed, in this case, the surjection p defined above is a conditional expectation and $Ind\mu^1$ (resp. $Ind\mu^0$) is the GNS-representation of $\mu^1 \circ p$ (resp. $\mu^0 \circ p$) and so $\|Ind\mu^1(f)\| \leq \|\tilde{\pi}(f)\|$ for $f \in C_{cv}(\mathcal{G})$ (resp. $\|Ind\mu^0(f)\| \leq \|\tilde{\pi}(f)\|$ for $f \in C_{ch}(\mathcal{G})$) hence $ker(\tilde{\pi})$ is equal to $I_v(U)$ (resp. I_h) where U is the complement of the support of μ^1 (resp. μ^0).

ゆう くほう くほう 二ほ

Abstract	quasi-invariant measures
2-groupoids	full C^* -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Lemma

Let \mathcal{G} be an *r*-discrete with 2-Haar system. An element *g* of $C^*_{v,red}(\mathcal{G})$ (resp. $C^*_{h,red}(\mathcal{G})$) commutes with each element of $C^*_v(\mathcal{G}^1)$ (resp. $C^*_h(\mathcal{G}^0)$) iff it vanishes off the isotropy group bundle $\bigsqcup_{u \in \mathcal{G}^1} \mathcal{G}^u_u$ (resp. $\bigsqcup_{x \in \mathcal{G}^0} \mathcal{G}^x_x$).

-

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Corollary

If \mathcal{G} is an *r*-discrete with 2-Haar system, $C_{v}^{*}(\mathcal{G}^{1})$ (resp. $C_{h}^{*}(\mathcal{G}^{0})$) is a masa in $C_{v,red}^{*}(\mathcal{G})$ (resp. $C_{h,red}^{*}(\mathcal{G})$) iff \mathcal{G}^{1} (resp. \mathcal{G}^{0}) is the interior of the isotropy group bundle $\bigsqcup_{u \in \mathcal{G}^{1}} \mathcal{G}_{u}^{u}$ (resp. $\bigsqcup_{x \in \mathcal{G}^{0}} \mathcal{G}_{x}^{x}$).

-

Abstract	quasi-invariant measures
2-groupoids	full C [*] -algebras
C^* -algebras of 2-groupoids	induced representations and reduced C^* -algebras
References	r-discrete principal 2-groupoids

Ample semigroup

In the above corollary, if moreover \mathcal{G} is essentially v-principal (resp. h-principal), the restriction map $p: C^*_{v,red}(\mathcal{G}) \to C^*_v(\mathcal{G}^1)$ (resp. $p: C^*_{h,red}(\mathcal{G}) \to C^*_h(\mathcal{G}^0)$) is a faithful surjective conditional expectation and there is a one-to-one correspondence between the ample semigroup of compact open \mathcal{G}^1 -sets (resp. \mathcal{G}^1 -sets) and the inverse semigroup of partial homeomorphisms of $C^*_v(\mathcal{G}^1)$ (resp. $C^*_h(\mathcal{G}^0)$) defined by conjugation with respect to the elements in the normalizer of $C^*_v(\mathcal{G}^1)$ (resp. $C^*_h(\mathcal{G}^0)$) in $C^*_{v,red}(\mathcal{G})$ (resp. $C^*_{h,red}(\mathcal{G})$) (c.f. [7, 2.4.8]).

Abstract 2-groupoids C^* -algebras of 2-groupoids References

- John C. Baez, An introduction to n-categories, Category theory and computer science (Santa Margherita Ligure, 1997), Lecture Notes in Comput. Sci., vol. 1290, Springer, Berlin, 1997, pp. 1–33.
- [2] Alcides Buss, Ralf Meyer, and Chenchang Zhu, Non-Hausdorff symmetries of C*-algebras, Mathematische Annalen 352 (2012), 73–97.
- [3] _____, A higher category approach to twisted actions on C*-algebras, Proc. Edinburgh Math. Soc. 56 (2013), 387–426.
- [4] Alain Connes, A survey of foliations and operator algebras, Operator algebras and applications, Part I (Kingston, Ont., 1980), Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628.
- Behrang Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology, Homotopy Appl. 9 (2007), no. 1, 75–106 (electronic).
- [6] Arlan Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253–322.
- [7] Jean Renault, A groupoid approach to C*-algebras, Lecture Notes in Mathematics, vol. 793, Springer-Verlag, Berlin-New York, 1980.
- [8] Marc Rieffel, Induced Representations of C^{*}-algebras 13 (1974), 176–257.

・ロト ・ 一下・ ・ ヨト・

-