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Find methods of constructing Banach spaces X such that the
elements of £(X) have desirable properties.

@ Although there is a deep understanding on methods
constructing Banach spaces with desirable properties the
corresponding problem for the space £(X) does not have
sufficient general answer.
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@ In fact, the only general result in this direction is the W. T.
Gowers - B. Maurey Theorem as was extended by V.
Ferenczi on the structure of £(X) with X hereditarily
indecomposable.

@ Recent results yield Banach spaces with very few
operators (i.e. spaces with the "scalar-plus-compact”
property). The goal of the present talk is to discuss these
recent developments.
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Hereditarily Indecomposable Banach spaces

@ A Banach space X is said to be Hereditarily
Indecomposable if no closed infinite dimensional subspace
admits non trivial bounded linear projection.

@ Every HI space does not contain subspaces with an
unconditional basis.

@ Also it is not a subspace of a space with an unconditional
basis.

@ Hence the two classes are completely separated and
Gowers’ dichotomy explains that every Banach space
should contain a member of one of the above classes.
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Strictly Singular Operators

@ Anoperator T : X — Y is called strictly singular, if its
restriction on every infinite dimensional subspace of X is
not an isomorphism.

@ The class of strictly singular operators is very similar to the
class of compact ones.

@ For example, in many spaces X the ideal of strictly singular
operators S(X) and the one of compact operators £(X)
coincide. In particular, this is the case in /,(N) spaces.

@ Inthe space LP(0,1),p # 2 and CJ[0, 1] the ideals S(X)
and K(X) are different.
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Operators on HI Banach spaces

Among the seminal properties of Hereditarily Indecomposable
Banach spaces is that they admit few operators in the following
sense:
@ (W. T. Gowers - B. Maurey) For every complex HI space X
dimL(X)/S(X) =1
@ (V. Ferenczi) For every real Banach X one of the following
holds

LX)/SX) =R, L(X)/S(X)=C, L(X)/S(X)=H

Where H denotes the algebra of quaternions.
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Operators on HI Banach spaces

@ A consequence of the above Theorem is that every
Fredholm operator T : X — X is of index 0. Hence every
Hereditarily Indecomposable space is not isomorphic to
any of its proper subspaces. In particular, HI spaces
answer negatively Banach’s Hyperplane Problem.
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Problem (Scalar-plus-Compact)

Does there exist a Banach space X such that every operator
T: X — Xisofthe form A + K, with K : X — X be a compact

operator.

@ This problem was stated by J. Lindenstrauss in 1969.

@ The solution of this problem is given in a joint work with
Richard Haydon.




The solution of the "Scalar-plus-Compact" problem

Theorem (S. A., R. Haydon, Acta Math. 2011)

There exists a L, Hereditarily Indecomposable Banach space
Xk such that X is isomorphic to /4(N) and every T : Xx — Xk
is of the form T = A/ + K with K a compact operator.




The solution of the "Scalar-plus-Compact" problem

Theorem (S. A., R. Haydon, Acta Math. 2011)

There exists a L, Hereditarily Indecomposable Banach space
Xk such that X is isomorphic to /4(N) and every T : Xx — Xk
is of the form T = A/ + K with K a compact operator.

@ A separable space is a L, space, if it is the closure of the
union of an increasing sequence of finite dimensional
spaces, each one isomorphic to ¢, of its dimension, with a
uniformly bounded constant.




The solution of the "Scalar-plus-Compact" problem

Theorem (S. A., R. Haydon, Acta Math. 2011)

There exists a L, Hereditarily Indecomposable Banach space
Xk such that X is isomorphic to /4(N) and every T : Xx — Xk
is of the form T = A/ + K with K a compact operator.

@ A separable space is a L, space, if it is the closure of the
union of an increasing sequence of finite dimensional
spaces, each one isomorphic to ¢, of its dimension, with a
uniformly bounded constant.

@ Since the space Xk has separable dual and it has a
Schauder basis, we have that the space £(Xk) is
separable.




The solution of the "Scalar-plus-Compact" problem

Theorem (S. A., R. Haydon, Acta Math. 2011)

There exists a L, Hereditarily Indecomposable Banach space
Xk such that X is isomorphic to /4(N) and every T : Xx — Xk
is of the form T = A/ + K with K a compact operator.

@ A separable space is a L, space, if it is the closure of the
union of an increasing sequence of finite dimensional
spaces, each one isomorphic to ¢, of its dimension, with a
uniformly bounded constant.

@ Since the space Xk has separable dual and it has a
Schauder basis, we have that the space £(Xk) is
separable.

@ This property is not preserved for the space L(Y), where
Y is a closed subspace of Xg.
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The solution of the "Scalar-plus-Compact" problem

@ To build the space Xk we combine two fundamental
methods for constructing non-classical Banach spaces.

@ The first method due to J. Bourgain and F. Delbaen (Acta
Math, 1980) concerns spaces with minimal £, structure.

@ The second one due to W. T. Gowers and B. Maurey
(JAMS 1993) is the fundamental technique for constructing
Hereditarily Indecomposable (HI) Banach spaces.




The solution of the "Scalar-plus-Compact" problem

@ It is notable that the space Xk belongs to the class of HI
spaces while its dual X} = ¢4(N) is a space with an
unconditional basis. This fact describes the extreme
structure of Xk.
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Theorem (S. A., R. Haydon, Th. Raikoftsalis)

There exists a L4, space X with the “scalar-plus-compact”
property and /1 — X.

@ This is clearly a non HI space with non separable dual and
with very few operators.
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Theorem (S. A., D. Freeman, R. Haydon, E. Odell, Th.

Raikoftsalis, Th. Schlumprecht, D. Zisimopoulou)

For every separable space X with X* separable , there exists a
Lo, space X with separable dual such that X contains a
subspace X which is isomorphic to X, the quotient space X/5
is hereditarily indecomposable and satisfies the
“scalar-plus-compact” property.




More spaces with the “scalar-plus-compact” property

Theorem (S. A., D. Freeman, R. Haydon, E. Odell, Th.

Raikoftsalis, Th. Schlumprecht, D. Zisimopoulou)

For every separable space X with X* separable and X** does
not contain ¢y, there exists a L, space X with separable dual,
the “scalar-plus-compact” property and X — X.




The compact operators of X

Theorem (J. Lindenstrauss)

If X is a separable L, space and X a subspace of X, then the
subalgebra A of K£(X) consisting of all operators having X as
an invariant subspace, has as quotient the compact operators
on X.




General Bourgain-Delbaen construction




General Bourgain-Delbaen construction

@ The classical L., spaces are the spaces C(K) with K a
compact set.




General Bourgain-Delbaen construction

@ The classical L., spaces are the spaces C(K) with K a
compact set.

@ The BD L, spaces are spaces with minimal Lo, structure.




General Bourgain-Delbaen construction

@ The classical L., spaces are the spaces C(K) with K a
compact set.

@ The BD L, spaces are spaces with minimal Lo, structure.

@ For example, the spaces which will be presented admit an
FDDi.e. X = (3} ,cy ®Mp) and for every L — N such that
both L, N\L are infinite the subspace Y = ., ®M, is a
reflexive one.
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General Bourgain-Delbaen construction

@ BD L, spaces are exotic Banach spaces.

@ The construction involves the choice of a separable
subspace of /., (N) while the norm is the usual supremum
norm.
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By induction we choose a sequence of finite sets (An);
andwe set 'y = UY_ Ak, I = UjL Ap.

@ Also by induction we choose linear

¢n : lao(Tn) = Loo(Dpiq)

and we define ip .1 : (oo(Mn) — ool pe1) as follows.

f(y), if yerly,
on(F)(7), it 7€ Any

in,n+1 (f) (7) = {
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f bulf)
in,n+1(f)
A0 A1 An A17,+1
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For every n < k we define ipk : £e(I'n) — (k) to be the
composition described as follows.

U1k

goo(rn) L"~"+L goo(rn-&-l) . . Eoo(l—\k—l)

= Loo(Tk)




General Bourgain-Delbaen construction

For every n < k we define ipk : £e(I'n) — (k) to be the
composition described as follows.

goo(rn) m goo(rn-&-l) e —> Eoo(l—\k—l) ﬂ’ goc (FL)

-

Un,k
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General Bourgain-Delbaen construction

A critical required property for the operators iy, x is that
there exists a C > 1 such that |/, «| < C.

We set I = U A, and we define
In : Loo(Fn) = Loo(T) @s in(f) = limip x(7).

The operators i, are well defined since for every n < p < k,
if feln(Tn) and v € Ap we have that

inp(F)(7) = ink(F)(7)-
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o If [ink| < Cthen in(f) € Lon(T).

Il < [in(H] < CJf].

@ Hence £y () ~C in(02(M)p)).
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General Bourgain-Delbaen construction

We set X(I') = U in(£eo(Tn)) <= Lo (T).
@ Clearly the space X(I') is L, space.

@ The variety of BD- L, spaces arises from the different
¢n : loo(Tn) = lon(Apy1) One can define.

@ In general, each ¢, is determined by a finite family
{ci: veAp.1}whereeachcy: (n(p) — R.

loo(Tn) 5 F— Gp(F) = {C2(f) 1 7€ Dpya).

@ Therefore, the variety of BD-L., spaces is depended on
the choice of the functionals {c} : v eT}.
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Hereditarily Indecomposable L, spaces

@ The choice of {c} : v € T} such that the resulting L,
space is HI.

@ The space will be depended on two sequences (1))}, (F);
of parameters where

@ (), is a decreasing to zero sequence of positive reals.

@ Each F; is a compact family of finite subsets of N.
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@ Foreachy el = U}.,Ap, inductively, we assign an identity

I'd(ﬁ/) = (nvj(ﬁ/)‘» F(’\,)),

such that
@ YE An.

e j(v) e Nanditis the weight(y).

e F(v) € Fj) and it is the history(y).
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Hereditarily Indecomposable L, spaces

We define ¢ : ¢ (Ip1) > R as
o ci(f) = f(n) + Nb*(f — ig.n(flry))-

1€ Dg,id(n) = (q,j(n) = j(v), F(n) = F(y)\{n})
@ b* € By, ryrg)-

° Ifj =2k —1,then b* = ef with weight(£) uniquely
determined by 7.

@ The definition of ¢ imposes the Hl structure in the space
Xk In particular, the ¢ with weight(~y) odd are the
conditional functionals and they are closely related to the
definition of the norming set in the Gowers Maurey
construction.
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A1 Aq Aq+l An Ar1+1
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Argyros Haydon L, space

@ The Argyros Haydon hereditarily indecomposable and £,
space Xy is a BD construction of the previous form which
is based in the following parameters.

@ A strictly increasing sequence of natural numbers (my);
with my > 4. (where \; = %j)

@ The sequence of compact families Ap, such that (n); is
strictly increasing sequences of natural numbers growing
faster than (m;);, where

Anj:{FCN: #anj}
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The scalar-plus-compact property of X

@ The space Xk is HI. Therefore every T € L£(Xk) is of the
form A/ + S with S strictly singular operator.

@ The scalar-plus-compact property of X, (i.e.
S(Xk) = K(Xk)) is heavily depended on the L, structure
of the space Xk.

@ The proof is based on the following facts which occur in the
Lo, setting.

@ For every v € I we have assigned the weight of ~.

@ The space Xk has local unconditional structure.
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The scalar-plus-compact property of X

@ A sequence (Xk)ken is a block sequence if there exist:

® Pi < Qi <...<Pk<Qqk<.. andyxe lo(Uf  Ag)such
that xx = iqk(yk).

@ We define the local support x; as
SUPPioc(Xk) = supp(yk) ={y €Tl : yk(7) # 0} and

Gy, = {weight(v) : ~ € supp(yx)}-
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SUPPlocTk




The scalar-plus-compact property of X

Proposition

Let (xx)ken b€ @ normalized block sequence such that either
(i) the sequence (Gy, ) ken is uniformly bounded, or

(i The sequence (Gyx, )ken is strictly increasing.

Then for every strictly singular operator S : Xx — Xx we have
that | S(xk)| — 0.




The scalar-plus-compact property of X

Proposition

Let T : Xx — X be a bounded linear non compact operator.
Then there exists a normalized block sequence (X )xen Such
that (Gy, )ken is either uniformly bounded or strictly increasing

and | T(xx)| - 0.




The scalar-plus-compact property of X

Let T : Xx — X, be a bounded linear operator. Then there
exists a scalar A such that the operator K = T — A\l is compact,
where [ : X, — X is the identity operator.
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HI- Augmentations

@ Let X(IN), I = U} ,Anbe aBD Ly space with separable
dual (i.e. X(IN)* ~ ¢1).

@ Let also X be a subspace of X(I') such that X~ is of infinite
dimension and Q well disposed in ¢1(T), i.e.

{fe X" : f finite rational combination of &}

is dense in X*.

@ Combining a recent result of D. Freeman, E. Odell, Th.
Schlumprecht, (Math.Ann., 2011) with some classical
results of W.B. Johnson, H.P. Rosenthal and M. Zippin we
conclude that for every Banach space X with separable
dual there exists a BD L, space X(I') such that X! is Q
well disposed in /4 (I").
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Let X(I'), X be as before.

A BD L, space X(I) is an HI Augmentation of the pair
(X(IN), X) if the following are satisfied:

o f=uX Apand A, A, (Hence T < T).
@ There exists a linear bounded operator ® : X (') — x(I).

@ There exists a subspace X of X(I") such that ®(X) = X
and ®|5, is an isomorphism.

@ The quotient space 36(?)/5( is HI and satisfies the
scalar-plus-compact property.

@ If /4 does not embed complementary into X*, then % (")
satisfies the scalar-plus-compact property.
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Theorem (S. A., D. Freeman, R. Haydon, E. Odell, Th.

Raikoftsalis, Th. Schlumprecht, D. Zisimopoulou)

For every separable space X with X* separable , there exists a
Lo, space X with separable dual such that X contains a
subspace X which is isomorphic to X, the quotient space X/5
is hereditarily indecomposable and satisfies the
“scalar-plus-compact” property.
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Theorem (S. A., D. Freeman, R. Haydon, E. Odell, Th.

Raikoftsalis, Th. Schlumprecht, D. Zisimopoulou)

For every separable space X with X* separable and X** does
not contain ¢y, there exists a Lo, space X with separable dual,
the “scalar-plus-compact” property and X — X.

| A

Corollary

Every separable reflexive Banach space embeds to a L,
space with the scalar-plus-compact property

@ The above result for separable uniformly convex Banach
spaces has been appeared in J. Funct. Anal. (2012).
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@ The HI Augmentation of the pair (X(I'), X) essentially
augments the initial set I'.

@ We start with two sequences of parameters (1))}, (Fj);,
where ();); is a decreasing to zero sequence of positive
reals and (F;); is a sequence of compact families of N with
complexity greater than the local ¢4 complexity of X(I').

@ The sets A, are recursively chosen and for every ~ € A
we define a BD functional ¢} : /(1) — R such that:
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o If ye Ajthen &% (x) = c*(Pn_1(x)), where
Pp_1: (T n_1) = €x(Tn_1) is the natural restriction map.

o Ifye Aj\Apthen & (f) = f(n) + \b*(f — iq.n(fl¢,)), where

1€ Bg\Ag, id(n) = (g.j(n) = j(v), F(n) = F(M\{n})

® b*e B, 7 ) N X1, where we consider X as a subspace
of X(I') — ¢*°(I') and thus naturally embedded in
loo(T ug;é Ap)

o Ifj =2k —1,then b* = e} with weight(¢) uniquely
determined by 7. (Conditional part)
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@ We consider the following subspace of X(I") < £o ()
X=1{yex(): ylpr =0, ylreX}.
@ We also define ¢ : X(I") — X(I') by the rule
®(z) = z|r

@ It follows from our construction that X, ® are well defined
and

d(X) = X.




