Uniqueness under spectral variation in Banach algebras

G. Braatvedt* & R. Brits

Department of Mathematics University of Johannesburg

South Africa

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Notation

A: complex unital Banach algebra, with unit ${f 1}$

σ(a) = σ_A(a) = {λ ∈ C : λ1 − a is not invertible}
 [Spectrum of a]

- #σ(a)
 [Number of elements in the spectrum of a]
- #σ'(a)
 [Number of nonzero elements in the spectrum of a]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The following theorem of Aupetit is crucial in the proofs of some results and is sometimes referred to as the *Scarcity Principle:*

Theorem (B. Aupetit)

If f is analytic from a domain $D\subseteq \mathbb{C}$ into a Banach algebra A, then either

 $D_F = \{\lambda \in D : \sigma(f(\lambda)) \text{ is finite } \}$

is a Borel set with zero capacity, or there is $n \in \mathbb{N}$ and a closed, discrete subset $E \subset D$ such that $\#\sigma(f(\lambda)) = n$ for $\lambda \in D \setminus E$ and $\#\sigma(f(\lambda)) < n$ for $\lambda \in E$. In this case the n points of $\sigma(f(\lambda))$ are locally holomorphic on $D \setminus E$.

Objective

On which subsets L of A can the pair of spectrum functions

$$x\mapsto \sigma_A(ax)$$
 and $x\mapsto \sigma_A(bx), x\in L$ (1)

or, alternatively, the pair

$$x \mapsto \sigma_A(a+x)$$
 and $x \mapsto \sigma_A(b+x), x \in L$ (2)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

distinguish between a and b?

Let A be a semisimple Banach algebra and $a, b \in A$. Then a = b if and only if any one of the following holds:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

(i)
$$\sigma(ax) = \sigma(bx)$$
 for all $x \in A$
(ii) $\sigma(a+x) = \sigma(b+x)$ for all $x \in A$

Let A be a semisimple Banach algebra.

(i) If b ∈ A is invertible and #σ(ax) ≤ #σ(bx) for all x in a neighborhood of b⁻¹, then a = αb for some α ∈ C. In particular if σ(ax) = σ(bx) for all x in a neighborhood of b⁻¹, then a = b.

Let A be a semisimple Banach algebra. If $\sigma(ax)$ and $\sigma(bx)$ are finite and equal for all x in some open set N, then a = b. In particular the above characterization holds if A is finite dimensional.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Corollary

Let A be a semisimple Banach algebra. If $\sigma(a + x)$ and $\sigma(b + x)$ are finite and equal for all x in some open set N, then A is finite dimensional and a = b.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let A be a semisimple Banach algebra, and suppose $\sigma(ax)$ and $\sigma(bx)$ have at most 0 as accumulation point for all $x \in A$. If $\sigma(ax) = \sigma(bx)$ for all x in some open set N, then a = b.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem Let $(A, \|\cdot\|)$ be a semisimple Banach algebra and let $a, b \in A$. Then a = b if and only if any one of the following conditions holds:

(i) For each Banach algebra norm $\|\cdot\|_0$ equivalent to $\|\cdot\|$,

$$\|x-\mathbf{1}\|_0 < 1 \Rightarrow \sigma(ax) = \sigma(bx).$$

(ii) $\sigma(ax) = \sigma(bx)$ for all x satisfying $\rho(x - 1) < 1$. (iii) $\sigma(ax) = \sigma(bx)$ for all exponentials $x \in A$. (iv) $\sigma(a + x) = \sigma(b + x)$ for all exponentials $x \in A$.

Example

(A) Let $B_0 = B(0,1)$ and $B_2 = B(2,\frac{1}{2})$ and let A be the semisimple algebra of complex functions (under the usual pointwise operations) which are continuous on $\overline{B_0} \cup \overline{B_2}$ and holomorphic on B_0 . Define a norm on A by

$$\|f\| = \rho(f) + \delta(f).$$

Define

$$a(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \overline{B_0} \\ 0 & \text{if } \lambda \in \overline{B_2} \end{cases}$$

and

$$b(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \overline{B_0} \\ \frac{1}{4}(\lambda - \frac{3}{2}) & \text{if } \lambda \in \overline{B_2} \end{cases}$$

Then $\sigma(af) = \sigma(bf)$ for all f satisfying $||f - \mathbf{1}|| < 1$ but $a \neq b$.

(B) Let A be the same algebra as in (A), but with the norm on A given by the spectral radius. Fix any 0 < r < 1. Define

$$a(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \overline{B_0} \\ 0 & \text{if } \lambda \in \overline{B_2} \end{cases}$$

and

$$b(\lambda) = \begin{cases} \lambda & \text{if } \lambda \in \overline{B_0} \\ \frac{1-r}{4}(\lambda - \frac{3}{2}) & \text{if } \lambda \in \overline{B_2} \end{cases}$$

Then $\sigma(af) = \sigma(bf)$ for all f satisfying $\rho(f - 1) < r$ but $a \neq b$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(C) Let $0 < r \in \mathbb{R}$ be arbitrary but fixed. Let A be the Banach algebra in (A) with the spectral radius norm. Define

$$a(\lambda) = \begin{cases} 7r\lambda & \text{if } \lambda \in \overline{B_0} \\ \frac{r}{2}(\lambda - \frac{3}{2}) & \text{if } \lambda \in \overline{B_2} \end{cases}$$
$$b(\lambda) = \begin{cases} 7r\lambda & \text{if } \lambda \in \overline{B_0} \\ \frac{r}{2}(\lambda - 2) & \text{if } \lambda \in \overline{B_2} \end{cases}$$

Then $\sigma(a+f) = \sigma(b+f)$ for all f satisfying ||f|| < r but $a \neq b$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Following a paper by Aupetit and Mouton [Trace and determinant in Banach algebras, 1996]: The **rank** of $a \in A$ is defined by

$$\operatorname{rank}(a) = \sup_{x \in A} \#\sigma'(ax) \le \infty.$$

The set

$$E(a) = \{x \in A : \#\sigma'(ax) = \mathsf{rank}(a)\}$$

is dense and open in A. Moreover, the **socle** of A is given by

$$\{a \in A : \operatorname{rank}(a) < \infty\} = \operatorname{soc}(A).$$

An element $a \in soc(A)$ is said to be **maximal rank** if $rank(a) = \#\sigma'(a)$.

The **trace** of $a \in soc(A)$ is defined by

$$\mathsf{tr}(a) = \sum_{\lambda \in \sigma(a)} \lambda \, m(\lambda, a)$$

where $m(\lambda, a)$ is the **multiplicity of** a at λ .

A brief description of the notion of multiplicity: Let $a \in \text{soc}(A)$, $\lambda \in \sigma(a)$ and let V_{λ} be an open disk centered at λ such that V_{λ} contains no other points of $\sigma(a)$. It can be shown that there exists an open ball, say $U \subset A$, centered at 1 such that $\# [\sigma(ax) \cap V_{\lambda}]$ is constant as x runs through $E(a) \cap U$. This constant integer is the multiplicity of a at λ . It can be shown that

$$\operatorname{tr}(a+b) = \operatorname{tr}(a) + \operatorname{tr}(b).$$

The trace of a maximal rank element is simply the sum of its spectral values:

$$\operatorname{tr}(a) = \sum_{\lambda \in \sigma(a)} \lambda.$$

- If f is an analytic function from domain D of C into soc(A), then tr(f(λ)) is holomorphic on D.
- For a fixed a ∈ soc(A), if tr(ax) = 0 for all x ∈ soc(A) then a = 0.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <