THE CHOQUET BOUNDARY OF AN OPERATOR SYSTEM

Kenneth R. Davidson

University of Waterloo

Banach Algebras, Göteborg, August 2013

joint work with Matthew Kennedy
I would like to dedicate this talk to

Bill Bade (1924–2012)

and

Bill Arveson (1934–2011).
B. Sz.Nagy began an extensive development of dilation theory. With Foiaş it became a key tool for studying a single operator.
B. Sz. Nagy began an extensive development of dilation theory. With Foiaş it became a key tool for studying a single operator.

Theorem (Sz. Nagy (1953))

If $T \in B(\mathcal{H})$ and $\|T\| \leq 1$, there is a unitary operator of form

$$ U = \begin{bmatrix} * & 0 & 0 \\ * & T & 0 \\ * & * & * \end{bmatrix} $$
B. Sz.Nagy began an extensive development of dilation theory. With Foiaş it became a key tool for studying a single operator.

Theorem (Sz.Nagy (1953))

If $T \in B(H)$ and $\|T\| \leq 1$, there is a unitary operator of form

$$U = \begin{bmatrix}
* & 0 & 0 \\
* & T & 0 \\
* & * & *
\end{bmatrix}$$

Corollary (Generalized von Neumann inequality)

If $[p_{ij}]$ is a matrix of polynomials, and $\|T\| \leq 1$, then

$$\| [p_{ij}(T)] \| \leq \sup_{|z| \leq 1} \| [p_{ij}(z)] \|.$$
B. Sz. Nagy began an extensive development of dilation theory. With Foiaş it became a key tool for studying a single operator.

Theorem (Sz. Nagy (1953))

If $T \in \mathcal{B}(\mathcal{H})$ and $\|T\| \leq 1$, there is a unitary operator of form

$$U = \begin{bmatrix} * & 0 & 0 \\ * & T & 0 \\ * & * & * \end{bmatrix}$$

Corollary (Generalized von Neumann Inequality)

If $[p_{ij}]$ is a matrix of polynomials, and $\|T\| \leq 1$, then

$$\| [p_{ij}(T)] \| \leq \sup_{|z| \leq 1} \| [p_{ij}(z)] \|.$$

Hence this can be considered as a study of representations of the disk algebra $A(\mathbb{D})$.
W.B. Arveson laid foundations for non-commutative dilation theory
W.B. Arveson laid foundations for non-commutative dilation theory

The main themes of his approach were:

- **Operator algebra** \mathcal{A}: unital subalgebra of a C*-algebra $C^*(\mathcal{A})$.
 Hence: a norm structure on matrices $\mathcal{M}_n(\mathcal{A}) \subset \mathcal{M}_n(C^*(\mathcal{A}))$.

The role of completely positive and completely bounded maps.

$\phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ induces

$\phi_n : \mathcal{M}_n(\mathcal{A}) \to \mathcal{M}_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$

by $\phi_n ([a_{ij}]) = [\phi(a_{ij})]$.

Say ϕ is completely bounded (c.b.) if

$\|\phi\|_{cb} = \sup_{n \geq 1} \|\phi_n\| < \infty$.

Say ϕ is completely contractive (c.c.) if

$\|\phi\|_{cb} \leq 1$.

W.B. Arveson laid foundations for non-commutative dilation theory

The main themes of his approach were:

- **Operator algebra** \(\mathcal{A} \): unital subalgebra of a C*-algebra \(\mathcal{C}^* (\mathcal{A}) \).

 Hence: a norm structure on matrices \(\mathcal{M}_n (\mathcal{A}) \subset \mathcal{M}_n (\mathcal{C}^* (\mathcal{A})) \).

- The role of completely positive and completely bounded maps.

 \(\varphi : \mathcal{A} \to \mathcal{B} (\mathcal{H}) \) induces

 \[
 \varphi_n : \mathcal{M}_n (\mathcal{A}) \to \mathcal{M}_n (\mathcal{B} (\mathcal{H})) \cong \mathcal{B} (\mathcal{H}^{(n)})
 \]

 by

 \[
 \varphi_n ([a_{ij}]) = [\varphi (a_{ij})].
 \]
W.B. Arveson laid foundations for non-commutative dilation theory

The main themes of his approach were:

- **Operator algebra** \mathcal{A}: unital subalgebra of a C*-algebra $C^*(\mathcal{A})$. Hence: a norm structure on matrices $\mathcal{M}_n(\mathcal{A}) \subset \mathcal{M}_n(C^*(\mathcal{A}))$.

- The role of completely positive and completely bounded maps.

$\varphi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ induces

$$\varphi_n : \mathcal{M}_n(\mathcal{A}) \to \mathcal{M}_n(\mathcal{B}(\mathcal{H})) \cong \mathcal{B}(\mathcal{H}^n)$$

by

$$\varphi_n([a_{ij}]) = [\varphi(a_{ij})].$$

Say φ is **completely bounded** (c.b.) if

$$\|\varphi\|_{cb} = \sup_{n \geq 1} \|\varphi_n\| < \infty.$$

Say φ is **completely contractive** (c.c.) if $\|\varphi\|_{cb} \leq 1$.
Operator system S: unital s.a. subspace $1 \in S = S^* \subset C^*(S)$.

If $\phi: S \to B(H)$, then ϕ is completely positive (c.p.) if ϕ^n is positive for all $n \geq 1$. Say ϕ is u.c.p. if also $\phi(1) = I$. If $\rho: A \to B(H)$ is a c.c. unital map, then $S = A + A^*$ and $\tilde{\rho}(a + b^*) = \rho(a) + \rho(b^*)$ is a u.c.p. extension to S.

Theorem (Arveson's Extension Theorem): If $\phi: S \to B(H)$ is c.p. and $S \subset T$, then there is a c.p. map $\psi: T \to B(H)$ s.t. $\psi|_S = \phi$. i.e. $B(H)$ is injective.
Operator system S: unital s.a. subspace $1 \in S = S^* \subset C^*(S)$.

If $\varphi : S \to B(\mathcal{H})$, then φ is completely positive (c.p.) if φ_n is positive for all $n \geq 1$. Say φ is u.c.p. if also $\varphi(1) = I$.
• **Operator system** S: unital s.a. subspace $1 \in S = S^* \subset C^*(S)$.

 If $\varphi : S \to B(H)$, then φ is **completely positive** (c.p.) if φ_n is positive for all $n \geq 1$. Say φ is u.c.p. if also $\varphi(1) = I$.

• If $\rho : A \to B(H)$ is a c.c. unital map, then $S = \overline{A + A^*}$ and

$$
\tilde{\rho}(a + b^*) = \rho(a) + \rho(b)^*
$$

is a u.c.p. extension to S.

Ken Davidson and Matt Kennedy

The Choquet boundary 5 / 23
Operator system S: unital s.a. subspace $1 \in S = S^* \subset C^*(S)$.

If $\varphi : S \to B(\mathcal{H})$, then φ is completely positive (c.p.) if φ_n is positive for all $n \geq 1$. Say φ is u.c.p. if also $\varphi(1) = I$.

If $\rho : A \to B(\mathcal{H})$ is a c.c. unital map, then $S = \overline{A + A^*}$ and

$$\tilde{\rho}(a + b^*) = \rho(a) + \rho(b)^*$$

is a u.c.p. extension to S.

Theorem (Arveson’s Extension Theorem)

If $\varphi : S \to B(\mathcal{H})$ is c.p. and $S \subset T$, then there is a c.p. map $\psi : T \to B(\mathcal{H})$ s.t. $\psi|_S = \varphi$. i.e. $B(\mathcal{H})$ is injective.
A dilation of a u.c.c. representation $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a u.c.c. representation $\sigma : \mathcal{A} \to \mathcal{B}(\mathcal{K})$ where $\mathcal{K} = \mathcal{K}_- \oplus \mathcal{H} \oplus \mathcal{K}_+$, and

$$\sigma(a) = \begin{bmatrix} * & 0 & 0 \\ * & \rho(a) & 0 \\ * & * & * \end{bmatrix}.$$
A dilation of a u.c.c. representation $\rho: \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is a u.c.c. representation $\sigma: \mathcal{A} \to \mathcal{B}(\mathcal{K})$ where $\mathcal{K} = \mathcal{K}_- \oplus \mathcal{H} \oplus \mathcal{K}_+$, and

$$\sigma(a) = \begin{bmatrix}
* & 0 & 0 \\
* & \rho(a) & 0 \\
* & * & *
\end{bmatrix}.$$

A dilation of a u.c.p. map $\varphi: \mathcal{S} \to \mathcal{B}(\mathcal{H})$ is a u.c.p. map $\psi: \mathcal{S} \to \mathcal{B}(\mathcal{K})$ where $\mathcal{K} = \mathcal{H} \oplus \mathcal{K}'$ and $P_{\mathcal{H}}\psi(a)|_{\mathcal{H}} = \varphi(a)$:

$$\psi(a) = \begin{bmatrix}
\varphi(a) & * \\
* & *
\end{bmatrix}.$$
A dilation of a u.c.c. representation $\rho : \mathcal{A} \to \mathcal{B} (\mathcal{H})$ is a u.c.c. representation $\sigma : \mathcal{A} \to \mathcal{B} (\mathcal{K})$ where $\mathcal{K} = \mathcal{K}_- \oplus \mathcal{H} \oplus \mathcal{K}_+$, and

$$\sigma(a) = \begin{bmatrix} * & 0 & 0 \\ * & \rho(a) & 0 \\ * & * & * \end{bmatrix}.$$

A dilation of a u.c.p. map $\varphi : \mathcal{S} \to \mathcal{B} (\mathcal{H})$ is a u.c.p. map $\psi : \mathcal{S} \to \mathcal{B} (\mathcal{K})$ where $\mathcal{K} = \mathcal{H} \oplus \mathcal{K}'$ and $P_{\mathcal{H}} \psi(a)|_{\mathcal{H}} = \varphi(a)$:

$$\psi(a) = \begin{bmatrix} \varphi(a) & * \\ * & * \end{bmatrix}.$$

Note that if $\sigma \succ \rho$, then $\tilde{\sigma} \succ \tilde{\rho}$.
But $\psi \succ \tilde{\rho}$ may not be multiplicative on \mathcal{A}.
Theorem (Arveson’s Dilation Theorem)

Let \(\rho : A \to \mathcal{B}(\mathcal{H}) \) be a representation. TFAE

1. \(\rho \) is u.c.c.
2. \(\bar{\rho} \) is u.c.p.
3. \(\rho \) dilates to a unital \(*\)-representation of \(C^*(A) \).
Theorem (Arveson’s Dilation Theorem)

Let $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a representation. TFAE

1. ρ is u.c.c.
2. $\tilde{\rho}$ is u.c.p.
3. ρ dilates to a unital \ast-representation of $\mathbb{C}^*(\mathcal{A})$.

Now we turn to two central ideas in Arveson’s paper which he was not able to verify in general:

- boundary representations
- the \mathbb{C}^*-envelope
Theorem (Arveson’s Dilation Theorem)

Let $\rho : A \to \mathcal{B}(\mathcal{H})$ be a representation. TFAE

1. ρ is u.c.c.
2. $\tilde{\rho}$ is u.c.p.
3. ρ dilates to a unital \ast-representation of $C^*(A)$.

Now we turn to two central ideas in Arveson’s paper which he was not able to verify in general:

- boundary representations
- the C^*-envelope

Bill was able to verify this in many concrete examples. See also Subalgebras of C^*-algebras II, Acta Math. 128 (1972), 271–308.
A u.c.p. map \(\varphi : S \to B(\mathcal{H}) \) or a u.c.c. repn. \(\varphi : A \to B(\mathcal{H}) \) has the unique extension property (u.e.p) if

1. \(\varphi \) has a unique u.c.p. extension to \(C^*(S) \) (or \(C^*(A) \)), and
2. this extension is a \(\ast \)-homomorphism.
A u.c.p. map \(\varphi : S \to B(\mathcal{H}) \) or a u.c.c. repn. \(\varphi : A \to B(\mathcal{H}) \) has the unique extension property (u.e.p) if

1. \(\varphi \) has a unique u.c.p. extension to \(C^*(S) \) (or \(C^*(A) \)), and
2. this extension is a \(*\)-homomorphism.

It is a boundary representation if it has u.e.p. and

3. the \(*\)-homomorphism is irreducible.
A u.c.p. map $\varphi : S \rightarrow B(\mathcal{H})$ or a u.c.c. repn. $\varphi : A \rightarrow B(\mathcal{H})$ has the **unique extension property** (u.e.p) if

1. φ has a unique u.c.p. extension to $C^*(S)$ (or $C^*(A)$), and
2. this extension is a \ast-homomorphism.

It is a **boundary representation** if it has u.e.p. and

3. the \ast-homomorphism is irreducible.

If $1 \in A \subset C(X)$, then irreducible repns. are point evaluations δ_x. A u.c.p. extension is given by a **representing measure** μ on X:

$$f(x) = \int_X f \, d\mu \quad \text{for all} \quad f \in A.$$
A u.c.p. map $\varphi : S \to B(\mathcal{H})$ or a u.c.c. repn. $\varphi : A \to B(\mathcal{H})$ has the unique extension property (u.e.p) if

1. φ has a unique u.c.p. extension to $C^*(S)$ (or $C^*(A)$), and
2. this extension is a $*$-homomorphism.

It is a boundary representation if it has u.e.p. and

3. the $*$-homomorphism is irreducible.

If $1 \in A \subset C(X)$, then irreducible repns. are point evaluations δ_x. A u.c.p. extension is given by a representing measure μ on X:

$$f(x) = \int_X f \, d\mu \quad \text{for all} \quad f \in A.$$

Thus δ_x is a boundary representation

\iff x has a unique representing measure

\iff x is in the Choquet boundary of A.
A u.c.p. map $\varphi : S \to \mathcal{B(H)}$ or a u.c.c. repn. $\varphi : A \to \mathcal{B(H)}$ has the unique extension property (u.e.p) if

1. φ has a unique u.c.p. extension to $C^*(S)$ (or $C^*(A)$), and
2. this extension is a $*$-homomorphism.

It is a boundary representation if it has u.e.p. and

3. the $*$-homomorphism is irreducible.

If $1 \in A \subset C(X)$, then irreducible repns. are point evaluations δ_x. A u.c.p. extension is given by a representing measure μ on X:

$$f(x) = \int_x f \, d\mu \quad \text{for all} \quad f \in A.$$

Thus δ_x is a boundary representation

\iff x has a unique representing measure

\iff x is in the Choquet boundary of A.

The boundary representations form the Choquet boundary of S.
The C*-envelope of \mathcal{A} (or \mathcal{S}) is a pair $(C^*_{\text{env}}(\mathcal{A}), \iota)$ where
\[\iota : \mathcal{A} \to C^*_{\text{env}}(\mathcal{A}) \text{ is comp. isom. iso., } C^*_{\text{env}}(\mathcal{A}) = C^*(\iota(\mathcal{A})), \]
with universal property: if $j : \mathcal{A} \to \mathcal{B} = C^*(j(\mathcal{A}))$ comp. isom. iso.
then $\exists q : \mathcal{B} \to C^*_{\text{env}}(\mathcal{A})$ *-homomorphism s.t. $q j = \iota$.

\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\iota} & C^*(\iota(\mathcal{A})) \\
 & j & \downarrow q \\
 & & C^*(j(\mathcal{A}))
\end{array}
\]
The C^*-envelope of \mathcal{A} (or \mathcal{S}) is a pair $(C^*_\text{env}(\mathcal{A}), \iota)$ where
$\iota : \mathcal{A} \rightarrow C^*_\text{env}(\mathcal{A})$ is comp. isom. iso., $C^*_\text{env}(\mathcal{A}) = C^*(\iota(\mathcal{A}))$,
with universal property: if $j : \mathcal{A} \rightarrow \mathcal{B} = C^*(j(\mathcal{A}))$ comp. isom. iso.
then $\exists q : \mathcal{B} \rightarrow C^*_\text{env}(\mathcal{A})$ \ast-homomorphism s.t. $qj = \iota$.

If there are sufficiently many boundary representations $\{\pi_\lambda\}$
to completely norm \mathcal{A} or \mathcal{S}, let $\pi = \bigoplus \pi_\lambda$. Then
$C^*_\text{env}(\mathcal{S}) = C^*(\pi(\mathcal{S}))$.
Choi-Effros (1977) An injective operator system is (completely order isomorphic to) a C*-algebra.
Choi-Effros (1977) An injective operator system is (completely order isomorphic to) a C*-algebra.

Theorem (Hamana (1979))

Every operator system is contained in a unique minimal injective operator system.

Corollary (Hamana)

Every operator system has a C-envelope.*
Choi-Effros (1977) An injective operator system is (completely order isomorphic to) a C*-algebra.

Theorem (Hamana (1979))

Every operator system is contained in a unique minimal injective operator system.

Corollary (Hamana)

Every operator system has a C-envelope.*

Provides little info about structure of C*-envelope; and nothing about boundary repns.
Choi-Effros (1977) An injective operator system is (completely order isomorphic to) a C*-algebra.

Theorem (Hamana (1979))

Every operator system is contained in a unique minimal injective operator system.

Corollary (Hamana)

Every operator system has a C-envelope.*

Provides little info about structure of C*-envelope; and nothing about boundary repns.

Muhly-Solel (1998) gave a homological characterization of boundary representations.
Dritschel-McCullough (2005) important new proof of C*-envelope.
Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
- every representation dilates to a maximal repn.
Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : A \rightarrow B(\mathcal{H})$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
- every representation dilates to a maximal repn.
- maximal repns. have u.e.p.
Dritschel-McCullough (2005) important new proof of C*-envelope.

- \(\rho: \mathcal{A} \rightarrow \mathcal{B}(\mathcal{H}) \) is maximal if \(\sigma \succ \rho \) implies \(\sigma = \rho \oplus \sigma' \).
- every representation dilates to a maximal repn.
- maximal repns. have u.e.p.
- if \(\rho \) is a c.i.i., and \(\sigma \succ \rho \) is maximal, then
 \[
 C^*_{\text{env}}(\mathcal{A}) = C^*(\sigma(\mathcal{A})).
 \]
The next four decades

Our approach

Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : A \to B(H)$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
- every representation dilates to a maximal repn.
- maximal repns. have u.e.p.
- if ρ is a c.i.i., and $\sigma \succ \rho$ is maximal, then

$$C^*_{env}(A) = C^*(\sigma(A)).$$

This dilation proof yields important information about $C^*_{env}(A)$. It does not yield boundary representations.
Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : A \rightarrow B(\mathcal{H})$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
- Every representation dilates to a maximal repn.
- Maximal repns. have u.e.p.
- If ρ is a c.i.i., and $\sigma \succ \rho$ is maximal, then
 \[C^*_\text{env}(A) = C^*(\sigma(A)). \]

This dilation proof yields important information about $C^*_\text{env}(A)$. It does not yield boundary representations.

Dritschel-McCullough (2005) important new proof of C*-envelope.

- $\rho : A \to B(\mathcal{H})$ is maximal if $\sigma \succ \rho$ implies $\sigma = \rho \oplus \sigma'$.
- every representation dilates to a maximal repn.
- maximal repns. have u.e.p.
- if ρ is a c.i.i., and $\sigma \succ \rho$ is maximal, then

$$C_{\text{env}}^*(A) = C^*(\sigma(A)).$$

This dilation proof yields important information about $C_{\text{env}}^*(A)$.

It does not yield boundary representations.

Muhly-Solel result says: a repn. has u.e.p. \iff it is an extremal extension and an extremal coextension.
Arveson (2008) back in the game:
Arveson (2008) back in the game:

- reworks Dritschel-McCullough for operator systems
- if $\rho : A \to B(H)$, $\tilde{\rho} : \overline{A + A^*} \to B(H)$, and $\psi \succ \tilde{\rho}$ is maximal, then ψ extends to a \ast-repn. of $C^*(A)$. Hence $\psi = \tilde{\sigma}$ where $\sigma \succ \rho$ is maximal.
Arveson (2008) back in the game:

- reworks Dritschel-McCullough for operator systems
- if $\rho : A \to B(H)$, $\tilde{\rho} : A + A^* \to B(H)$, and $\psi \succ \tilde{\rho}$ is maximal, then ψ extends to a \ast-repn. of $C^*(A)$. Hence $\psi = \tilde{\sigma}$ where $\sigma \succ \rho$ is maximal.

- Assuming separable S, he uses disintegration of measures and Borel structure to decompose a direct integral; and deduce that a maximal repn. is an integral of boundary repns. a.e.
Arveson (2008) back in the game:

- reworks Dritschel-McCullough for operator systems
- if $\rho : \mathcal{A} \to \mathcal{B}(\mathcal{H})$, $\tilde{\rho} : \overline{\mathcal{A} + \mathcal{A}^*} \to \mathcal{B}(\mathcal{H})$, and $\psi \succ \tilde{\rho}$ is maximal, then ψ extends to a $*$-repn. of $\mathbb{C}^*(\mathcal{A})$. Hence $\psi = \tilde{\sigma}$ where $\sigma \succ \rho$ is maximal.
- Assuming separable S, he uses disintegration of measures and Borel structure to decompose a direct integral; and deduce that a maximal repn. is an integral of boundary repns. a.e.

Theorem (Arveson (JAMS 2008))

If S is separable, then there are sufficiently many boundary representations.
Our approach

- We give a dilation theory proof of the existence of boundary representations.
- It works in complete generality.
- The argument is conceptual and natural.
A c.p. map φ is pure if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

Arveson (1969) If π is reducible, then there exists $P = P^2 \in \pi(S)'$. Then $\psi(a) = P\varphi(a)$ satisfies $0 \leq \psi \leq \varphi$ but $\psi(1) = P \neq tI = \varphi(1)$. So π is a boundary repn.
Arveson (1969) A c.p. map φ is **pure** if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

If φ is pure and maximal, then it extends to \ast-repn. π.
Arveson (1969) A c.p. map \(\varphi \) is pure if \(0 \leq \psi \leq \varphi \) implies \(\psi = t\varphi \).

If \(\varphi \) is pure and maximal, then it extends to \(*\)-repn. \(\pi \).

If \(\pi \) reducible, then \(\exists P = P^2 = P^* \in \pi(S)' \).
Arveson (1969) A c.p. map φ is pure if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

If φ is pure and maximal, then it extends to *-repn. π.
If π reducible, then $\exists P = P^2 = P^* \in \pi(S)'$.
Then $\psi(a) = P\varphi(a)$ satisfies $0 \leq \psi \leq \varphi$ but
$\psi(1) = P \neq tI = \varphi(1)$.
Arveson (1969) A c.p. map φ is pure if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

If φ is pure and maximal, then it extends to $*$-repn. π.
If π reducible, then $\exists P = P^2 = P^* \in \pi(S)'$.
Then $\psi(a) = P\varphi(a)$ satisfies $0 \leq \psi \leq \varphi$ but
$$\psi(1) = P \neq tl = \varphi(1).$$
So π is a boundary repn.
Arveson (1969) A c.p. map φ is pure if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

If φ is pure and maximal, then it extends to \ast-repn. π.

If π reducible, then $\exists P = P^2 = P^* \in \pi(S)'$. Then $\psi(a) = P\varphi(a)$ satisfies $0 \leq \psi \leq \varphi$ but

$$\psi(1) = P \neq tl = \varphi(1).$$

So π is a boundary repn.

Arveson (2008) Say φ is maximal at (s, x) if

$$\psi \succ \varphi \implies \|\psi(s)x\| = \|\varphi(s)x\|.$$
Arveson (1969) A c.p. map φ is pure if $0 \leq \psi \leq \varphi$ implies $\psi = t\varphi$.

If φ is pure and maximal, then it extends to \ast-repn. π.

If π reducible, then $\exists P = P^2 = P^* \in \pi(S)'$. Then $\psi(a) = P\varphi(a)$ satisfies $0 \leq \psi \leq \varphi$ but $
abla \psi(1) = P \neq tl = \varphi(1)$.

So π is a boundary repn.

Arveson (2008) Say φ is maximal at (s, x) if

$$\psi \succ \varphi \implies \|\psi(s)x\| = \|\varphi(s)x\|.$$

If φ is maximal at every (s, x), then φ is maximal.
Key Lemma

If \(\varphi \) is pure, and \((s_0, x_0) \in S \times \mathcal{H} \), then there is a pure dilation \(\psi : S \to \mathcal{B}(\mathcal{H} \oplus \mathbb{C}) \) s.t. \(\psi \succ \varphi \) and \(\psi \) is maximal at \((s_0, x_0)\).
Key Lemma

If \(\varphi \) is pure, and \((s_0, x_0) \in S \times \mathcal{H}\), then there is a pure dilation \(\psi : S \to \mathcal{B}(\mathcal{H} \oplus \mathbb{C}) \) s.t. \(\psi \succ \varphi \) and \(\psi \) is maximal at \((s_0, x_0)\).

- If \(\psi : S \to \mathcal{B}(\mathcal{H} \oplus K) \), then compression to \(\text{span}\{\mathcal{H}, \psi(s_0)x_0\} \) has same norm at \((s_0, x_0)\).
Key Lemma

If \(\varphi \) is pure, and \((s_0, x_0) \in S \times \mathcal{H}\), then there is a pure dilation \(\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) \) s.t. \(\psi \succ \varphi \) and \(\psi \) is maximal at \((s_0, x_0)\).

- If \(\psi : S \to B(\mathcal{H} \oplus \mathcal{K}) \), then compression to \(\text{span}\{\mathcal{H}, \psi(s_0)x_0\} \) has same norm at \((s_0, x_0)\).
- \(\{\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) : \psi \succ \varphi\} \) is BW-compact.
 Hence \(\exists \psi \) s.t. \(\psi(s_0)x_0 = \varphi(s_0)x_0 \oplus \eta \) with \(\eta \) maximal.
Key Lemma

If \(\varphi \) is pure, and \((s_0, x_0) \in S \times \mathcal{H}\), then there is a pure dilation \(\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) \) s.t. \(\psi \succ \varphi \) and \(\psi \) is maximal at \((s_0, x_0)\).

- If \(\psi : S \to B(\mathcal{H} \oplus \mathcal{K}) \), then compression to \(\text{span}\{\mathcal{H}, \psi(s_0)x_0\} \) has same norm at \((s_0, x_0)\).
- \(\{\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) : \psi \succ \varphi\} \) is BW-compact.
 Hence \(\exists \psi \) s.t. \(\psi(s_0)x_0 = \varphi(s_0)x_0 \oplus \eta \) with \(\eta \) maximal.
- Take extreme point \(\psi_0 \) of
 \(\{\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) : \psi \succ \varphi, \ \psi(s_0)x_0 = \varphi(s_0)x_0 \oplus \eta\} \).
Key Lemma

If \(\varphi \) is pure, and \((s_0, x_0) \in S \times \mathcal{H} \), then there is a pure dilation \(\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) \) s.t. \(\psi \succ \varphi \) and \(\psi \) is maximal at \((s_0, x_0) \).

- If \(\psi : S \to B(\mathcal{H} \oplus \mathcal{K}) \), then compression to \(\text{span}\{\mathcal{H}, \psi(s_0)x_0\} \) has same norm at \((s_0, x_0) \).
- \(\{\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) : \psi \succ \varphi\} \) is BW-compact. Hence \(\exists \psi \) s.t. \(\psi(s_0)x_0 = \varphi(s_0)x_0 \oplus \eta \) with \(\eta \) maximal.
- Take extreme point \(\psi_0 \) of \(\{\psi : S \to B(\mathcal{H} \oplus \mathbb{C}) : \psi \succ \varphi, \ \psi(s_0)x_0 = \varphi(s_0)x_0 \oplus \eta\} \).
- Delicate argument to show that \(\psi_0 \) is pure.
Theorem 1

Every pure u.c.p. map $\varphi : S \to \mathcal{B}(\mathcal{H})$ dilates to a maximal pure u.c.p. map, and hence extends to a boundary representation.
Theorem 1

Every pure u.c.p. map $\varphi : S \to \mathcal{B}(\mathcal{H})$ dilates to a maximal pure u.c.p. map, and hence extends to a boundary representation.

- routine transfinite induction to obtain dilation maximal at every pair (s, x)
Theorem 1

Every pure u.c.p. map \(\varphi : S \to B(\mathcal{H}) \) dilates to a maximal pure u.c.p. map, and hence extends to a boundary representation.

- routine transfinite induction to obtain dilation maximal at every pair \((s, x)\)
- if \(S \) is separable and \(\dim \mathcal{H} < \infty \), then can produce the maximal dilation as limit of sequence of finite dim. maps.
Theorem 2

*There are sufficiently many boundary representations to completely norm S.***
Theorem 2

There are sufficiently many boundary representations to completely norm S.

First proof: *Thanks to Craig Kleski for suggesting this argument.*
Theorem 2

There are sufficiently many boundary representations to completely norm S.

First proof: Thanks to Craig Kleski for suggesting this argument.

- Take $S \in \mathcal{M}_n(S)$. Suffices to norm $T = S^*S$.
Theorem 2

There are sufficiently many boundary representations to completely norm S.

First proof: Thanks to Craig Kleski for suggesting this argument.

- Take $S \in \mathcal{M}_n(S)$. Suffices to norm $T = S^*S$.
- Choose pure state φ on $\mathcal{M}_n(S)$ that norms T.
Theorem 2

There are sufficiently many boundary representations to completely norm S.

First proof: Thanks to Craig Kleski for suggesting this argument.

- Take $S \in M_n(S)$. Suffices to norm $T = S^* S$.
- Choose pure state φ on $M_n(S)$ that norms T.
- Dilate it to a boundary repn. σ of $M_n(S)$ by Theorem 1. Then $\sigma \simeq \pi^{(n)}$, where π is irreducible repn. of $C^*(S)$.
Theorem 2

There are sufficiently many boundary representations to completely norm S.

First proof: Thanks to Craig Kleski for suggesting this argument.

- Take $S \in \mathcal{M}_n(S)$. Suffices to norm $T = S^*S$.
- Choose pure state φ on $\mathcal{M}_n(S)$ that norms T.
- Dilate it to a boundary repn. σ of $\mathcal{M}_n(S)$ by Theorem 1. Then $\sigma \simeq \pi^{(n)}$, where π is irreducible repn. of $\mathcal{C}^*(S)$.
- If φ is u.c.p. dilation of $\pi|_S$, then $\varphi^{(n)}$ dilates $\sigma|_{\mathcal{M}_n(S)}$. Hence $\varphi = \pi$. So π is the desired boundary repn. (This is easy direction of a result of Hopenwasser.)
Second method to get sufficiently many boundary repns. A **matrix state** is a u.c.p. map of S into \mathcal{M}_n.

Theorem

The pure matrix states completely norm S.

THEOREM

Finite dimensional compressions of a faithful repn. of $C^* (S)$ completely norm S. So matrix states completely norm S.

Can define C^*-convex hull.
Second method to get sufficiently many boundary repns.
A **matrix state** is a u.c.p. map of S into \mathcal{M}_n.

Theorem

The pure matrix states completely norm S.

- Finite dimensional compressions of a faithful repn. of $C^*(S)$ completely norm S. So matrix states completely norm S.
Second method to get sufficiently many boundary repns. A matrix state is a u.c.p. map of S into \mathcal{M}_n.

Theorem

The pure matrix states completely norm S.

- Finite dimensional compressions of a faithful repn. of $\mathcal{C}^*(S)$ completely norm S. So matrix states completely norm S.
- The collection of all matrix states $(S_n(S))_{n \geq 1}$ is \mathcal{C}^*-convex: If $\gamma_j \in \mathcal{M}_{n_j,n}$, $\sum_{j=1}^{k} \gamma_j^* \gamma_j = I_n$ and $\psi_j \in S_{n_j}(S)$, then
 \[
 \psi = \sum_{j=1}^{k} \gamma_j^* \psi_j \gamma_j \in S_n(S).
 \]
 Can define \mathcal{C}^*-convex hull.
There is a notion of \textit{C*-extreme point} of a C*-convex set.

\textbf{Farenick (2000)} shows that the C*-extreme points of \((S_n(S))_{n \geq 1}\) coincide with the pure matrix states.
There is a notion of \textbf{C*-extreme point} of a C*-convex set.

\textbf{Farenick (2000)} shows that the C*-extreme points of \((S_n(S))_{n \geq 1}\) coincide with the pure matrix states.

\textbf{Webster-Winkler (1999)} establish a Krein-Milman type theorem for C*-convex compact sets.
There is a notion of \textbf{C*-extreme point} of a C*-convex set.

\textbf{Farenick (2000)} shows that the C*-extreme points of \((S_n(S))_{n \geq 1}\) coincide with the pure matrix states.

\textbf{Webster-Winkler (1999)} establish a Krein-Milman type theorem for C*-convex compact sets.

\textbf{Farenick} gives direct, very slick proof independent of these papers.
There is a notion of C^*-extreme point of a C^*-convex set.

Farenick (2000) shows that the C^*-extreme points of $(S_n(S))_{n \geq 1}$ coincide with the pure matrix states.

Farenick gives direct, very slick proof independent of these papers.

Theorem (Farenick 2004)

The C^*-convex hull of the pure matrix states is BW-dense in the set of all matrix states.
There is a notion of C*-extreme point of a C*-convex set.

Farenick (2000) shows that the C*-extreme points of \((S_n(S))_{n \geq 1}\) coincide with the pure matrix states.

Farenick gives direct, very slick proof independent of these papers.

Theorem (Farenick 2004)

The C*-convex hull of the pure matrix states is BW-dense in the set of all matrix states.

Hence the pure matrix states completely norm S.
Putting it all together, we obtain:

Theorem 3

Every operator system and every unital operator algebra has sufficiently many boundary representations.
Putting it all together, we obtain:

Theorem 3

Every operator system and every unital operator algebra has sufficiently many boundary representations.

Corollary

The C*-envelope of every operator system and every unital operator algebra is obtained from a direct sum of boundary representations.
Where does this get us?

- Over four decades, we developed many techniques to get our hands on the C*-envelope of an operator algebra without using boundary representations.
Where does this get us?

- Over four decades, we developed many techniques to get our hands on the C*-envelope of an operator algebra without using boundary representations.
- I know of only a few examples where sufficiently many boundary representations are exhibited (Arveson, Muhly-Solel, D.-Katsoulis)
Where does this get us?

- Over four decades, we developed many techniques to get our hands on the C*-envelope of an operator algebra without using boundary representations.
- I know of only a few examples where sufficiently many boundary representations are exhibited (Arveson, Muhly-Solel, D.-Katsoulis)
- The Choquet boundary, peak points and representing measures play a central role in the study of function algebras.
Where does this get us?

- Over four decades, we developed many techniques to get our hands on the C*-envelope of an operator algebra without using boundary representations.
- I know of only a few examples where sufficiently many boundary representations are exhibited (Arveson, Muhly-Solel, D.-Katsoulis)
- The Choquet boundary, peak points and representing measures play a central role in the study of function algebras.
- Perhaps now, we can more diligently pursue the use of boundary representations in non-commutative dilation theory. This was central to Arveson’s vision of the subject.
Our paper is available on the arXiv:1303.3252

- K.R. Davidson and M. Kennedy,

 The Choquet boundary of an operator system.
Our paper is available on the arXiv:1303.3252

I wish to draw your attention to two recent surveys of Bill Arveson’s work in JOT:

The end.

Tack.