Small Deformations of Algebras of Analytic Functions in C^n

Krzysztof Jarosz

Southern Illinois University
Problem

Assume domains Ω_1 and Ω_2 are "similar". Does it follow that they are "almost holomorphically equivalent", or even better holomorphically equivalent?
Problem

Assume domains Ω_1 and Ω_2 are "similar". Does it follow that they are "almost holomorphically equivalent", or even better holomorphically equivalent?

Example

If "similar" = both Ω_1 and Ω_2 are simply connected in \mathbb{C}^1 then indeed it follows that they are holomorphically equivalent.
Assume domains Ω_1 and Ω_2 are "similar". Does it follow that they are "almost holomorphically equivalent", or even better holomorphically equivalent?

Example

If "similar" = both Ω_1 and Ω_2 are simply connected in \mathbb{C}^1 then indeed it follows that they are holomorphically equivalent.

Example

If "similar" = both $\mathbb{C} \setminus \Omega_1$ and $\mathbb{C} \setminus \Omega_2$ have two connected components then the domains may not be holomorphically equivalent but they are equivalent to $\{z : r_1 < |z| < 1\}$ and $\{z : r_2 < |z| < 1\}$ for some r_1, r_2; hence they are holomorphically equivalent to domains that "look almost equivalent".
A Banach algebra B is a \textbf{metric δ-deformation} of A if there is a $T : A \to B$ such that $\| T \| \| T^{-1} \| \leq 1 + \delta$ (and $Te = e$).
Definition

A Banach algebra \mathcal{B} is a **metric δ-deformation** of \mathcal{A} if there is a $T : \mathcal{A} \to \mathcal{B}$ such that $\| T \| \| T^{-1} \| \leq 1 + \delta$ (and $Te = e$).

Definition

A new multiplication \times defined on the same Banach space \mathcal{A} is an **algebraic δ-deformation** of (\mathcal{A}, \cdot) if $\| \times - \cdot \| \leq \delta$; that is, if

$$\| a \cdot b - a \times b \| \leq \delta \| a \| \| b \| , \quad \text{for } a, b \in \mathcal{A}$$

(and $e_\times = e$).
Example (trivial)

Put $T = S + \Delta$ where $S : \mathcal{A} \to \mathcal{B}$ is an isometric isomorphism and $\Delta : \mathcal{A} \to \mathcal{B}$ has small norm.
Example (trivial)

Put \(T = S + \Delta \) where \(S : \mathcal{A} \to \mathcal{B} \) is an isometric isomorphism and \(\Delta : \mathcal{A} \to \mathcal{B} \) has small norm and

\[
a \times b \overset{df}{=} T^{-1} (Ta \cdot Tb).
\]
Example (trivial)

Put \(T = S + \Delta \) where \(S : \mathcal{A} \to \mathcal{B} \) is an isometric isomorphism and \(\Delta : \mathcal{A} \to \mathcal{B} \) has small norm and

\[
a \times b \stackrel{df}{=} T^{-1} (Ta \cdot Tb).
\]

Problem

Under what circumstances any small deformation can be defined by the above formula with \(T = \text{Id} + \Delta : \mathcal{A} \to \mathcal{A} \)?
Example (trivial)

Put $T = S + \Delta$ where $S : \mathcal{A} \to \mathcal{B}$ is an isometric isomorphism and $\Delta : \mathcal{A} \to \mathcal{B}$ has small norm and

$$a \times b \overset{df}{=} T^{-1}(Ta \cdot Tb).$$

Problem

Under what circumstances any small deformation can be defined by the above formula with $T = \text{Id} + \Delta : \mathcal{A} \to \mathcal{A}$? (\mathcal{A} \text{ is strongly stable})
Examples

Example (trivial)

Put $T = S + \Delta$ where $S : \mathcal{A} \to \mathcal{B}$ is an isometric isomorphism and $\Delta : \mathcal{A} \to \mathcal{B}$ has small norm and

\[
 a \times b \overset{df}{=} T^{-1} (Ta \cdot Tb) .
\]

Problem

Under what circumstances any small deformation can be defined by the above formula with $T = \text{Id} + \Delta : \mathcal{A} \to \mathcal{A}$? (\(\mathcal{A}\) is strongly stable)

Example

Put $P_\varepsilon = \{ z : 1 \leq |z| \leq 2 + \varepsilon \}$, and define $T_\varepsilon : A(P_0) \to A(P_\varepsilon)$ by

\[
 T_\varepsilon \left(\sum_{n=-\infty}^{\infty} a_n z^n \right) = \sum_{n=-\infty}^{0} a_n z^n + \sum_{n=1}^{\infty} a_n \left(\frac{2}{2 + \varepsilon} \right)^n z^n .
\]
Problem

- $A \approx B \Rightarrow A = B$ (A is stable).
\begin{itemize}
 \item $A \cong B \not\Rightarrow A = B$ (A is stable).

 \item Describe all small deformations of A. Is there a continuous (analytic) structure on that family of small deformations?
\end{itemize}
Problems

- $\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A} = \mathcal{B}$ (\mathcal{A} is stable).
- Describe all small deformations of \mathcal{A}. Is there a continuous (analytic) structure on that family of small deformations?
- $\mathcal{A} \cong \mathcal{B} \Rightarrow \mathcal{A}$ and \mathcal{B} share the same properties (e.g.: Dirichlet, logmodular, finitely generated, has analytic structure in the spectrum, etc.).
Problems

- $A \approx B \Rightarrow A = B$ (A is stable).
- Describe all small deformations of A. Is there a continuous (analytic) structure on that family of small deformations?
- $A \approx B \Rightarrow A$ and B share the same properties (e.g.: Dirichlet, logmodular, finitely generated, has analytic structure in the spectrum, etc.).
- Deformation of complex manifolds and multidimensional Riemann Mapping Theorem.
Problems

- $\mathcal{A} \approx \mathcal{B} \Rightarrow \mathcal{A} = \mathcal{B}$ (\mathcal{A} is stable).
- Describe all small deformations of \mathcal{A}. Is there a continuous (analytic) structure on that family of small deformations?
- $\mathcal{A} \approx \mathcal{B} \Rightarrow \mathcal{A}$ and \mathcal{B} share the same properties (e.g.: Dirichlet, logmodular, finitely generated, has analytic structure in the spectrum, etc.).
- Deformation of complex manifolds and multidimensional Riemann Mapping Theorem.
- Almost multiplicative functionals.
Problems

- $A \approx B \Rightarrow A = B$ (A is stable).
- Describe all small deformations of A. Is there a continuous (analytic) structure on that family of small deformations?
- $A \approx B \Rightarrow A$ and B share the same properties (e.g.: Dirichlet, logmodular, finitely generated, has analytic structure in the spectrum, etc.).
- Deformation of complex manifolds and multidimensional Riemann Mapping Theorem.
- Almost multiplicative functionals.
- Deformations of topological algebras, lattices, other function spaces; non-linear deformations, etc.
Theorem (Nagasawa, 1959)

Uniform algebras are isometric iff they are isomorphic as algebras.
Very Early History (metric case)

Theorem (Nagasawa, 1959)

Uniform algebras are isometric iff they are isomorphic as algebras.

Definition

\[\mathcal{A} \text{ is a uniform algebra iff } \|a^2\| = \|a\|^2 \text{ or equivalently } \mathcal{A} \subset C(X). \]
Very Early History (metric case)

Theorem (Nagasawa, 1959)

Uniform algebras are isometric iff they are isomorphic as algebras.

Definition

\[A \] is a uniform algebra iff \(\| a^2 \| = \| a \|^2 \) or equivalently \(A \subset C(X) \).

Example

Not true for Banach algebras in general: \((l^1, \cdot), (l^1, *) \).
Very Early History (metric case)

Theorem (Nagasawa, 1959)

Uniform algebras are isometric iff they are isomorphic as algebras.

Definition

\(\mathcal{A} \) is a uniform algebra iff \(\| a^2 \| = \| a \|^2 \) or equivalently \(\mathcal{A} \subset C(X) \).

Example

Not true for Banach algebras in general: \((l^1, \cdot), (l^1, \ast)\).

Theorem (Cambern, 1963)

\(C(X) \cong C(Y) \implies X \cong Y \)
Very Early History (metric case)

Theorem (Nagasawa, 1959)

Uniform algebras are isometric iff they are isomorphic as algebras.

Definition

\mathcal{A} is a uniform algebra iff $\|a^2\| = \|a\|^2$ or equivalently $\mathcal{A} \subset C(X)$.

Example

Not true for Banach algebras in general: (l^1, \cdot), $(l^1, *)$.

Theorem (Cambern, 1963)

$C(X) \approx C(Y) \implies X \approx Y$

$d_{B-M}(C(X), C(Y)) < 2 \implies X, Y$ are homeomorphic.

Definition

$d_{B-M}(\mathcal{A}, \mathcal{B}) = \inf \left\{ \|T\| \|T^{-1}\| : T : \mathcal{A} \to \mathcal{B} \right\}$.
Early History

Theorem (B.E. Johnson and I. Raeburn & J. Taylor, 1977)

A Banach algebra \mathcal{B} is algebraically strongly stable if Hochschild cohomology groups $H^2(\mathcal{B}, \mathcal{B})$ and $H^3(\mathcal{B}, \mathcal{B})$ vanish.
Theorem (B.E. Johnson and I. Raeburn & J. Taylor, 1977)

A Banach algebra \mathcal{B} is algebraically strongly stable if Hochschild cohomology groups $\mathcal{H}^2(\mathcal{B}, \mathcal{B})$ and $\mathcal{H}^3(\mathcal{B}, \mathcal{B})$ vanish.
Theorem (RR, 1973, 75, 77)

\[d_{B-M}(A \subset C(X), B \subset C(Y)) < 1 + \epsilon \iff X, Y \text{ are homeomorphic.} \]
Theorem (RR, 1973, 75, 77)

\[d_{B-M}(A \subset C(X), B \subset C(Y)) < 1 + \varepsilon \implies X, Y \text{ are homeomorphic.} \]

Theorem (RR, 1979)

Metric and algebraic deformations coincide for many uniform algebras.
Early History

Theorem (RR, 1973, 75, 77)
\[d_{B-M}(A \subset C(X), B \subset C(Y)) < 1 + \varepsilon \implies X, Y \text{ are homeomorphic}. \]

Theorem (RR, 1979)
Metric and algebraic deformations coincide for many uniform algebras.

Theorem (RR, 1979)
The disc algebra \(A(D) \) is stable.
Early History

Theorem (RR, 1973, 75, 77)
\[
d_{B-M}(\mathcal{A} \subset C(X), \mathcal{B} \subset C(Y)) < 1 + \varepsilon \implies X, Y \text{ are homeomorphic.}
\]

Theorem (RR, 1979)

Metric and algebraic deformations coincide for many uniform algebras.

Theorem (RR, 1979)

The disc algebra \(A(D) \) is stable.

Theorem (RR, 1986)

\[
\mathcal{A} = A(S), \ S \text{ a 1-dim Riemann surface then } \quad d_{B-M}(\mathcal{A}, \mathcal{B}) \approx d_{\text{quasiconformal}}(S, S'), \text{ automatically } \mathcal{B} = A(S').
\]
Early History

Theorem (RR, 1973, 75, 77)

\[d_{B-M}(\mathcal{A} \subset C(X), \mathcal{B} \subset C(Y)) < 1 + \varepsilon \iff X, Y \text{ are homeomorphic.} \]

Theorem (RR, 1979)

Metric and algebraic deformations coincide for many uniform algebras.

Theorem (RR, 1979)

The disc algebra \(A(D) \) is stable.

Theorem (RR, 1986)

\(\mathcal{A} = A(S), \ S \text{ a 1-dim Riemann surface then} \)

\[d_{B-M}(\mathcal{A}, \mathcal{B}) \approx d_{\text{quasiconformal}}(S, S'), \text{ automatically } \mathcal{B} = A(S'). \]

Corollary

The disc algebra \(A(D) \) is the only stable \(A(S) \) algebra.
Problem

Describe small deformations of Banach algebras of analytic functions defined on n-dim manifolds, $n > 1$.

Deformations of complex manifolds
Deformations of complex manifolds

Problem

Describe small deformations of Banach algebras of analytic functions defined on n-dim manifolds, $n > 1$.

Definition

$$d(\Omega, \Omega') = \inf \{ \|T\| \|T^{-1}\| : T : A(\Omega) \to A(\Omega') \}.$$
Deformations of complex manifolds

Problem

Describe small deformations of Banach algebras of analytic functions defined on n-dim manifolds, \(n > 1 \).

Definition

\[
d (\Omega, \Omega') = \inf \left\{ \| T \| \| T^{-1} \| : \quad T : A(\Omega) \rightarrow A(\Omega') \right\}.
\]

Problem

Can the Rochberg's result be extended to domains in \(\mathbb{C}^n \), \(n > 1 \) to provide a quantitative multidimensional Riemann Mapping Theorem?
Deformations of complex manifolds

Problem

Describe small deformations of Banach algebras of analytic functions defined on n-dim manifolds, $n > 1$.

Definition

$$d(\Omega, \Omega') = \inf \left\{ \| T \| \| T^{-1} \| : T : A(\Omega) \to A(\Omega') \right\}.$$

Problem

Can the Rochberg’s result be extended to domains in \mathbb{C}^n, $n > 1$ to provide a quantitative multidimensional Riemann Mapping Theorem? Very little is known about the multidimensional case - only partial results concerning $A(D^n)$ (KJ, 1992) and $A(B^n)$ (KJ, 2012).
The Ball Algebra $\mathcal{A}(B_n)$ is the algebra of all continuous functions on the closed unit ball B_n which are analytic in B_n.

Theorem

Assume that \mathcal{B} is a Banach algebra such that $d_{BM}(\mathcal{A}(B_n), \mathcal{B}) < 1 + \varepsilon_0$ then there is a complex manifold Ω, homeomorphic with B_n and such that $\mathcal{B} = \mathcal{A}(\Omega)$.
Deformation of the ball algebra

Definition

The Ball Algebra $\mathcal{A}(B_n)$ is the algebra of all continuous functions on the closed unit ball \overline{B}_n which are analytic in B_n.

Theorem

Assume that \mathcal{B} is a Banach algebra such that $d_{B-M}(\mathcal{A}(B_n), \mathcal{B}) < 1 + \varepsilon_0$ then there is a complex manifold Ω, homeomorphic with B_n and such that $\mathcal{B} = \mathcal{A}(\Omega)$.

Problem

It is not known if Ω must be holomorphically equivalent to B_n.

Krzysztof Jarosz (Southern Illinois University) Deformations of Banach Algebras 10/24
Proof - the basic idea

Take an almost isometry $T : A(B_n) \to B; \|T\| \|T^{-1}\| < 1 + \varepsilon_0$
Proof - the basic idea

Take an almost isometry \(T : \mathcal{A}(B_n) \to \mathcal{B} ; \| T \| \| T^{-1} \| < 1 + \varepsilon_0 \)

- show that \(\mathcal{B} \) must automatically be a uniform algebra
Proof - the basic idea

Take an almost isometry \(T : \mathcal{A}(B_n) \to \mathcal{B} ; \| T \| \| T^{-1} \| < 1 + \varepsilon_0 \)

- show that \(\mathcal{B} \) must automatically be a uniform algebra
- show that without loss of generality we may assume \(T1 = 1 \)
Proof - the basic idea

Take an almost isometry $T : \mathcal{A}(B_n) \to \mathcal{B}; \|T\| \|T^{-1}\| < 1 + \varepsilon_0$

- show that \mathcal{B} must automatically be a uniform algebra
- show that without loss of generality we may assume $T1 = 1$
- take a linear and multiplicative functional F on \mathcal{B} and define a functional on $\mathcal{A}(B_n)$ by $G = F \circ T$
Proof - the basic idea

Take an almost isometry $T : \mathcal{A} (B_n) \to \mathcal{B}; \|T\| \|T^{-1}\| < 1 + \varepsilon_0$

- show that \mathcal{B} must automatically be a uniform algebra
- show that without loss of generality we may assume $T1 = 1$
- take a linear and multiplicative functional F on \mathcal{B} and define a functional on $\mathcal{A} (B_n)$ by $G = F \circ T$
- show that G is almost multiplicative, that is
 \[|F(fg) - F(f)F(g)| \leq \delta \|f\| \|g\| \]
 for some small δ dependent only on ε_0
Proof - the basic idea

Take an almost isometry $T : \mathcal{A}(B_n) \to \mathcal{B}$; $\|T\| \cdot \|T^{-1}\| < 1 + \varepsilon_0$

- show that \mathcal{B} must automatically be a uniform algebra
- show that without loss of generality we may assume $T1 = 1$
- take a linear and multiplicative functional F on \mathcal{B} and define a functional on $\mathcal{A}(B_n)$ by $G = F \circ T$
- show that G is almost multiplicative, that is

$$|F(fg) - F(f)F(g)| \leq \delta \|f\| \cdot \|g\|$$

for some small δ dependent only on ε_0

- show that any almost multiplicative functional G on $\mathcal{A}(B_n)$ must be close to a multiplicative functional $\tilde{G} = G + \Delta$ where $\|\Delta\| \leq \varepsilon$
Proof - the basic idea

Take an almost isometry \(T : \mathcal{A}(B_n) \to \mathcal{B}; \| T \| \| T^{-1} \| < 1 + \epsilon_0 \)

- show that \(\mathcal{B} \) must automatically be a uniform algebra
- show that without loss of generality we may assume \(T1 = 1 \)
- take a linear and multiplicative functional \(F \) on \(\mathcal{B} \) and define a functional on \(\mathcal{A}(B_n) \) by \(G = F \circ T \)
- show that \(G \) is almost multiplicative, that is

\[
|F(fg) - F(f)F(g)| \leq \delta \|f\| \|g\|
\]

for some small \(\delta \) dependent only on \(\epsilon_0 \)

- show that any almost multiplicative functional \(G \) on \(\mathcal{A}(B_n) \) must be close to a multiplicative functional \(\tilde{G} = G + \Delta \) where \(\|\Delta\| \leq \epsilon \)

- show that the functional \(\tilde{G} \) may be selected in such a way that \(G \to \tilde{G} \) is a homeomorphism from the maximal ideal space \(\mathcal{M}(\mathcal{B}) \) of \(\mathcal{B} \) onto \(\overline{B}_n \)
Proof - the basic idea

Take an almost isometry $T : \mathcal{A}(B_n) \to \mathcal{B}; \|T\| \|T^{-1}\| < 1 + \varepsilon_0$

- show that \mathcal{B} must automatically be a uniform algebra
- show that without loss of generality we may assume $T1 = 1$
- take a linear and multiplicative functional F on \mathcal{B} and define a functional on $\mathcal{A}(B_n)$ by $G = F \circ T$
- show that G is almost multiplicative, that is

$$|F(fg) - F(f)F(g)| \leq \delta \|f\| \|g\|$$

for some small δ dependent only on ε_0

- show that any almost multiplicative functional G on $\mathcal{A}(B_n)$ must be close to a multiplicative functional $\tilde{G} = G + \Delta$ where $\|\Delta\| \leq \varepsilon$

- show that the functional \tilde{G} may be selected in such a way that $G \to \tilde{G}$ is a homeomorphism from the maximal ideal space $M(\mathcal{B})$ of \mathcal{B} onto $\overline{B_n}$

- show that we can introduce an analytic structure on $M(\mathcal{B})$ such that all functions from \mathcal{B} are analytic.
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras:

Let A be a complex uniform algebra then the following conditions are equivalent:

1. $k a b k \leq \varepsilon_1 k a k k b k$, for $a, b \in A$

2. $k a b k \leq \varepsilon_2 k a k k b k$, for $a, b \in A$

3. $k a b k \leq (1 + \varepsilon_3) k a k k b k$, for $a, b \in A$

4. $a b = T_1 (T a T b)$ where $T : A \rightarrow B$ is such that $k T k \leq 1 + \varepsilon_4$ it follows that B is a uniform algebra and that the Chauquet boundaries of A and B are homeomorphic.
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras: Let A be a complex uniform algebra then the following conditions are equivalent

1. $\|a \cdot b - a \times b\| \leq \varepsilon_1 \|a\| \|b\|$, for $a, b \in A$

(we assume that all multiplications have the same unit).
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras: Let \mathcal{A} be a complex uniform algebra then the following conditions are equivalent

1. $\|a \cdot b - a \times b\| \leq \varepsilon_1 \|a\| \|b\|$, for $a, b \in \mathcal{A}$
2. $\|a \cdot b\| - \|a \times b\| \leq \varepsilon_2 \|a\| \|b\|$, for $a, b \in \mathcal{A}$

(we assume that all multiplications have the same unit).
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras:
Let A be a complex uniform algebra then the following conditions are equivalent

1. $\|a \cdot b - a \times b\| \leq \varepsilon_1 \|a\| \|b\|$, for $a, b \in A$

2. $\|a \cdot b\| - \|a \times b\| \leq \varepsilon_2 \|a\| \|b\|$, for $a, b \in A$

3. $\|a \times b\| \leq (1 + \varepsilon_3) \|a\| \|b\|$, for $a, b \in A$

(we assume that all multiplications have the same unit).
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras: Let \mathcal{A} be a complex uniform algebra then the following conditions are equivalent

1. $\|a \cdot b - a \times b\| \leq \varepsilon_1 \|a\| \|b\|$, for $a, b \in \mathcal{A}$
2. $\|a \cdot b\| - \|a \times b\| \leq \varepsilon_2 \|a\| \|b\|$, for $a, b \in \mathcal{A}$
3. $\|a \times b\| \leq (1 + \varepsilon_3) \|a\| \|b\|$, for $a, b \in \mathcal{A}$
4. $a \times b = T^{-1}(Ta \cdot Tb)$ where $T : \mathcal{A} \to \mathcal{B}$ is such that $\|T\| \|T^{-1}\| \leq 1 + \varepsilon_4$

(we assume that all multiplications have the same unit).
Theorem (KJ, 1985)

Metric and algebraic deformations coincide for uniform algebras:

Let \mathcal{A} be a complex uniform algebra then the following conditions are equivalent

1. $\| a \cdot b - a \times b \| \leq \varepsilon_1 \| a \| \| b \|$, for $a, b \in \mathcal{A}$
2. $\| a \cdot b \| - \| a \times b \| \leq \varepsilon_2 \| a \| \| b \|$, for $a, b \in \mathcal{A}$
3. $\| a \times b \| \leq (1 + \varepsilon_3) \| a \| \| b \|$, for $a, b \in \mathcal{A}$
4. $a \times b = T^{-1} (Ta \cdot Tb)$ where $T : \mathcal{A} \to \mathcal{B}$ is such that $\| T \| \| T^{-1} \| \leq 1 + \varepsilon_4$

it follows that \mathcal{B} is a uniform algebra and that the Chauquet boundaries of \mathcal{A} and \mathcal{B} are homeomorphic.

(we assume that all multiplications have the same unit).
Almost multiplicative functionals

Definition

$F \in \mathcal{A}^*$ is δ-multiplicative iff $|F(ab) - F(a)F(b)| \leq \delta \|a\| \|b\|$.

Examples

- $F = G + \Delta$ where G is multiplicative and $\|\Delta\| \leq \varepsilon$,

- $F = G^T$ where G is multiplicative and $\|G^T - I\| < 1 + \varepsilon$.

Problem

Must any almost multiplicative functional be near a multiplicative one?

Definition

A is functionally-stable or f-stable (or $AMNM$ algebra) if

$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall F \in \mathcal{M}_\delta(A) \ \|F - G\| < \varepsilon,$

where $\mathcal{M}_\delta(A)$ is the set of δ-multiplicative functionals on A.
Almost multiplicative functionals

Definition

\[F \in \mathcal{A}^* \text{ is} \delta\text{-multiplicative iff } |F(ab) - F(a)F(b)| \leq \delta \|a\| \|b\|. \]

Examples

- \[F = G + \Delta \text{ where } G \text{ is multiplicative and } \|\Delta\| \leq \varepsilon, \]
Almost multiplicative functionals

Definition

\[F \in \mathcal{A}^* \text{ is } \delta\text{-multiplicative iff } |F(ab) - F(a)F(b)| \leq \delta \|a\| \|b\|. \]

Examples

- \[F = G + \Delta \text{ where } G \text{ is multiplicative and } \|\Delta\| \leq \varepsilon, \]
- \[F = G \circ T \text{ where } G \text{ is multiplicative and } \|T\| \|T^{-1}\| < 1 + \varepsilon. \]
Almost multiplicative functionals

Definition

\[F \in \mathcal{A}^* \text{ is } \delta\text{-multiplicative iff } |F(ab) - F(a)F(b)| \leq \delta \|a\| \|b\|. \]

Examples

- \(F = G + \Delta \) where \(G \) is multiplicative and \(\|\Delta\| \leq \varepsilon \),
- \(F = G \circ T \) where \(G \) is multiplicative and \(\|T\| \|T^{-1}\| < 1 + \varepsilon \).

Problem

Must any almost multiplicative functional be near a multiplicative one?
Almost multiplicative functionals

Definition

\(F \in \mathcal{A}^* \) is \(\delta \)–multiplicative iff
\[
|F(ab) - F(a)F(b)| \leq \delta \|a\| \|b\|.
\]

Examples

- \(F = G + \Delta \) where \(G \) is multiplicative and \(\|\Delta\| \leq \varepsilon \),
- \(F = G \circ T \) where \(G \) is multiplicative and \(\|T\| \|T^{-1}\| < 1 + \varepsilon \).

Problem

Must any almost multiplicative functional be near a multiplicative one?

Definition

\(\mathcal{A} \) is *functionally-stable* or *\(f \)-stable* (or AMNM algebra) if

\[
\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall F \in \mathcal{M}_\delta(\mathcal{A}) \ \exists G \in \mathcal{M}(\mathcal{A}) \ \|F - G\| \leq \varepsilon,
\]

where \(\mathcal{M}_\delta(\mathcal{A}) \) is the set of \(\delta \)–multiplicative functionals on \(\mathcal{A} \).
Almost multiplicative functionals

Example

$C(X)$ algebras are f-stable.
Example

$C(X)$ algebras are f-stable.

Theorem (B. E. Johnson, 1986)

The disc algebra $A(D)$ is f-stable.
Example

$C(X)$ algebras are f-stable.

Theorem (B. E. Johnson, 1986)

The disc algebra $A(D)$ is f-stable.

Example (B. E. Johnson, 1986)

The convolution algebra $L^2(0,1)$ is f-stable, while $L^1(0,1)$ is not.
Almost multiplicative functionals

Example

$C(X)$ algebras are f-stable.

Theorem (B. E. Johnson, 1986)

The disc algebra $A(D)$ is f-stable.

Example (B. E. Johnson, 1986)

The convolution algebra $L^2(0, 1)$ is f-stable, while $L^1(0, 1)$ is not.

Proof.

If $f_0 \in L^1(0, 1)$ is "near" the Dirac measure then $f \mapsto f \ast f_0$ is almost multiplicative.
Almost multiplicative functionals

Example

$C(X)$ algebras are f-stable.

Theorem (B. E. Johnson, 1986)

The disc algebra $A(D)$ is f-stable.

Example (B. E. Johnson, 1986)

The convolution algebra $L^2(0, 1)$ is f-stable, while $L^1(0, 1)$ is not.

Proof.

If $f_0 \in L^1(0, 1)$ is "near" the Dirac measure then $f \longmapsto f \ast f_0$ is almost multiplicative.

Example (S. J. Sidney, 1997)

There exists a non f-stable uniform algebra.
Theorem

- The ball algebras $A(B_n)$ are f-stable.
Theorem

- The ball algebras $A(B_n)$ are f-stable.
- Any uniform algebra with one generator is f-stable.
Almost multiplicative functionals - recent results

Theorem

- The ball algebras \(A(B_n) \) are f-stable.
- Any uniform algebra with one generator is f-stable.
- If \(K \subset \mathbb{C} \) is such that \(\mathbb{C} \setminus K \) has finitely many components and the closures of the components are disjoint then \(R(K) \) is f-stable.
Theorem

- The ball algebras $A(B_n)$ are f-stable.
- Any uniform algebra with one generator is f-stable.
- If $K \subset \mathbb{C}$ is such that $\mathbb{C}\setminus K$ has finitely many components and the closures of the components are disjoint then $R(K)$ is f-stable.

Theorem

Let $B(z) = \prod_{n=1}^{\infty} \frac{\bar{\alpha}_n}{|\alpha_n|} \frac{\alpha_n - z}{1 - \bar{\alpha}_nz}$ be a Blaschke product. Then

- if B is an interpolating Blaschke product then H^∞ / BH^∞ is f-stable;
Almost multiplicative functionals - recent results

Theorem

- The ball algebras $A(B_n)$ are f-stable.
- Any uniform algebra with one generator is f-stable.
- If $K \subset \mathbb{C}$ is such that $\mathbb{C}\setminus K$ has finitely many components and the closures of the components are disjoint then $R(K)$ is f-stable.

Theorem

Let $B(z) = \prod_{n=1}^{\infty} \frac{\tilde{\alpha}_n}{|\alpha_n|} \frac{\alpha_n - z}{1 - \tilde{\alpha}_nz}$ be a Blaschke product. Then

- if B is an interpolating Blaschke product then H^∞ / BH^∞ is f-stable;
- if B is not a product of finitely many interpolating Blaschke product then H^∞ / BH^∞ is not f-stable.
Almost multiplicative functionals - recent results

Theorem
- The ball algebras $A(B_n)$ are f-stable.
- Any uniform algebra with one generator is f-stable.
- If $K \subseteq \mathbb{C}$ is such that $\mathbb{C} \setminus K$ has finitely many components and the closures of the components are disjoint then $R(K)$ is f-stable.

Theorem
Let $B(z) = \prod_{n=1}^{\infty} \frac{\bar{\alpha}_n}{|\alpha_n|} \frac{\alpha_n - z}{1 - \bar{\alpha}_n z}$ be a Blaschke product. Then
- if B is an interpolating Blaschke product then H^∞ / BH^∞ is f-stable;
- if B is not a product of finitely many interpolating Blaschke product then H^∞ / BH^∞ is not f-stable.

Problem
Is $H^\infty(\mathbb{D})$ is f-stable? (Does $H^\infty(\mathbb{D})$ have an almost corona?)
Theorem

The ball algebras $\mathcal{A}(B_n)$ are f-stable.
Theorem

The ball algebras $\mathcal{A}(B_n)$ are f-stable.

Proof. Let $F \in M_\delta(\mathcal{A}(B_n))$. We show that F is near a multiplicative functional.
Almost multiplicative functionals - proof

Theorem

The ball algebras \(\mathcal{A}(B_n) \) are f-stable.

Proof. Let \(F \in \mathcal{M}_\delta (\mathcal{A}(B_n)) \). We show that \(F \) is near a multiplicative functional.

Step 1. Show that (without loss of generality) \(F \) may be represented by a probabilistic, nonatomic measure \(\mu_F \) on \(\partial B_n \).
Almost multiplicative functionals - proof

Theorem

The ball algebras \(\mathcal{A}(B_n) \) are \(f \)-stable.

Proof. Let \(F \in \mathcal{M}_\delta (\mathcal{A}(B_n)) \). We show that \(F \) is near a multiplicative functional.

Step 1. Show that (without loss of generality) \(F \) may be represented by a probabilistic, nonatomic measure \(\mu_F \) on \(\partial B_n \).

Step 2. For \(w = (w_1, \ldots, w_n) \in B_n \) define \(\Phi_w : \bar{B}_n \to \bar{B}_n \) by

\[
\Phi_w(z) = \frac{w - P_z - \sqrt{1 - \|w\|^2} (z - P_z)}{1 - \langle z, w \rangle},
\]

where

\[
\langle z, w \rangle = \sum_{k=1}^n z_k \bar{w}_k \quad \text{and} \quad P_z = \frac{\langle z, w \rangle}{\|w\|^2} w.
\]
Step 3. Define $\varphi : B_n \rightarrow B_n$ by

$$\varphi(w) = \int \Phi_w d\mu_F.$$
Step 3. Define $\phi : B_n \to B_n$ by

$$
\phi(w) = \int \Phi_w d\mu_F.
$$

If

$$
B_n \ni w_j \to w_0 \in \partial B_n,
$$

then

$$
\Phi_{w_j}(z) \to w_0 \quad \text{pointwise on } \bar{B}_n \setminus \{w_0\}.
$$

Since μ_F has no atoms, ϕ extends to a continuous function on \bar{B}_n such that $\phi(w) = w$ for $w \in \partial B_n$.
Step 3. Define $\varphi : B_n \rightarrow B_n$ by

$$\varphi(w) = \int \Phi_w d\mu_F.$$

If

$$B_n \ni w_j \rightarrow w_0 \in \partial B_n,$$

then

$$\Phi_{w_j}(z) \rightarrow w_0 \text{ pointwise on } \bar{B}_n \setminus \{w_0\}.$$

Since μ_F has no atoms, φ extends to a continuous function on \bar{B}_n such that $\varphi(w) = w$ for $w \in \partial B_n$. Hence φ is surjective and there is a $w_0 \in B_n$ such that $\varphi(w_0) = 0$.
Almost multiplicative functionals - proof

Step 3. Define $\varphi : B_n \to B_n$ by

$$\varphi(w) = \int \Phi_w d\mu_F.$$

If

$$B_n \ni w_j \to w_0 \in \partial B_n,$$

then

$$\Phi_{w_j}(z) \to w_0 \quad \text{pointwise on } \bar{B}_n \setminus \{w_0\}.$$

Since μ_F has no atoms, φ extends to a continuous function on \bar{B}_n such that $\varphi(w) = w$ for $w \in \partial B_n$. Hence φ is surjective and there is a $w_0 \in B_n$ such that $\varphi(w_0) = 0$. Replacing F with $f \mapsto F(f \circ \Phi_{w_0})$ we may assume without loss of generality that $w_0 = 0$, so that

$$\varphi(0) = \int \Phi_0 d\mu_F = \int 1 d\mu_F = 0.$$
Step 3. Define $\varphi : B_n \to B_n$ by

$$\varphi(w) = \int \Phi_w d\mu_F.$$

If

$$B_n \ni w_j \to w_0 \in \partial B_n,$$

then

$$\Phi_{w_j}(z) \to w_0 \quad \text{pointwise on } \bar{B}_n \setminus \{w_0\}.$$

Since μ_F has no atoms, φ extends to a continuous function on \bar{B}_n such that $\varphi(w) = w$ for $w \in \partial B_n$. Hence φ is surjective and there is a $w_0 \in B_n$ such that $\varphi(w_0) = 0$. Replacing F with $f \mapsto F(f \circ \Phi_{w_0})$ we may assume without loss of generality that $w_0 = 0$, so that

$$\varphi(0) = \int \Phi_0 d\mu_F = \int \text{Id} d\mu_F = 0$$

hence

$$F(z_k) = 0 \quad \text{for } k = 1, \ldots, n.$$
Step 4. Put $\mathcal{A}_0(B_n) \overset{df}{=} \{ f \in \mathcal{A}(B_n) : f(0) = 0 \}$ and define

$$T : (\mathcal{A}(B_n))^n \to \mathcal{A}_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \overset{df}{=} \sum_{k=1}^{n} z_k f_k.$$
Step 4. Put $\mathcal{A}_0(B_n) \overset{df}{=} \{ f \in \mathcal{A}(B_n) : f(0) = 0 \}$ and define

$$T : (\mathcal{A}(B_n))^n \to \mathcal{A}_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \overset{df}{=} \sum_{k=1}^{n} z_k f_k.$$

T is surjective and there are continuous linear selections S_k [E. Stout]

$$\mathcal{A}_0(B_n) \ni \sum_{k=1}^{n} z_k f_k \overset{S_k}{\mapsto} f_k \in \mathcal{A}(B_n).$$

Hence $F\delta_0$.

As a special case, for $n=1$ we get Johnson’ s theorem.
Step 4. Put $\mathcal{A}_0(B_n) \overset{df}{=} \{ f \in \mathcal{A}(B_n) : f(0) = 0 \}$ and define

$$T : (\mathcal{A}(B_n))^n \to \mathcal{A}_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \overset{df}{=} \sum_{k=1}^n z_k f_k.$$

T is surjective and there are continuous linear selections S_k [E. Stout]

$$\mathcal{A}_0(B_n) \ni \sum_{k=1}^n z_k f_k \overset{S_k}{\mapsto} f_k \in \mathcal{A}(B_n).$$

For $f \in \mathcal{A}(B_n)$

$$F(f) = F \left(f(0) - \sum_{k=1}^n z_k S_k(f - f(0)) \right) = f(0) - \sum_{k=1}^n F(z_k S_k(f - f(0))).$$
Step 4. Put $A_0(B_n) \overset{df}{=} \{ f \in A(B_n) : f(0) = 0 \}$ and define

$$T : (A(B_n))^n \to A_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \overset{df}{=} \sum_{k=1}^n z_k f_k.$$

T is surjective and there are continuous linear selections S_k [E. Stout]

$$A_0(B_n) \ni \sum_{k=1}^n z_k f_k \overset{S_k}{\mapsto} f_k \in A(B_n).$$

For $f \in A(B_n)$

$$F(f) = F \left(f(0) - \sum_{k=1}^n z_k S_k (f - f(0)) \right) = f(0) - \sum_{k=1}^n F(z_k S_k (f - f(0))) \approx f(0) - \sum_{k=1}^n F(z_k) \cdot F(S_k (f - f(0))) = f(0).$$
Step 4. Put $A_0(B_n) \overset{df}{=} \{ f \in A(B_n) : f(0) = 0 \}$ and define

$$T : (A(B_n))^n \to A_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \overset{df}{=} \sum_{k=1}^{n} z_k f_k.$$

T is surjective and there are continuous linear selections S_k [E. Stout]

$$A_0(B_n) \ni \sum_{k=1}^{n} z_k f_k \overset{S_k}{\mapsto} f_k \in A(B_n).$$

For $f \in A(B_n)$

$$F(f) = F \left(f(0) - \sum_{k=1}^{n} z_k S_k(f - f(0)) \right) = f(0) - \sum_{k=1}^{n} F(z_k S_k(f - f(0)))$$

$$\approx f(0) - \sum_{k=1}^{n} F(z_k) \cdot F(S_k(f - f(0))) = f(0).$$

Hence

$$F \approx \delta_0. \quad \square$$
Step 4. Put $\mathcal{A}_0(B_n) \stackrel{df}{=} \{ f \in \mathcal{A}(B_n) : f(0) = 0 \}$ and define

$$T : (\mathcal{A}(B_n))^n \to \mathcal{A}_0(B_n) \quad \text{by} \quad T(f_1, \ldots, f_n) \stackrel{df}{=} \sum_{k=1}^n z_k f_k.$$

T is surjective and there are continuous linear selections S_k [E. Stout]

$$\mathcal{A}_0(B_n) \ni \sum_{k=1}^n z_k f_k \overset{S_k}{\mapsto} f_k \in \mathcal{A}(B_n).$$

For $f \in \mathcal{A}(B_n)$

$$F(f) = F \left(f(0) - \sum_{k=1}^n z_k S_k(f - f(0)) \right) = f(0) - \sum_{k=1}^n F(z_k S_k(f - f(0))) \approx f(0) - \sum_{k=1}^n F(z_k) \cdot F(S_k(f - f(0))) = f(0).$$

Hence

$$F \approx \delta_0. \quad \square$$

As a special case, for $n = 1$ we get Johnson’s theorem.
Problem

For bounded pseudoconvex domains Ω in \mathbb{C}^n describe small deformations of algebras $A(\Omega)$ and $H^\infty(\Omega)$ and characterize these domains for which the algebras are stable.
Open problems - deformations of uniform algebras

Problem

For bounded pseudoconvex domains Ω in \mathbb{C}^n describe small deformations of algebras $A(\Omega)$ and $H^\infty(\Omega)$ and characterize these domains for which the algebras are stable.

Problem

Is the injective tensor product $A \otimes B$ of uniform algebras stable iff the algebras A and B are both stable?
Problem

For bounded pseudoconvex domains Ω in \mathbb{C}^n describe small deformations of algebras $A(\Omega)$ and $H^\infty(\Omega)$ and characterize these domains for which the algebras are stable.

Problem

Is the injective tensor product $A \otimes B$ of uniform algebras stable iff the algebras A and B are both stable?

Problem

Does there exist a nonstable uniform algebra with only countably many small deformations?
Open problems - deformations of uniform algebras

Problem

For bounded pseudoconvex domains Ω in \mathbb{C}^n describe small deformations of algebras $A(\Omega)$ and $H^\infty(\Omega)$ and characterize these domains for which the algebras are stable.

Problem

Is the injective tensor product $A \otimes B$ of uniform algebras stable iff the algebras A and B are both stable?

Problem

Does there exist a nonstable uniform algebra with only countably many small deformations?

Problem

Is the property "A is logmodular" stable?
Open problems - deformations of uniform algebras

Problem

For bounded pseudoconvex domains Ω in \mathbb{C}^n describe small deformations of algebras $A(\Omega)$ and $H^\infty(\Omega)$ and characterize these domains for which the algebras are stable.

Problem

Is the injective tensor product $A \bigotimes B$ of uniform algebras stable iff the algebras A and B are both stable?

Problem

Does there exist a nonstable uniform algebra with only countably many small deformations?

Problem

Is the property "A is logmodular" stable?

Is the property "A has n generators" for $n \in \mathbb{N} \cup \{\infty\}$ stable?
Problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, are $A(\Omega)$ and $H^\infty(\Omega)$ f-stable?

Problem

Is any uniform algebra with two generators f-stable?

Problem

Let A be an f-stable uniform algebra. Is an ultrapower of A f-stable? Is $l_\infty(A)$ f-stable?

Problem

Let B be a product of finitely many interpolating Blaschke products. Is H^∞/BH^∞ f-stable?
Problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, are $A(\Omega)$ and $H^\infty(\Omega)$ f-stable? Is H^∞ f-stable?
Open problems - almost multiplicative functionals

Problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, are $A(\Omega)$ and $H^\infty(\Omega)$ f-stable? Is H^∞ f-stable?

Problem

Is any uniform algebra with two generators f-stable?
Problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, are $A(\Omega)$ and $H^\infty(\Omega)$ f-stable? Is H^∞ f-stable?

Problem

Is any uniform algebra with two generators f-stable?

Problem

Let \mathcal{A} be an f-stable uniform algebra. Is an ultrapower of \mathcal{A} f-stable? Is $l^\infty(\mathcal{A})$ f-stable?
Open problems - almost multiplicative functionals

Problem

Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, are $A(\Omega)$ and $H^\infty(\Omega)$ f-stable? Is H^∞ f-stable?

Problem

Is any uniform algebra with two generators f-stable?

Problem

Let \mathcal{A} be an f-stable uniform algebra. Is an ultrapower of \mathcal{A} f-stable? Is $l^\infty(\mathcal{A})$ f-stable?

Problem

Let B be a product of finitely many interpolating Blaschke products. Is H^∞ / BH^∞ f-stable?
Problem

Describe small deformations of topological algebras of analytic functions on bounded pseudoconvex domains Ω in \mathbb{C}^n
Problem

Describe small deformations of topological algebras of analytic functions on bounded pseudoconvex domains Ω in \mathbb{C}^n

Fact

For $n = 1$ there are partial results available, similar to Rochberg’s 1986 description of deformation of $\mathcal{A}(S)$ [M. Abel & KJ, 2003]
Open problems - deformation of non-commutative uniform algebras

Definition

\(\mathcal{A} \) is a uniform algebra iff \(\|a^2\| = \|a\|^2 \).
Open problems - deformation of non-commutative uniform algebras

Definition

\(\mathcal{A} \) is a uniform algebra iff \(\|a^2\| = \|a\|^2 \).

Theorem (Hirshfeld, Zelazko, 1973)

In the complex case a uniform algebra is automatically commutative and a subalgebra of \(C(X) \).
Open problems - deformation of non-commutative uniform algebras

Definition

\(\mathcal{A} \) is a uniform algebra iff \(\|a^2\| = \|a\|^2 \).

Theorem (Hirshfeld, Zelazko, 1973)

In the complex case a uniform algebra is automatically commutative and a subalgebra of \(C(X) \).

Theorem

In the real case a uniform algebra must be a subalgebra of \(C_H(X) \).
Open problems - deformation of non-commutative uniform algebras

Definition

\[A \text{ is a uniform algebra iff } \|a^2\| = \|a\|^2. \]

Theorem (Hirshfeld, Zelazko, 1973)

In the complex case a uniform algebra is automatically commutative and a subalgebra of \(C(X) \)

Theorem

In the real case a uniform algebra must be a subalgebra of \(C_H(X) \)

Problem

Describe small deformations of real uniform algebras.
More open problems - separating maps

Definition

\(S : \mathcal{A} \rightarrow \mathcal{B} \) is separating iff \(f \cdot g = 0 \iff S(f) \cdot S(g) = 0 \).

Theorem

For compact \(X \), \(Y \) and a separating \(S \):

\(C(X) ! C(Y) \)

\(S \) may not be continuous (even if \(Y \) is a singleton), if \(S^{-1} \) exists then \(S \) is continuous and \(S^{-1} \) is separating.

Problem

Assume \(S : C(X) ! C(Y) \) is a separating bijection (\(X \), \(Y \) may not be compact), does it follow that \(S^{-1} \) is separating?

Theorem (J. Araujo & KJ, 1999)

Yes if \(X \subseteq \mathbb{R} \).
More open problems - separating maps

Definition

\[S : \mathcal{A} \to \mathcal{B} \text{ is separating iff } f \cdot g = 0 \iff S(f) \cdot S(g) = 0. \]

Theorem

For compact \(X, Y \) *and a separating* \(S : C(X) \to C(Y) \)

\(S \) may not be continuous (even if \(Y \) is a singleton), if \(S^{-1} \) exists then \(S \) is continuous and \(S^{-1} \) is separating.
More open problems - separating maps

Definition

\[S : \mathcal{A} \to \mathcal{B} \text{ is separating iff } f \cdot g = 0 \iff S(f) \cdot S(g) = 0. \]

Theorem

For compact \(X, Y \) *and a separating* \(S : C(X) \to C(Y) \)

\(S \) may not be continuous (even if \(Y \) is a singleton), if \(S^{-1} \) exists then \(S \) is continuous and \(S^{-1} \) is separating.
More open problems - separating maps

Definition

S : \(\mathcal{A} \rightarrow \mathcal{B} \) is separating iff \(f \cdot g = 0 \iff S(f) \cdot S(g) = 0 \).

Theorem

For compact \(X, Y \) and a separating \(S : C(X) \rightarrow C(Y) \),

- \(S \) may not be continuous (even if \(Y \) is a singleton), if \(S^{-1} \) exists then
- \(S \) is continuous and \(S^{-1} \) is separating.

Problem

Assume \(S : C(X) \rightarrow C(Y) \) is a separating bijection (\(X, Y \) may not be compact), does it follow that \(S^{-1} \) is separating?
More open problems - separating maps

Definition

\[S : \mathcal{A} \rightarrow \mathcal{B} \text{ is separating iff } f \cdot g = 0 \iff S(f) \cdot S(g) = 0. \]

Theorem

For **compact** \(X, Y \) and a separating \(S : \mathcal{C}(X) \rightarrow \mathcal{C}(Y) \)

- \(S \) may not be continuous (even if \(Y \) is a singleton), if \(S^{-1} \) exists then \(S \) is continuous and \(S^{-1} \) is separating.

Problem

Assume \(S : \mathcal{C}(X) \rightarrow \mathcal{C}(Y) \) is a separating bijection (\(X, Y \) may not be compact), does it follow that \(S^{-1} \) is separating?

Theorem (J. Araujo & KJ, 1999)

Yes if \(X \subseteq \mathbb{R} \).
THANK YOU!