Hyper-Invariant subspaces for some compact perturbation of a diagonal operator

Hubert Klaja
Université de Lille1

Banach Algebras and Applications
Gothenburg, Sweden
July 29, 2013
Let H be a complex and separable Hilbert space. We denote the set of bounded operators in H by $\mathcal{B}(H)$. Let $T \in \mathcal{B}(H)$. We denote the commutator of T by

$$\{ T \}' = \{ S \in \mathcal{B}(H), ST = TS \}.$$

We denote the spectrum (respectively the point spectrum) of T by $\sigma(T)$ (respectively $\sigma_p(T)$).
Invariant Subspace Problem

Let $T \in \mathcal{B}(H)$. Does a non-trivial closed subspace $M \subset H$ (i.e. $M \neq \{0\}$ and $M \neq H$) exist such that $T(M) \subset M$?

Hyper-Invariant Subspace Problem

Let $T \in \mathcal{B}(H)$ such that $T \neq \lambda I$. Does a non-trivial closed subspace $M \subset H$ (i.e. $M \neq \{0\}$ and $M \neq H$) exist such that for all $S \in \{T\}'$, we have $S(M) \subset M$?
If $T \neq \lambda I$ and $\sigma_p(T) \neq \emptyset$, then for every $\lambda \in \sigma_p(T)$, Ker($T - \lambda$) is a non trivial hyper invariant subspace. Indeed, let $\lambda \in \sigma_p(T)$, let $x \in \text{Ker}(T - \lambda)$ and $S \in \{T\}'$. Then

$$T(Sx) = S(Tx) = S(\lambda x) = \lambda Sx.$$

So $S(\text{Ker}(T - \lambda)) \subset \text{Ker}(T - \lambda)$.

- When N is a normal operator, the spectral Theorem implies the existence of a non trivial hyper invariant subspace for N.

- When K is a compact operator, Lomonosov’s Theorem implies the existence of a non trivial hyper invariant subspace for K.

- When N is a normal operator and K is a compact operator, we don’t know in general if $N + K$ has a non trivial hyper invariant subspace.
Definition

Let $u, v \in H$. We denote by $u \otimes v$ the rank one operator such that for every $h \in H$ we have

$$u \otimes v(h) = \langle h, v \rangle u.$$

Definition

An operator $D \in B(H)$ is diagonal, if there exists an orthonormal basis $(e_n)_{n \in \mathbb{N}}$ of H, and a bounded sequence of complex number $(\lambda_n)_{n \in \mathbb{N}}$ such that

$$D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$$
If D is a diagonal operator and $u, v \in H$, in general we don’t know if $D + u \otimes v$ has a non trivial hyper invariant subspace.

In 1984, Stampfli constructed a diagonal operator D and two vectors $u, v \in H$ such that $\sigma_p(D + u \otimes v) = \emptyset$.

In 2001, Ionascu gave necessary and sufficient conditions on D, u, v, λ in order that $\lambda \in \sigma_p(D + u \otimes v)$.
Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $u, v \in H$ such that $D + u \otimes v \neq \lambda I$ and

$$\sum_{n \in \mathbb{N}} |\langle u, e_n \rangle|^3 < \infty \quad \text{and} \quad \sum_{n \in \mathbb{N}} |\langle v, e_n \rangle|^3 < \infty.$$

Then $D + u \otimes v$ has a non trivial hyper invariant subspace.
Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $u_1, \ldots, u_r, v_1, \ldots, v_r \in H$, such that $D + u_1 \otimes v_1 + \cdots + u_r \otimes v_r \neq \lambda I$ and
\[
\sum_{i=1}^{r} \sum_{n \in \mathbb{N}} |\langle u_i, e_n \rangle| < \infty \quad \text{and} \quad \sum_{i=1}^{r} \sum_{n \in \mathbb{N}} |\langle v_i, e_n \rangle| < \infty.
\]
Then $D + u_1 \otimes v_1 + \cdots + u_r \otimes v_r$ has a non trivial hyper invariant subspace.
Singular Value Decomposition

Let $K \in \mathcal{K}(H)$ be a compact operator. Then there exists a sequence $(s_n)_{n \in \mathbb{N}}$ of positive real numbers such that $\lim_{n \to \infty} s_n = 0$, and there exist two orthonormal families $(u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}$ of vector in H such that

$$K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n.$$
Theorem 1 K. (2013)

Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n$ be a compact operator.

Suppose that there exists a closed path Γ in \mathbb{C} such that

1- There are infinitely many λ_i inside and outside Γ, and
\[\sigma_p(D) \cap \Gamma = \emptyset, \]

2- The application A is well defined and continuous
\[A : \Gamma \to \mathcal{K}(H) \]
\[z \mapsto \sum_{n \in \mathbb{N}} s_n \left((D - z)^{-1} u_n \right) \otimes \left((D^* - \overline{z})^{-1} v_n \right). \]

Then $T = D + K$ has a non trivial hyper invariant subspace.
Corollary 2 K. (2013)

Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n$ be a compact operator.
Let $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ be two sequences of positive real numbers such that for all $n \in \mathbb{N}$, $s_n = a_n b_n$.
Suppose that $D + K \neq \lambda I$ and

$$\sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} |a_n \langle u_n, e_k \rangle| < \infty \quad \text{and} \quad \sum_{j \in \mathbb{N}} \sum_{n \in \mathbb{N}} |b_n \langle e_j, v_n \rangle| < \infty.$$

Then $T = D + K$ has a non trivial hyper invariant subspace.
Theorem 1 K. (2013)

Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n$ be a compact operator.
Suppose that there exists a closed path Γ in \mathbb{C} such that

1- There are infinitely many λ_i inside and outside Γ, and
 $\sigma_p(D) \cap \Gamma = \emptyset$,

2- The application A is well defined and continuous

\[A : \Gamma \to \mathcal{K}(H) \]
\[z \mapsto \sum_{n \in \mathbb{N}} s_n \left((D - z)^{-1} u_n \right) \otimes \left((D^* - \bar{z})^{-1} v_n \right) . \]

Then $T = D + K$ has a non trivial hyper invariant subspace.
\[\sigma(D) \]
Theorem 1 K. (2013)

Let \(D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n \) be a diagonal operator.
Let \(K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n \) be a compact operator.
Suppose that there exists a closed path \(\Gamma \) in \(\mathbb{C} \) such that

1- There are infinitely many \(\lambda_i \) inside and outside \(\Gamma \), and \(\sigma_p(D) \cap \Gamma = \emptyset \),

2- The application \(A \) is well defined and continuous

\[
A : \Gamma \to \mathcal{K}(H) \\
\quad z \mapsto \sum_{n \in \mathbb{N}} s_n \left((D - z)^{-1} u_n \right) \otimes \left((D^* - \bar{z})^{-1} v_n \right).
\]

Then \(T = D + K \) has a non trivial hyper invariant subspace.
\(\sigma(D) \)
\(\sigma(D) \)
$\sigma(D)$
$\sigma(D)$
\[\Gamma \quad \sigma(D) \]
Theorem 1 K. (2013)

Let \(D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n \) be a diagonal operator.
Let \(K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n \) be a compact operator.
Suppose that there exists a closed path \(\Gamma \) in \(\mathbb{C} \) such that

1- There are infinitely many \(\lambda_i \) inside and outside \(\Gamma \), and \(\sigma_p(D) \cap \Gamma = \emptyset \),
2- The application \(A \) is well defined and continuous

\[
A : \Gamma \rightarrow \mathcal{K}(H)
\]

\[
z \mapsto \sum_{n \in \mathbb{N}} s_n \left((D - z)^{-1} u_n \right) \otimes \left((D^* - \overline{z})^{-1} v_n \right).
\]

Then \(T = D + K \) has a non trivial hyper invariant subspace.
Γ \sigma(D)
Fact A
Let P be an orthogonal projection such that
$$\dim(P(H)) = \dim((I - P)(H)) = \infty.$$
Let $L \in \mathcal{K}(H)$ be a compact operator.
Then $P + L$ has a non trivial hyper invariant subspace.
This is a well-known fact from the theory of Bochner integral.

Fact B

Let (X, \mathcal{M}, μ) be a measured space.
Let H be a separable Hilbert space.
Let $\mathcal{K}(H)$ be the collection of compact operators on H.
Suppose that $F : X \to \mathcal{K}(H)$ is a weakly \mathcal{M}-measurable map and

$$
\int_X \| F(x) \| d\mu(x) < \infty.
$$

Then

$$
L = \int_X F(x) d\mu(x)
$$

is a compact operator.
Idea of the proof of Theorem 1

Suppose that $\sigma_p(T) = \emptyset$.

▸ Step 1. Let $W = \cap_{z \in \Gamma} \text{Ran}(D - z)$. For all $z \in \Gamma$ we define

$$B(z) = (I + A(z)(D - z))^{-1}A(z)$$
$$R(z) = (D - z)^{-1} - B(z).$$

For all $w \in W$ we have that

$$(T - z)R(z)w = w.$$

▸ Step 2. There exists a compact operator L and an orthogonal projection P satisfying the hypothesis of Fact 1, such that for every $w \in W$

$$\frac{1}{2i\pi} \int_{\Gamma} R(z)wdz = \frac{1}{2i\pi} \int_{\Gamma} (D - z)^{-1}wdz - \frac{1}{2i\pi} \int_{\Gamma} B(z)wdz$$

$$= Pw + Lw.$$

▸ Step 3. $\{T\}' \subset \{P + L\}'$.

Idea of the proof of Corollary 2

Corollary 2 K. (2013)

Let $D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n$ be a diagonal operator.
Let $K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n$ be a compact operator.
Let $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ be two sequences of positive real numbers such that for all $n \in \mathbb{N}$, $s_n = a_n b_n$.
Suppose that $D + K \neq \lambda I$ and

$$\sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} |a_n \langle u_n, e_k \rangle| < \infty \quad \text{and} \quad \sum_{j \in \mathbb{N}} \sum_{n \in \mathbb{N}} |b_n \langle e_j, v_n \rangle| < \infty.$$

Then $T = D + K$ has a non trivial hyper invariant subspace.
Lemma 3 K. (2013)

Let \((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}\) be two sequences of positive real numbers. Let \((e_n)_{n \in \mathbb{N}}\) be an orthonormal basis of \(H\). Let \((u_n)_{n \in \mathbb{N}}, (v_n)_{n \in \mathbb{N}}\) be two family of orthonormal vector in \(H\). Let \((\lambda_n)_{n \in \mathbb{N}}\) be a bounded sequence of complex numbers.

Suppose that

\[
\sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} |a_n \langle u_n, e_k \rangle| < \infty \quad \text{and} \quad \sum_{j \in \mathbb{N}} \sum_{n \in \mathbb{N}} |b_n \langle e_j, v_n \rangle| < \infty.
\]

Then for almost every \(x \in \mathbb{R}\), we have that

\[
g(x) = \sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} \frac{|a_n \langle u_n, e_k \rangle|^2}{\text{Re}(\lambda_k - x)^2} < \infty
\]

and

\[
h(x) = \sum_{j \in \mathbb{N}} \sum_{n \in \mathbb{N}} \frac{|b_n \langle e_j, v_n \rangle|^2}{\text{Re}(\lambda_k - x)^2} < \infty.
\]
Denote by $z = x + iy$. For all $z \in \mathbb{C}$ we have that $\|A(z)\| \leq g(x)h(x)$.
Denote by $z = x + iy$. For all $z \in \mathbb{C}$ we have that $\|A(z)\| \leq g(x)h(x)$.
Denote by $z = x + iy$. For all $z \in \mathbb{C}$ we have that
$$\|A(z)\| \leq g(x)h(x).$$
$\sigma(D)$
$\sigma(D)$
$\sigma(D)$
Γ

$\sigma(D)$
Corollary 2 K. (2013)

Let \(D = \sum_{n \in \mathbb{N}} \lambda_n e_n \otimes e_n \) be a diagonal operator.
Let \(K = \sum_{n \in \mathbb{N}} s_n u_n \otimes v_n \) be a compact operator.
Let \((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \) be two sequences of positive real numbers such that for all \(n \in \mathbb{N}, s_n = a_n b_n \).
Suppose that \(D + K \neq \lambda I \) and

\[
\sum_{k \in \mathbb{N}} \sum_{n \in \mathbb{N}} |a_n \langle u_n, e_k \rangle| < \infty \quad \text{and} \quad \sum_{j \in \mathbb{N}} \sum_{n \in \mathbb{N}} |b_n \langle e_j, v_n \rangle| < \infty.
\]

Then \(T = D + K \) has a non trivial hyper invariant subspace.