Dual algebras and A-measures.

Marek Kosiek

Joint work with Krzysztof Rudol
A - an arbitrary function algebra
The main subject of our investigation:
Properties of the spectrum of A^{**}.

Motivation:
- A - measures problem
- $G \subset \mathbb{C}^n$
- The algebra $H^\infty(G)$ is a dual algebra
- The application of dual algebras in functional calculus for bounded operators in Hilbert spaces
- Connections with the Corona problem

A - an arbitrary function algebra

Marek Kosiek
Dual algebras and A-measures.
A - an arbitrary function algebra

The main subject of our investigation:
Properties of the spectrum of A^{**}.

Motivation:
A - an arbitrary function algebra

The main subject of our investigation:
Properties of the spectrum of A^{**}.

Motivation:
- A - measures problem
A - an arbitrary function algebra

The main subject of our investigation:
Properties of the spectrum of A^{**}.

Motivation:
- A - measures problem
- the problem for which $G \subset \mathbb{C}^n$ the algebra $H^\infty(G)$ is a dual algebra
A - an arbitrary function algebra

The main subject of our investigation:
Properties of the spectrum of A^{**}.

Motivation:
- A - measures problem
- the problem for which $G \subset \mathbb{C}^n$ the algebra $H^\infty(G)$ is a dual algebra
- the application of dual algebras in functional calculus for bounded operators in Hilbert spaces
\(A \) - an arbitrary function algebra

The main subject of our investigation:
Properties of the spectrum of \(A^{**} \).

Motivation:
- \(A \) - measures problem
- the problem for which \(G \subset \mathbb{C}^n \) the algebra \(H^\infty(G) \) is a dual algebra
- the application of dual algebras in functional calculus for bounded operators in Hilbert spaces
- connections with the Corona problem
As an application of our main result we have obtained:
As an application of our main result we have obtained:

- a general positive solution for A - measures problem
As an application of our main result we have obtained:

- a general positive solution for A-measures problem
- the duality of $H^\infty(G)$ algebra for some classes of bounded domains $G \subset \mathbb{C}^n$
Definition

A is a function algebra on a compact set X iff $A \subset C(X)$,
A contains constants and separates the points of X.
Definition

A is a function algebra on a compact set \(X \) iff \(A \subset C(X) \), \(A \) contains constants and separates the points of \(X \).

Let \(\phi, \psi \in \sigma(A) \)

\[
\phi \sim \psi \quad \overset{\text{df}}{\iff} \quad \| \phi - \psi \| < 2
\]
A is a function algebra on a compact set X iff $A \subset C(X)$, A contains constants and separates the points of X.

Let $\phi, \psi \in \sigma(A)$.

\[\phi \sim \psi \iff \|\phi - \psi\| < 2 \]

The equivalence classes in the above equivalence relation are called **Gleason parts** of A.
Definition

A is a function algebra on a compact set X iff $A \subset C(X)$, A contains constants and separates the points of X.

Let $\phi, \psi \in \sigma(A)$

$$\phi \sim \psi \iff \|\phi - \psi\| < 2$$

Definition

The equivalence classes in the above equivalence relation are called Gleason parts of A.

We assume $\sigma(A) = X$.

Marek Kosiek

Dual algebras and A-measures.
\(\mathcal{M} \subset M(X) = C(X)^* \) is a band if it is a closed subspace and \(\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M} \)
\(\mathcal{M} \subset \mathcal{M}(X) = C(X)^* \) is a band if it is a closed subspace and \(\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M} \)

every measure \(\mu \in \mathcal{M}(X) \) has a unique Lebesque decomposition \(\mu = \mu_M + \mu_S \) where \(\mu_M \in \mathcal{M} \) and \(\mu_S \) is singular to each measure in \(\mathcal{M} \)
\(\mathcal{M} \subset M(X) = C(X)^* \) is a band if it is a closed subspace and \(\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M} \)

every measure \(\mu \in M(X) \) has a unique Lebesque decomposition \(\mu = \mu_M + \mu_S \) where \(\mu_M \in \mathcal{M} \) and \(\mu_S \) is singular to each measure in \(\mathcal{M} \)

\(\mathcal{M} \) is a reducing band (with respect to \(A \)) if \(\mu \in A^\perp \implies \mu_M \in A^\perp \)
\[\mathcal{M} \subset M(X) = C(X)^* \] is a band if it is a closed subspace and \(\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M} \)

Every measure \(\mu \in M(X) \) has a unique Lebesgue decomposition \(\mu = \mu_{\mathcal{M}} + \mu_{\mathcal{S}} \) where \(\mu_{\mathcal{M}} \in \mathcal{M} \) and \(\mu_{\mathcal{S}} \) is singular to each measure in \(\mathcal{M} \).

\(\mathcal{M} \) is a reducing band (with respect to \(A \)) if \(\mu \in A^\perp \implies \mu_{\mathcal{M}} \in A^\perp \).

\(\nu \) is a representing measure for \(x \in X = \sigma(A) \) if \(f(x) = \int f \, d\nu \) for \(f \in A \).
• $\mathcal{M} \subset M(X) = C(X)^*$ is a band if it is a closed subspace and $\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M}$

• every measure $\mu \in M(X)$ has a unique Lebesgue decomposition $\mu = \mu_M + \mu_S$ where $\mu_M \in \mathcal{M}$ and μ_S is singular to each measure in \mathcal{M}

• \mathcal{M} is a reducing band (with respect to A) if $\mu \in A^\perp \implies \mu_M \in A^\perp$

• ν is a representing measure for $x \in X = \sigma(A)$ if $f(x) = \int f \, d\nu$ for $f \in A$

• for $G \subset X$ we denote by \mathcal{M}_G the band generated by G i.e. the smallest band containing all measures representing for points in G
\(\mathcal{M} \subset M(X) = C(X)^* \) is a band if it is a closed subspace and \(\mu \in \mathcal{M}, \nu \ll |\mu| \implies \nu \in \mathcal{M} \)

every measure \(\mu \in M(X) \) has a unique Lebesgue decomposition \(\mu = \mu_M + \mu_s \) where \(\mu_M \in \mathcal{M} \) and \(\mu_s \) is singular to each measure in \(\mathcal{M} \)

\(\mathcal{M} \) is a reducing band (with respect to \(A \)) if \(\mu \in A^\perp \implies \mu_M \in A^\perp \)

\(\nu \) is a representing measure for \(x \in X = \sigma(A) \) if \(f(x) = \int f \, d\nu \) for \(f \in A \)

for \(G \subset X \) we denote by \(\mathcal{M}_G \) the band generated by \(G \) i.e. the smallest band containing all measures representing for points in \(G \)

if \(G \) is a Gleason part then \(\mathcal{M}_G \) is a reducing band
\((C(X))^* \approx M(X) \approx C(Y)\) for some hyperstonean compact space \(Y\)
(\(C(X)^*\))^* = M(X)^* \cong C(Y)\) for some hyperstonean compact space \(Y\)

each \(f \in C(X)\) can be treated as a functional on \(M(X)\) and consequently as an element of \(C(Y)\) by the formula

\[\langle f, \mu \rangle = \int f \, d\mu \quad \text{for} \quad \mu \in M(X)\]
(\(C(X)^*\))^* = M(X)^* \cong C(Y)\) for some hyperstonean compact space \(Y\)

each \(f \in C(X)\) can be treated as a functional on \(M(X)\) and consequently as an element of \(C(Y)\) by the formula

\[
\langle f, \mu \rangle = \int f \, d\mu \quad \text{for} \quad \mu \in M(X)
\]

for \(\mu \in M(X)\) there is a unique measure \(\tilde{\mu} \in M(Y) = C(Y)^*\) such that \(\langle F, \mu \rangle = \int F \, d\tilde{\mu}\) for all \(F \in C(Y)\)
Theorem

If \(G \) is a Gleason part of \(A \) then the weak-star closure \(\overline{G}^{ws} \) of \(G \) in \(Y \) is a closed-open subset of \(Y \). Moreover

\[
Y \setminus \overline{G}^{ws} = X \setminus \overline{G}^{ws}, \quad (\overline{\mathcal{M}_G}^{ws})^s = (\overline{\mathcal{M}_G^s})^{ws}, \quad \overline{\mathcal{M}_G}^{ws} = \mathcal{M}(\overline{G}^{ws}),
\]

and \(\overline{\mathcal{M}_G}^{ws} \) is a reducing band for \(A^{**} \).
Corollary

There exists a characteristic function $F_0 \in A^{**}$ vanishing exactly on $Y \setminus \overline{G}^{ws}$ and the projection associated with the decomposition $M(Y) = \overline{\mathcal{M}}_G^{ws} + \overline{\mathcal{M}}_S^{ws}$ is exactly the multiplication by F_0.
Corollary

There exists a characteristic function $F_0 \in A^{**}$ vanishing exactly on $Y \setminus \overline{G^{ws}}$ and the projection associated with the decomposition $M(Y) = \overline{M_G}^{ws} + \overline{M_G}^{s^{ws}}$ is exactly the multiplication by F_0.

Corollary

If G is a Gleason part of a function algebra A, $x \in G$ and μ_x is any its representing measure, then μ_x is concentrated on the weak-star closure of G.
- G - a Gleason part of A
• G - a Gleason part of A
• $H^\infty(\mathcal{M}_G)$ - the weak-star closure of A in \mathcal{M}_G^*
- G - a Gleason part of A
- $H^\infty(\mathcal{M}_G)$ - the weak-star closure of A in \mathcal{M}_G^*
- by the definition of $H^\infty(\mathcal{M}_G)$, the values of its every element are uniquely defined on each $x \in G$
- G - a Gleason part of A
- $H^\infty(\mathcal{M}_G)$ - the weak-star closure of A in \mathcal{M}_G^*
- by the definition of $H^\infty(\mathcal{M}_G)$, the values of its every element are uniquely defined on each $x \in G$

Proposition

$H^\infty(\mathcal{M}_G)$ is isometrically isomorphic to $A^{**}/\mathcal{M}_G^\perp \cap A^{**}$
- G - a Gleason part of A
- $H^\infty(\mathcal{M}_G)$ - the weak-star closure of A in \mathcal{M}_G^*
- by the definition of $H^\infty(\mathcal{M}_G)$, the values of its every element are uniquely defined on each $x \in G$

Proposition

$H^\infty(\mathcal{M}_G)$ is isometrically isomorphic to $A^{**}/\mathcal{M}_G^/A^{**}$

Corollary

G is a subset of the spectrum of $H^\infty(\mathcal{M}_G)$
Theorem

If G is a Gleason part of A, then $H^\infty(\mathcal{M}_G)$ satisfies the domination condition:

$$\|f\| = \sup_{x \in G} |f(x)| \quad \text{for any} \quad f \in H^\infty(\mathcal{M}_G)$$
Theorem

If G is a Gleason part of A, then $H^\infty(\mathcal{M}_G)$ satisfies the domination condition:

$$||f|| = \sup_{x \in G} |f(x)| \quad \text{for any} \quad f \in H^\infty(\mathcal{M}_G)$$

Proposition

The band \mathcal{M}_G is equal to the norm closed linear span of all representing measures for points in G, taken in the quotient space $M(X)/A^\perp$.
Theorem

If G is a Gleason part of A, then $H^\infty(\mathcal{M}_G)$ satisfies the domination condition:

$$\|f\| = \sup_{x \in G} |f(x)| \quad \text{for any } f \in H^\infty(\mathcal{M}_G)$$

Proposition

The band \mathcal{M}_G is equal to the norm closed linear span of all representing measures for points in G, taken in the quotient space $M(X)/A^\perp$.

- For $f \in H^\infty(\mathcal{M}_G)$ and $z \in G$ we can define $f(z)$ as the value of f on a representing measure ν_z for z.

Marek Kosiek
Dual algebras and A-measures.
Theorem
If G is a Gleason part of A, then $H^\infty(\mathcal{M}_G)$ satisfies the domination condition:

$$\|f\| = \sup_{x \in G} |f(x)| \quad \text{for any} \quad f \in H^\infty(\mathcal{M}_G)$$

Proposition
The band \mathcal{M}_G is equal to the norm closed linear span of all representing measures for points in G, taken in the quotient space $M(X)/A^\perp$.

- For $f \in H^\infty(\mathcal{M}_G)$ and $z \in G$ we can define $f(z)$ as the value of f on a representing measure ν_z for z.
- By the weak-star density of A in $H^\infty(\mathcal{M}_G)$, the value $f(z)$ does not depend on the choice of representing measure.
Theorem

If G is a Gleason part of A, then $H^\infty(\mathcal{M}_G)$ satisfies the domination condition:

$$\|f\| = \sup_{x \in G} |f(x)| \quad \text{for any } f \in H^\infty(\mathcal{M}_G)$$

Proposition

The band \mathcal{M}_G is equal to the norm closed linear span of all representing measures for points in G, taken in the quotient space $M(X)/A^\perp$.

- For $f \in H^\infty(\mathcal{M}_G)$ and $z \in G$ we can define $f(z)$ as the value of f on a representing measure ν_z for z.
- By the weak-star density of A in $H^\infty(\mathcal{M}_G)$, the value $f(z)$ does not depend on the choice of representing measure.
- So the elements of $H^\infty(\mathcal{M}_G)$ can be regarded as functions on G.

Marek Kosiek

Dual algebras and A-measures.
Proposition

If G is a bounded domain in \mathbb{C}^n and $f \in H^\infty(M_G)$ then the defined above $z \rightarrow f(z)$ is a bounded analytic function of $z \in G$.

Proposition

If G is a star-shaped domain in \mathbb{C}^n such that G is the spectrum of $A(G)$, then the algebras $H^\infty(G)$ and $H^\infty(M_G)$ are isometrically isomorphic. Hence $H^\infty(G)$ is a dual algebra.

Open problem

Is $\sigma(A^{**}) = Y/ (A^{**})^\perp$, where Y is the spectrum of $C(X)^{**}$?

Consequences

If the above open problem would have a positive solution, then the Corona problem would have a positive solution for the case when $H^\infty(G)$ and $H^\infty(M_G)$ are isometrically isomorphic.
Proposition
If G is a bounded domain in \mathbb{C}^n and $f \in H^\infty(\mathcal{M}_G)$ then the defined above $z \rightarrow f(z)$ is a bounded analytic function of $z \in G$.

Proposition
If G is a star-shaped domain in \mathbb{C}^n such that \overline{G} is the spectrum of $A(G)$, then the algebras $H^\infty(G)$ and $H^\infty(\mathcal{M}_G)$ are isometrically isomorphic. Hence $H^\infty(G)$ is a dual algebra.
Proposition
If G is a bounded domain in \mathbb{C}^n and $f \in H^\infty(M_G)$ then the defined above $z \mapsto f(z)$ is a bounded analytic function of $z \in G$.

Proposition
If G is a star-shaped domain in \mathbb{C}^n such that \overline{G} is the spectrum of $A(G)$, then the algebras $H^\infty(G)$ and $H^\infty(M_G)$ are isometrically isomorphic. Hence $H^\infty(G)$ is a dual algebra.

Open problem
Is $\sigma(A^{**}) = Y/(A^{**})_\perp$, where Y is the spectrum of $C(X)^{**}$?
Proposition

If G is a bounded domain in \mathbb{C}^n and $f \in H^\infty(\mathcal{M}_G)$ then the defined above $z \to f(z)$ is a bounded analytic function of $z \in G$.

Proposition

If G is a star-shaped domain in \mathbb{C}^n such that \overline{G} is the spectrum of $A(G)$, then the algebras $H^\infty(G)$ and $H^\infty(\mathcal{M}_G)$ are isometrically isomorphic. Hence $H^\infty(G)$ is a dual algebra.

Open problem

Is $\sigma(A^{**}) = Y/(A^{**})^\perp$, where Y is the spectrum of $C(X)^{**}$?

Consequences

If the above open problem would have a positive solution, then the Corona problem would have a positive solution for the case when $H^\infty(G)$ and $H^\infty(\mathcal{M}_G)$ are isometrically isomorphic.
\[Q = \bigcup_{\alpha} G_{\alpha}, \quad \text{where } G_{\alpha} \text{ is a Gleason part of } A \]
\[Q = \bigcup_{\alpha} G_{\alpha}, \text{ where } G_{\alpha} \text{ is a Gleason part of } A \]

We say that a measure \(\mu \in M(X) \) is an \(A \)-measure (or analytic measure, or a Henkin measure) with respect to the set \(Q \) if \(\int u_n \, d\mu \to 0 \) whenever \(\{u_n\}_{n=1}^\infty \subset A \) is a bounded sequence converging to 0 pointwise on \(Q \).
\[Q = \bigcup_{\alpha} G_\alpha, \]
where \(G_\alpha \) is a Gleason part of \(A \)

We say that a measure \(\mu \in M(X) \) is an A-measure (or analytic measure, or a Henkin measure) with respect to the set \(Q \) if \(\int u_n \, d\mu \to 0 \) whenever \(\{u_n\}_{n=1}^\infty \subset A \) is a bounded sequence converging to 0 pointwise on \(Q \).

A-measures problem for the algebra \(A \) at the points of \(Q \)

Does the absolute continuity of a measure \(\mu \) on \(X \) with respect to some representing measure of a point \(x \in Q \) imply that \(\mu \) is an A-measure?
\[Q = \bigcup_{\alpha} G_{\alpha}, \] where \(G_{\alpha} \) is a Gleason part of \(A \)

We say that a measure \(\mu \in M(X) \) is an \textit{A-measure} (or analytic measure, or a Henkin measure) with respect to the set \(Q \) if \(\int u_n \, d\mu \to 0 \) whenever \(\{u_n\}_{n=1}^{\infty} \subset A \) is a bounded sequence converging to 0 pointwise on \(Q \).

A-measures problem for the algebra \(A \) at the points of \(Q \)

Does the absolute continuity of a measure \(\mu \) on \(X \) with respect to some representing measure of a point \(x \in Q \) imply that \(\mu \) is an A-measure?

Another formulation

Is any measure which is absolutely continuous with respect to a positive A-measure, itself an A-measure?
Theorem
If A is a function algebra on X and $Q \subset X$ is equal to a countable union of its Gleason parts, then A-measures problem for the algebra A at the points of Q has a positive solution.

Corollary
The A-measures problem at the points of $Q = G$ for $A(G)$ has a positive solution if G is either a strictly pseudoconvex set in \mathbb{C}^n, or a Cartesian product of a finite number of such domains. This includes polydiscs, polydomains (products of bounded plane domains), but also products of balls with polydiscs.

Theorem
A-measures problem for the algebra $A = \mathcal{H}\infty(G)$ at all points of a countable union Q of its arbitrary Gleason parts has positive solution. In particular, if G is a star-shaped domain in \mathbb{C}^n such that G is the spectrum of $A(G)$, then A-measures problem for $\mathcal{H}\infty(G)$ at all points of G has positive solution.
Theorem

If A is a function algebra on X and $Q \subset X$ is equal to a countable union of its Gleason parts, then A-measures problem for the algebra A at the points of Q has a positive solution.

Corollary

The A-measures problem at the points of $Q = G$ for $A(G)$ has a positive solution if G is either a strictly pseudoconvex set in \mathbb{C}^n, or a Cartesian product of a finite number of such domains.
Theorem
If \(A \) is a function algebra on \(X \) and \(Q \subset X \) is equal to a countable union of its Gleason parts, then A-measures problem for the algebra \(A \) at the points of \(Q \) has a positive solution.

Corollary
The A-measures problem at the points of \(Q = G \) for \(A(G) \) has a positive solution if \(G \) is either a strictly pseudoconvex set in \(\mathbb{C}^n \), or a Carthesian product of a finite number of such domains.

This includes polydiscs, polydomains (products of bounded plane domains), but also products of balls with polydiscs.
Theorem

If A is a function algebra on X and $Q \subset X$ is equal to a countable union of its Gleason parts, then A-measures problem for the algebra A at the points of Q has a positive solution.

Corollary

The A-measures problem at the points of $Q = G$ for $A(G)$ has a positive solution if G is either a strictly pseudoconvex set in \mathbb{C}^n, or a Carthesian product of a finite number of such domains.

This includes polydiscs, polydomains (products of bounded plane domains), but also products of balls with polydiscs.

Theorem

A-measures problem for the algebra $A = H^\infty(G)$ at all points of a countable union Q of its arbitrary Gleason parts has positive solution. In particular, if G is a star-shaped domain in \mathbb{C}^n such that \overline{G} is the spectrum of $A(G)$, then A-measures problem for $H^\infty(G)$ at all points of G has positive solution.
Before our results, A-measures problem was solved positively by advanced complex analysis methods for two special cases:
Before our results, A-measures problem was solved positively by advanced complex analysis methods for two special cases:

- by Cole and Range for X being the closure of a strictly pseudoconvex bounded domain Q in \mathbb{C}^n with C^2 boundary, and A being the algebra of all complex continuous functions on X which are holomorphic on its interior Q.
Before our results, A-measures problem was solved positively by advanced complex analysis methods for two special cases:

- by Cole and Range for X being the closure of a strictly pseudoconvex bounded domain Q in \mathbb{C}^n with C^2 boundary, and A being the algebra of all complex continuous functions on X which are holomorphic on its interior Q.

- by Bekken and Bui Doan Khanh in the case of the cartesian product of compact planar sets for two classes of algebras - for algebras of continuous functions which are holomorphic on the interior and for algebras generated by rational functions with singularities off X.
Before our results, A-measures problem was solved positively by advanced complex analysis methods for two special cases:

- by Cole and Range for X being the closure of a strictly pseudoconvex bounded domain Q in \mathbb{C}^n with C^2 boundary, and A being the algebra of all complex continuous functions on X which are holomorphic on its interior Q

- by Bekken and Bui Doan Khanh in the case of the cartesian product of compact planar sets for two classes of algebras - for algebras of continuous functions which are holomorphic on the interior and for algebras generated by rational functions with singularities off X

Both above cases are covered by our results.
THANK YOU!