Criterion of irreducibility of C^*-algebra generated by mapping

A. Kuznetsova

Kazan Federal University

3.08.2013
• C^*-algebra $C^*_\varphi(X)$ generated by mapping.
• Some properties of $C^*_\varphi(X)$.
• Criterion of irreducibility of the natural representation of $C^*_\varphi(X)$.
• Basic invariant subspaces of $C^*_\varphi(X)$.
• Some examples of $C^*_\varphi(X)$ illustrating the basic invariant subspaces.
Let X be an arbitrary countable set. Mapping $\varphi : X \rightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$. We assume the cardinalities of preimages are bounded under the action of mapping φ.
Let \(X \) be an arbitrary countable set. Mapping \(\varphi : X \to X \) generates oriented graph \((X, \varphi)\) with vertices in the elements of \(X \) and edges \((x, \varphi(x))\). We assume the cardinalities of preimages are bounded under the action of mapping \(\varphi \).

Mapping \(\varphi \) induces the mapping

\[
T_\varphi : l^2(X) \to l^2(X); \quad T_\varphi f = f \circ \varphi
\]

and hence the family of partial isometries \(\{U_k\} \) participating in decomposition of operator \(T_\varphi \),

\[
T_\varphi = U_1 + \sqrt{2}U_2 + \cdots + \sqrt{m}U_m + \cdots.
\]
Definition

Under C^*-algebra generated by mapping φ we mean the C^*-algebra $C^*_\varphi(X)$ generated by the set of partial isometries $\{U_k\}_{k=1}^\infty$.

A. Kuznetsova
Gothenburg, 29.07–04.08 2013.
Definition

Under C^*-algebra generated by mapping φ we mean the C^*-algebra $C_\varphi^*(X)$ generated by the set of partial isometries $\{U_k\}_{k=1}^\infty$.

If the cardinalities of preimages are bounded in common under the action of mapping φ ($\sup_{y \in X} \text{card} \varphi^{-1}(y) = m < \infty$), then operator T_φ is bounded. In this case $C_\varphi^*(X)$ is a singly generated algebra with the generator T_φ.
Definition

Under C^*-algebra generated by mapping φ we mean the C^*-algebra $C^*_\varphi(X)$ generated by the set of partial isometries $\{U_k\}_{k=1}^\infty$.

If the cardinalities of preimages are bounded in common under the action of mapping φ ($\sup_{y\in X} \text{card} \varphi^{-1}(y) = m < \infty$), then operator T_φ is bounded. In this case $C^*_\varphi(X)$ is a singly generated algebra with the generator T_φ.

The family of partial isometries satisfy the equalities:

$$U_1^*U_1 + U_2^*U_2 + \cdots + U_m^*U_m + \cdots = P;$$

$$U_1U_1^* + U_2U_2^* + \cdots + U_mU_m^* + \cdots = Q;$$

where P and Q are projections defined by the mapping φ.

A. Kuznetsova
Gothenburg, 29.07–04.08 2013.
We call an element from $\{U_k\}_{k=1}^{\infty} \cup \{U_k^*\}_{k=1}^{\infty}$ the primary monomial. We define

$$\text{ind } U_k = -1 \quad \text{and} \quad \text{ind } U_k^* = 1$$

We call V the monomial if it is any finite product of primary monomials not identically zero,

$$V = \prod_{k=1}^{m} U'_{j_k}, \quad U'_{j_k} \in \{U_{j_k} \cup U_{j_k}^*\}, \quad \text{and}$$

$$\text{ind } V = \sum_{k=l}^{m} \text{ind } U'_{j_k}.$$
We call an element from \(\{ U_k \}_{k=1}^\infty \cup \{ U_k^* \}_{k=1}^\infty \) the primary monomial. We define

\[
\text{ind } U_k = -1 \quad \text{and} \quad \text{ind } U_k^* = 1
\]

We call \(V \) the monomial if it is any finite product of primary monomials not identically zero,

\[
V = \prod_{k=1}^m U_j^l, \quad U_j^l \in \{ U_j \cup U_j^* \}, \quad \text{and}
\]

\[
\text{ind } V = \sum_{k=1}^m \text{ind } U_j^l.
\]

We assume \(X \) and \(\varphi \) to satisfy the following conditions:

- \(\sup_{y \in X} \text{card}\varphi^{-1}(y) = m < \infty \);
- graph \((X, \varphi)\) is connected;
- there is no element in \(X \) such that \(\varphi^n(y) = y \) for some \(n \in \mathbb{N} \).
In a case of absence of cyclic elements the index of monomial is well-defined. Hence we can equip $C^*_\varphi(X)$ with a circle action α.

$$C^*_\varphi(X) = \bigoplus_{n \in \mathbb{Z}} C^*_\varphi, n.$$

The linear combinations of monomials of index n are dense in n^{th} spectral subspace

$$C^*_\varphi, n = \{ A \in C^*_\varphi(X) : \alpha_z(A) = z^n A \text{ for } z \in S^1 \}.$$
Structure of $C^*_\varphi(X)$

In a case of absence of cyclic elements the index of monomial is well-defined. Hence we can equip $C^*_\varphi(X)$ with a circle action α.

$$C^*_\varphi(X) = \bigoplus_{n \in \mathbb{Z}} C^*_{\varphi,n}.$$

The linear combinations of monomials of index n are dense in n^{th} spectral subspace

$$C^*_{\varphi,n} = \{ A \in C^*_\varphi(X) : \alpha_z(A) = z^n A \text{ for } z \in S^1 \}.$$

The fixed point subalgebra $C^*_{\varphi,0}$ (generated by monomials of index zero) is AF-algebra.
Mapping φ induces the partial order in X. We will write
\[x \prec y \quad \text{if there is an} \quad m \in \mathbb{Z}_+ \quad \text{such that} \quad \varphi^m(y) = x \]
and
\[x \sim y \quad \text{if there is an} \quad m \in \mathbb{Z}_+ \quad \text{such that} \quad \varphi^m(x) = \varphi^m(y). \]
The Hilbert space $l^2(X)$ has natural basis $\{ e_x \}_{x \in X}$, $e_x(y) = \delta_{x,y}$.
Mapping \(\varphi \) induces the partial order in \(X \). We will write
\[
x \prec y \quad \text{if there is an } m \in \mathbb{Z}_+ \text{ such that } \varphi^m(y) = x
\]
and
\[
x \sim y \quad \text{if there is an } m \in \mathbb{Z}_+ \text{ such that } \varphi^m(x) = \varphi^m(y).
\]
The Hilbert space \(l^2(X) \) has natural basis \(\{e_x\}_{x \in X}, \quad e_x(y) = \delta_{x,y} \). We can spread the order on the natural basis by setting
\[
e_x \prec e_y \quad \text{if } x \prec y
\]
and
\[
e_x \sim e_y \quad \text{if } x \sim y.
\]
Theorem
Let \((X, \varphi)\) be a connected graph, \(\{e_x\}\) a natural basis in \(l^2(X)\). Then the following are equivalent:

- \(C^*(X)\) is irreducible on \(l^2(X)\);
- if \((Ve_x, e_x) = (Ve_y, e_y)\) for all monomials \(V \in C^*(X)\), then \(x = y\).
Theorem
Let \((X, \varphi)\) be a connected graph, \(\{e_x\}\) a natural basis in \(l^2(X)\). Then the following are equivalent:

- \(C^*_\varphi(X)\) is irreducible on \(l^2(X)\);
- if \((V e_x, e_x) = (V e_y, e_y)\) for all monomials \(V \in C^*_\varphi(X)\), then \(x = y\).

Definition
Let \(\{e_x\}\) be a natural basis in \(l^2(X)\). We will say that the basis elements \(e_x\) and \(e_y\) satisfy the condition \(\omega (e_x \omega e_y)\) if \((V e_x, e_x) = (V e_y, e_y)\) for all \(V \in C^*_\varphi(X)\).
Theorem
Let \((X, \varphi)\) be a connected graph, \(\{e_x\}\) a natural basis in \(l^2(X)\). Then the following are equivalent:

- \(C^*_\varphi(X)\) is irreducible on \(l^2(X)\);
- if \((Ve_x, e_x) = (Ve_y, e_y)\) for all monomials \(V \in C^*_\varphi(X)\), then \(x = y\).

Definition
Let \(\{e_x\}\) be a natural basis in \(l^2(X)\). We will say that the basis elements \(e_x\) and \(e_y\) satisfy the condition \(\omega (e_x \omega e_y)\) if \((Ve_x, e_x) = (Ve_y, e_y)\) for all \(V \in C^*_\varphi(X)\).

\(C^*_\varphi(X)\) is irreducible \iff \(e_x \omega e_x\) only for all \(x \in X\).
Let $E(x) = \{x' \in \varphi^{-1}(\varphi(x)) : e_x \varnothing e_{x'}\}$.
Let $E(x) = \{x' \in \varphi^{-1}(\varphi(x)) : e_x \omega e_{x'}\}$.

Lemma

Let $e_x \omega e_y$. Then

- for every $x' \in \varphi^{-1}(x)$ such an $y' \in \varphi^{-1}(y)$ exists that $e_{x'} \omega e_{y'}$;
- $\text{card } E(x') = \text{card } E(y')$.

A. Kuznetsova Gothenburg, 29.07–04.08 2013.
Let $E(x) = \{ x' \in \varphi^{-1}(\varphi(x)) : e_x \omega e_{x'} \}$.

Lemma

Let $e_x \omega e_y$. Then

- for every $x' \in \varphi^{-1}(x)$ such an $y' \in \varphi^{-1}(y)$ exists that $e_{x'} \omega e_{y'}$;
- $\text{card } E(x') = \text{card } E(y')$.

Suppose there exist basis elements satisfying the condition ω. What invariant subspaces can $C^*_\varphi(X)$ have?
Let $E(x) = \{ x' \in \varphi^{-1}(\varphi(x)) : e_x \omega e_{x'} \}$.

Lemma

Let $e_x \omega e_y$. Then

- for every $x' \in \varphi^{-1}(x)$ such an $y' \in \varphi^{-1}(y)$ exists that $e_{x'} \omega e_{y'}$;
- $\text{card } E(x') = \text{card } E(y')$.

Suppose there exist basis elements satisfying the condition ω. What invariant subspaces can $C^*_\varphi(X)$ have?

- $e_x \omega e_y, \quad e_x \sim e_y$;
- $e_x \omega e_y, \quad e_x \asymp e_y$.
Let Y be a countable set with a mapping $\psi : Y \longrightarrow Y \cup \{\emptyset\}$ such that there exists the minimal element y_0 (for all $y \in Y$ there is an m such that $\varphi^m(y) = y_0$) and $\psi(y_0) = \emptyset$.
Let Y be a countable set with a mapping $\psi : Y \to Y \cup \{\emptyset\}$ such that there exists the minimal element y_0 (for all $y \in Y$ there is an m such that $\varphi^m(y) = y_0$) and $\psi(y_0) = \emptyset$.

Proposition

Let $\psi : Y \to Y \cup \{\emptyset\}$ be a mapping with minimal element generating C^*-algebra \mathcal{A}_ψ.

Then there exist a set X and mapping $\varphi : X \to X$ such that:

- $l^2(Y) \hookrightarrow l^2(X)$;
- $\text{Im}(l^2(Y))$ is invariant for $C^*_\varphi(X)$;
- $\Omega : C^*_\varphi(X) \to \mathcal{A}_\psi$ — surjective $*$-homomorphism.
Let Y be a countable set with a mapping $\psi : Y \rightarrow Y \cup \{\emptyset\}$ such that there exists the minimal element y_0 (for all $y \in Y$ there is an m such that $\varphi^m(y) = y_0$) and $\psi(y_0) = \emptyset$.

Proposition

Let $\psi : Y \rightarrow Y \cup \{\emptyset\}$ be a mapping with minimal element generating C^*-algebra \mathfrak{A}_ψ.

Then there exist a set X and mapping $\varphi : X \rightarrow X$ such that:

- $l^2(Y) \hookrightarrow l^2(X)$;
- $\text{Im}(l^2(Y))$ is invariant for $C^*_\varphi(X)$;
- $\Omega : C^*_\varphi(X) \rightarrow \mathfrak{A}_\psi$ — surjective $*$-homomorphism.

Proposition

Let $e_x \sim e_y$ and $e_x \sim e_y$. Then there exist a set Y and mapping $\psi : Y \rightarrow Y \cup \{\emptyset\}$ with minimal element such that:

- $l^2(Y) \hookrightarrow l^2(X)$;
- $\text{Im}(l^2(Y))$ is invariant for $C^*_\varphi(X)$;
- $\Omega : C^*_\varphi(X) \rightarrow \mathfrak{A}_\psi$ — surjective $*$-homomorphism.
Theorem

Let \(\varphi \) be a mapping such that all \(e_x \omega e_y \) are equivalent. Then

\[
l^2(X) = H_0 \oplus (\bigoplus_i l^2(Y_i)),
\]

the restriction \(C^*_\varphi(X) |_{H_0} \) is irreducible and the restriction \(C^*_\varphi(X) |_{l^2(Y_i)} \) is isomorphic to a \(C^* \)-algebra generated by mapping with minimal element.
The structure of $l^2(Y_i)$ depends on the structure of the sets \(\{ \varphi^{-m}(x) \} = \{ y \in X : \varphi^m(y) = x \} \). We consider two cases.
The structure of $l^2(Y_i)$ depends on the structure of the sets
$\{\varphi^{-m}(x)\} = \{y \in X : \varphi^m(y) = x\}$. We consider two cases. Let

$$e_x \omega e_y \quad \text{and} \quad \varphi(x) = \varphi(y)$$

and

$$\text{card } E(z) = 1$$

for all $n \in \mathbb{N}$ and $z \in \varphi^{-n}(x) \cup \varphi^{-n}(y)$.

The structure of $l^2(Y_i)$ depends on the structure of the sets
\[\{\varphi^{-m}(x)\} = \{y \in X : \varphi^m(y) = x\}. \]
We consider two cases. Let
\[e_x \omega e_y \quad \text{and} \quad \varphi(x) = \varphi(y) \]
and
\[\text{card } E(z) = 1 \]
for all $n \in \mathbb{N}$ and $z \in \varphi^{-n}(x) \cup \varphi^{-n}(y)$.

Then the Hilbert space generated by the elements as
\[\frac{e_{x_i} - e_{y_i}}{\sqrt{2}} \]
is invariant for $C^*_\varphi(X)$ if for all i:

- $e_{x_i} \omega e_{y_i}$;
- $x_i \sim y_i$;
- $x \prec x_i$ and $y \prec y_i$.

A. Kuznetsova
Gothenburg, 29.07–04.08 2013.
Example of C^*-algebra generated by mapping
Representation of \(C^*_\varphi(X) \) into \(C^* \)-algebra generated by operator of weighted shift

Theorem

Let \(e_x \omega e_y \), \(\varphi(x) = \varphi(y) \) and \(E(z) = \varphi^{-1}(\varphi(z)) \) for all \(n \in \mathbb{N} \) and \(z \in \varphi^{-n}(x) \cup \varphi^{-n}(y) \). Then

\[
l^2(X) = H_0 \oplus \left(\bigoplus l^2(\mathbb{Z}_+) \right)
\]

and

\[
T\varphi = T_0 \oplus \left(\bigoplus_{i=0}^{\infty} (U^* T U^i) \right),
\]

where \(U \) is a shift operator and \(T \) is an operator of weighted shift.
Example of C^*-algebra generated by mapping
Corollary

Let \(\varphi \) be a mapping such that for every \(e_x \sim e_y \) it is true that \(e_x \sim e_y \). Then there exist a permutation group \(G \) and nontrivial unitary representation \(\pi : G \to B(l^2(X)) \) such that

\[
\pi(g)T_\varphi = T_\varphi \pi(g) \quad \text{for all} \quad g \in G.
\]
In this case for every basis element e_x there is countable number of basis elements which satisfy the condition ω. So we have the finite or countable number of classes of ω-equivalent basis elements, denoted via $[e_x]_{\omega_i}$.
In this case for every basis element e_x there is countable number of basis elements which satisfy the condition ω. So we have the finite or countable number of classes of ω-equivalent basis elements, denoted via $[e_x]_{\omega_i}$.

Definition

The class $[e_x]_{\omega_i}$ is principal if there is an m such that

$$e_x \omega e_{\varphi^m(x)} \text{ for all } e_x \in [e_x]_{\omega_i}.$$

The minimum of such m we will call the period of principal class of equivalent basis elements.
Lemma
All principal classes of ω-equivalent basis elements have the same period. The number of these classes is finite and coincides with m — period of ones.
Lemma
All principal classes of ω-equivalent basis elements have the same period. The number of these classes is finite and coincides with m — period of ones.

Corollary
Let φ be a mapping such that for every $e_x \omega e_y$ it is true that $e_x \sim e_y$. Then there exist a nontrivial unitary representation $\pi : \mathbb{Z} \rightarrow B(l^2(X))$ such that

$$\pi(n) T_\varphi = T_\varphi \pi(n) \quad \text{for all} \quad n \in \mathbb{Z},$$

and the classes $[e_x]_\omega$ are invariant under the action of π.
Theorem

Let φ be a mapping such that for every $e_x \sim e_y$, $e_x \sim e_y$ and there is the finite number of classes of ω-equivalent basis elements $[e_x]_{\omega_i}$. Then

$$l^2(X) \simeq l^2(\mathbb{Z}) \otimes H$$

and

$$C^* \varphi(X) \simeq C(S^1, B),$$

where B is a finite-dimensional algebra.
Example of $C^*_\varphi(X)$ with the only principal class of equivalent basis elements

\[l^2(X) \cong l^2(\mathbb{Z}) \otimes H_2 \]

\[C^*_\varphi(X) \cong C(S^1) \otimes M_2(\mathbb{C}) \]
Thank you!