Hardy Algebras, Berezin Transform and Taylor’s Taylor Series

Paul Muhly and Baruch Solel

Banach Algebras 2013, Goteborg, Sweden
We study tensor operator algebras (to be defined shortly) and their ultraweak closures: the **Hardy algebras**. We want to study these algebras as **algebras of (operator valued) functions** defined on the representation space of the algebra. More precisely, we are led to consider a **family of functions** defined on a **family of sets**. I shall discuss the “**matricial structure**” of this family of functions and their “**power series**” expansions.

♣ We were inspired by works of J. Taylor, D. Voiculescu, Kaliuzhnyi-Verbovetskyi and Vinnikov and Helton-Klepp-McCullough.
We begin with the following setup:

- M - a W^*-algebra.
- E - a W^*-correspondence over M. This means that E is a bimodule over M which is endowed with an M-valued inner product (making it a right-Hilbert C^*-module that is self dual). The left action of M on E is given by a unital, normal, *-homomorphism φ of M into the (W^*-) algebra of all bounded adjointable operators $\mathcal{L}(E)$ on E.

Introduction The algebras Representations Family of functions without a generator Maps

Examples

• (Basic Example) $M = \mathbb{C}$, $E = \mathbb{C}^d$, $d \geq 1$.

• $G = (G^0, G^1, r, s)$- a finite directed graph. $M = \ell^\infty(G^0)$, $E = \ell^\infty(G^1)$, $a\xi b(e) = a(r(e))\xi(e)b(s(e))$, $a, b \in M, \xi \in E$

$$\langle \xi, \eta \rangle(v) = \sum_{s(e) = v} \xi(e)\eta(e), \xi, \eta \in E.$$

• M- arbitrary , $\alpha : M \to M$ a normal unital, endomorphism. $E = M$ with right action by multiplication, left action by $\varphi = \alpha$ and inner product $\langle \xi, \eta \rangle := \xi^*\eta$. Denote it αM.

• Φ is a normal, contractive, CP map on M. $E = M \otimes \Phi M$ is the completion of $M \otimes M$ with $\langle a \otimes b, c \otimes d \rangle = b^*\Phi(a^*c)d$ and $c(a \otimes b)d = ca \otimes bd$.

Note: If σ is a representation of M on H, $E \otimes_\sigma H$ is a Hilbert space with $\langle \xi_1 \otimes h_1, \xi_2 \otimes h_2 \rangle = \langle h_1, \sigma(\langle \xi_1, \xi_2 \rangle_E)h_2 \rangle_H$.
Similarly, given two correspondences E and F over M, we can form the (internal) tensor product $E \otimes F$ by setting

$$\langle e_1 \otimes f_1, e_2 \otimes f_2 \rangle = \langle f_1, \varphi(\langle e_1, e_2 \rangle_E)f_2 \rangle_F$$

$$\varphi_{E \otimes F}(a)(e \otimes f)b = \varphi_E(a)e \otimes fb$$

and applying an appropriate completion.

In particular we get “tensor powers” $E \otimes^k$.

Also, given a sequence $\{E_k\}$ of correspondences over M, the direct sum $E_1 \oplus E_2 \oplus E_3 \oplus \cdots$ is also a correspondence (after an appropriate completion).
For a correspondence E over M we define the Fock correspondence
\[\mathcal{F}(E) := M \oplus E \oplus E^\otimes 2 \oplus E^\otimes 3 \oplus \cdots \]
For every $a \in M$ define the operator $\varphi_\infty(a)$ on $\mathcal{F}(E)$ by
\[\varphi_\infty(a)(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = (\varphi(a)\xi_1) \otimes \xi_2 \otimes \cdots \otimes \xi_n \]
and $\varphi_\infty(a)b = ab$.
For $\xi \in E$, define the “shift” (or “creation”) operator T_ξ by
\[T_\xi(\xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n) = \xi \otimes \xi_1 \otimes \xi_2 \otimes \cdots \otimes \xi_n. \]
and $T_\xi b = \xi b$. So that T_ξ maps $E^\otimes k$ into $E^\otimes (k+1)$.
Definition

(1) The norm-closed algebra generated by $\varphi_\infty(M)$ and \{ $T_\xi : \xi \in E$ \} will be called the **tensor algebra** of E and denoted $T_+(E)$.

(2) The ultra-weak closure of $T_+(E)$ will be called the **Hardy algebra** of E and denoted $H_\infty(E)$.

Examples

1. If $M = E = \mathbb{C}$, $F(E) = \ell^2$, $T_+(E) = A(\mathbb{D})$ and $H_\infty(E) = H_\infty(\mathbb{D})$.

2. If $M = \mathbb{C}$ and $E = \mathbb{C}^d$ then $F(E) = \ell^2(\mathbb{F}_d^+)$, $T_+(E)$ is Popescu’s A_d and $H_\infty(E)$ is F_∞_d (Popescu) or \mathcal{L}_d (Davidson-Pitts). These algebras are generated by d shifts $\{S_i\}$, each S_i is an isometry and $\sum S_i S_i^* \leq I$.
Every completely contractive representation of $\mathcal{T}_+(E)$ on H is given by a pair $(\sigma, \tilde{\rho})$ where

1. σ is a normal representation of M on $H = H_\sigma$. ($\sigma \in N\text{Rep}(M)$)
2. $\tilde{\rho} : E \otimes_\sigma H \to H$ is a contraction that satisfies

$$\tilde{\rho}(\varphi(\cdot) \otimes I_H) = \sigma(\cdot)\tilde{\rho}.$$

We write $\sigma \times \tilde{\rho}$ for the representation and we have

$$(\sigma \times \tilde{\rho})(\varphi_\infty(a)) = \sigma(a) \text{ and } (\sigma \times \tilde{\rho})(T_\xi) h = \tilde{\rho}(\xi \otimes h) \text{ for } a \in M, \xi \in E \text{ and } h \in H.$$

Write $\mathcal{I}(\varphi \otimes I, \sigma)$ for the intertwining space and $\mathbb{D}(0,1,\sigma)$ for the open unit ball there. Thus the c.c. representations of the tensor algebra are parametrized by the family $\{\overline{\mathbb{D}(0,1,\sigma)}\}_{\sigma \in N\text{Rep}(M)}$.
Examples

(1) \(M = E = \mathbb{C} \). So \(\mathcal{T}_+(E) = A(\mathbb{D}) \), \(\sigma \) is the trivial representation on \(H \), \(E \otimes H = H \) and \(\mathbb{D}(0, 1, \sigma) \) is the (open) unit ball in \(B(H_\sigma) \).

(2) \(M = \mathbb{C}, \ E = \mathbb{C}^d \). \(\mathcal{T}_+(E) = A_d \) (Popescu’s algebra) and \(\mathbb{D}(0, 1, \sigma) \) is the (open) unit ball in \(B(\mathbb{C}^d \otimes H, H) \). Thus the c.c. representations are parameterized by row contractions \((T_1, \ldots, T_d)\).

(3) \(M \) general, \(E =_\alpha M \) for an automorphism \(\alpha \).
\(\mathcal{T}_+(E) = \) the analytic crossed product.
The intertwining space can be identified with
\(\{X \in B(H) : \sigma(\alpha(T))X = X\sigma(T), T \in B(H)\} \) and the c.c. representations are \(\sigma \times _3 \) where \(_3 \) is a contraction there.
Representations of $\mathcal{H}^\infty(E)$

The representations of $\mathcal{H}^\infty(E)$ are given by the representations of $\mathcal{I}_+(E)$ that extend to an ultraweakly continuous representations of $\mathcal{H}^\infty(E)$.

For a given σ, we write $\mathcal{AC}(\sigma)$ for the set of all $\mathfrak{z} \in \mathbb{D}(0,1,\sigma)$ such that $\sigma \times \mathfrak{z}$ is a representation of $\mathcal{H}^\infty(E)$.

We have

Theorem

$$\mathbb{D}(0,1,\sigma) \subseteq \mathcal{AC}(\sigma) \subseteq \overline{\mathbb{D}(0,1,\sigma)}.$$

Example

When $M = E = \mathbb{C}$, $\mathcal{H}^\infty(E) = \mathcal{H}^\infty(\mathbb{D})$ and $\mathcal{AC}(\sigma)$ is the set of all contractions in $\mathcal{B}(\mathcal{H}_\sigma)$ that have an \mathcal{H}^∞-functional calculus.
Example

Induced representations: Fix a normal representation π of M on K, let $H = F(E) \otimes_{\pi} K$ and define the representation of $H^\infty(E)$ on H by $X \mapsto X \otimes I_K$.

It is $\sigma \times \zeta$ for $\sigma(a) = \varphi_\infty(a) \otimes I_K$ and $\zeta(\xi \otimes h) = (T_\xi \otimes I_K)h$.

Note that $\|\zeta\| = 1$ and $\zeta \in AC(\sigma)$.

When π is faithful of infinite multiplicity we write $\sigma_0 \times s_0$ for the induced representation. It is essentially independent of π and is a universal generator in the following sense.
Universal induced representation

Theorem

Let $\sigma \times \mathcal{F}$ be a c.c. representation of $\mathcal{I}_+(E)$ on H. Then the following are equivalent.

1. The representation $\sigma \times \mathcal{F}$ extends to a c.c. ultra weakly continuous representation of $H^\infty(E)$ (that is, $\mathcal{F} \in AC(\sigma)$).

2. $H = \bigvee \{\text{Ran}(C) : C \in \mathcal{I}(\sigma_0 \times s_0, \sigma \times \mathcal{F})\}$.

Here $\mathcal{I}(\sigma_0 \times s_0, \sigma \times \mathcal{F})$ is the space of all maps from H_{σ_0} to H_σ that intertwine the representations $\sigma_0 \times s_0$ and $\sigma \times \mathcal{F}$.

Partial results: Douglas (69), Davidson-Li-Pitts (05).
The families of functions

Given $F \in H^\infty(E)$, we define a family $\{\hat{F}_\sigma\}_{\sigma \in NRep(M)}$ of (operator valued) functions. Each function \hat{F}_σ is defined on $\mathcal{AC}(\sigma)$ (or on $\mathbb{D}(0, 1, \sigma)$) and takes values in $B(H_\sigma)$:

$$\hat{F}_\sigma(\zeta) = (\sigma \times \zeta)(F).$$

Here $NRep(M)$ is the set of all normal representations of M. Note that the family of domains (either $\{\mathcal{AC}(\sigma)\}$ or $\{\mathbb{D}(0, 1, \sigma)\}$) is a matricial family in the following sense.

Definition

A family of sets $\{U(\sigma)\}_{\sigma \in NRep(M)}$, with $U(\sigma) \subseteq \mathcal{I}(\varphi \otimes I, \sigma)$, satisfying $U(\sigma) \oplus U(\tau) \subseteq U(\sigma \oplus \tau)$ is called a **matricial family of sets**.
Definition

Suppose \(\{ \mathcal{U}(\sigma) \}_{\sigma \in \text{NRep}(M)} \) is a matricial family of sets and suppose that for each \(\sigma \in \text{NRep}(M) \), \(f_\sigma : \mathcal{U}(\sigma) \rightarrow B(H_\sigma) \) is a function. We say that \(f := \{ f_\sigma \}_{\sigma \in \text{NRep}(M)} \) is a matricial family of functions in case for every \(z \in \mathcal{U}(\sigma) \), every \(w \in \mathcal{U}(\tau) \) and every \(C \in \mathcal{I}(\sigma \times z, \tau \times w) \), we have

\[
Cf_\sigma(z) = f_\tau(w)C
\] (1)

Theorem

For every \(F \in H^\infty(E) \), the family \(\{ \hat{F}_\sigma \} \) is is a matricial family (on \(\{ \mathcal{AC}(\sigma) \} \)).

Conversely, if \(f = \{ f_\sigma \}_{\sigma \in \text{NRep}(M)} \) is a matricial family of functions, with \(f_\sigma \) defined on \(\mathcal{AC}(\sigma) \) and mapping to \(B(H_\sigma) \), then there is an \(F \in H^\infty(E) \) such that \(f \) is the Berezin transform of \(F \), i.e., \(f_\sigma = \hat{F}_\sigma \) for every \(\sigma \).
Notation: For $\mathcal{z} \in \mathcal{I}(\mathcal{v} \otimes I, \sigma)$ and $k \geq 1$,
$Z_k(\mathcal{z}) = \mathcal{z}(I_E \otimes \mathcal{z}) \cdots (I_{E \otimes k-1} \otimes \mathcal{z}) \in \mathcal{I}(\mathcal{v}_{E \otimes k} \otimes I, \sigma)$.

For a sequence $\theta = \{\theta_k\}$, with $\theta_k \in E \otimes^k$,
$L_{\theta_k} : H \rightarrow E \otimes^k \otimes H, \quad L_{\theta_k} h = \theta_k \otimes h$

and $R(\theta) = (\lim \sup_{k \to \infty} \|\theta_k\|_1^k)^{-1}$. (Popescu)

Theorem

If $f = \{f_{\sigma}\}_{\sigma \in N\text{Rep}(M)}$ is a family of functions, with f_{σ} mapping $\mathbb{D}(0, 1, \sigma)$ to $B(H_\sigma)$, then f is a matricial family of functions if and only if there is a formal tensor series θ with $R(\theta) \geq 1$ such that f is the family of tensorial power series determined by θ; that is,

$$f_{\sigma}(\mathcal{z}) = \sum_{k \geq 0} Z_k(\mathcal{z}) L_{\theta_k}.$$

Moreover, $f = \hat{F}$ for some $F \in H^\infty(E)$ if and only if

$$\sup\{\|f_{\sigma}(\mathcal{z})\| \mid \sigma \in N\text{Rep}(M), \mathcal{z} \in \mathbb{D}(0, 1, \sigma)\} < \infty. \quad (2)$$
Function theory without a generator

Now we fix an additive subcategory Σ of $NRep(M)$ that do not necessarily contain a special generator. Then

Theorem

Suppose that $f = \{f_\sigma\}_{\sigma \in \Sigma}$ is a matricial family of functions defined on $\{\mathbb{D}(0,1,\sigma)\}$ that is locally uniformly bounded in the sense that for each $r < 1$, $\sup_{\sigma \in \Sigma} \sup_{z \in \mathbb{D}(0,r,\sigma)} \|f_\sigma(z)\| < \infty$. Then:

1. Each f_σ is Frechet analytic on $\mathbb{D}(0,1,\sigma)$ and

 $$f_\sigma(z) = \sum_{n=0}^{\infty} \frac{1}{n!} D^n f_\sigma(0)(z).$$

2. If the subcategory is full and if each $\sigma \in \Sigma$ is faithful, then there is $\theta = \{\theta_k\}$ with $R(\theta) \geq 1$ and

 $$f_\sigma(z) = \sum_{k \geq 0} Z_k(z) L_{\theta_k}$$
Now we discuss another expansion: the Taylor-Taylor series. We first need the following.

Theorem

Let \(f = \{f_\sigma\} \in \Sigma \) be a matricial family of functions defined on a matricial family \(\{U(\sigma)\} \in \Sigma \) where \(\Sigma \) is an additive subcategory of \(N\text{Rep}(M) \). Suppose \(\sigma, \tau \in \Sigma, \ z \in U(\sigma), \ w \in U(\sigma) \) and \(u \in I(\varphi \otimes_\tau I, \sigma) \) are such that \(\left(\begin{array}{cc} z & u \\ 0 & w \end{array} \right) \in U(\sigma \oplus \tau) \). Then there is an operator \(\Delta f_{\sigma, \tau}(z, w)(u) \in B(H_\tau, H_\sigma) \) such that

\[
\begin{array}{ccc}
\sigma \oplus \tau & (z & u) \\
0 & 0 & w
\end{array}
\begin{array}{c}
\Delta f_{\sigma, \tau}(z, w)(u)
\end{array}
\begin{array}{c}
f_\sigma(z)
\end{array}
\begin{array}{c}
f_\tau(w)
\end{array}
\]

Also, the map \(u \mapsto \Delta f_{\sigma, \tau}(z, w)(u) \) is linear.
Similarly, we write $\Delta^n f_{\sigma_0, \sigma_1, \ldots, \sigma_n}(z_0, \ldots, z_n)(u_1, \ldots, u_n)$ for the operator on the top-right corner of the matrix obtained by

$$f_{\sigma_0 \oplus \sigma_1 \oplus \cdots \oplus \sigma_n}(\begin{pmatrix} z_0 & u_1 & 0 & \cdots & 0 \\ 0 & z_1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & z_{n-1} & u_n \\ 0 & \cdots & \cdots & 0 & z_n \end{pmatrix})$$ (3)

This map is multilinear in u_1, \ldots, u_n.

Definition

The function $\Delta^n f_{\sigma_0, \sigma_1, \ldots, \sigma_n}(z_0, \ldots, z_n)$ of u_1, u_2, \cdots, u_n defined above will be called the n^{th}-order Taylor difference operator determined by z_0, z_1, \ldots, z_n. If $z_0 = z_1 = \cdots = z_n = z$, we call $\Delta^n f_{\sigma, \sigma, \ldots, \sigma}(z, z, \ldots, z) := \Delta^n f_\sigma(z)$ the n^{th}-order Taylor derivative of f_σ at z.
Theorem (T-T Series)

Let \(f = \{ f_\sigma \}_{\sigma \in \Sigma} \) be a matricial family of functions defined on a matricial disc \(\mathbb{D}(0, r) \) (= \(\{ \mathbb{D}(0, r, \sigma) \}_{\sigma} \)) and suppose that \(f \) is locally uniformly bounded. Then:

1. Each \(f_\sigma \) is Frechet differentiable in \(\zeta, \zeta \in \mathbb{D}(0, r, \sigma) \), and
 \[
 f'_\sigma(\zeta)(\omega) = \Delta f(\zeta)(\omega).
 \]

2. \[
 D^k f_\sigma(0)(\omega) = k! \Delta^k f_\sigma(0)(\omega).
 \]

3. Each \(f_\sigma \) may be expanded on \(\mathbb{D}(0, r, \sigma) \) as
 \[
 f_\sigma(\zeta) = \sum_{k=0}^{\infty} \Delta^k f_\sigma(0)(\zeta, \ldots, \zeta),
 \]
 (4)

where the series converges absolutely and uniformly on every disc \(\mathbb{D}(0, r_0, \sigma) \) with \(r_0 < r \).
Suppose that E and F are two W^*-correspondences over M and that $f = \{ f_\sigma \}_\sigma$ is a family of maps, with $f_\sigma : AC(\sigma, E) \to AC(\sigma, F)$. Then f is a matricial family of maps (that is, preserves intertwiners) if and only if there is an ultraweakly continuous homomorphism $\alpha : H^\infty(F) \to H^\infty(E)$ such that for every $\hat{z} \in AC(\sigma, E)$ and every $\hat{Y} \in H^\infty(F)$,

$$\hat{\alpha}(\hat{Y})(\hat{z}) = \hat{Y}(f_\sigma(\hat{z})).$$

(5)
Given two correspondences E, F over M, we will write $M\mathcal{L}_M(E, F)$ for the maps in $\mathcal{L}(E, F)$ that are bimodule maps. That is, $T \in \mathcal{L}(E, F)$ lies in $M\mathcal{L}_M(E, F)$ if and only if $T(\varphi_E(a)\xi b) = \varphi_F(a)T(\xi)b$, for all $a, b \in M$.

Theorem

Let E and F be two W^*-correspondences over the same W^*-algebra, M, and suppose Σ is a full additive subcategory of $N\text{Rep}(M)$ whose objects are all faithful representations of M. If $f = \{f_\sigma\}_{\sigma \in \Sigma}$ is a matricial family of maps, mapping a disc $\mathbb{D}(0, r, \sigma, E)$ to a disc $\mathbb{D}(0, R, \sigma, F)$, then there is a uniquely defined sequence of maps $\{\mathcal{D}^k f\}_{k=0}^\infty$, where for each k, $\mathcal{D}^k f$ lies in $M\mathcal{L}_M(F, E \otimes^k)$, such that for every $\zeta \in \mathbb{D}(0, r, \sigma, E)$,

$$f_\sigma(\zeta) = f_\sigma(0) + \sum_{k \geq 1} Z_k(\zeta)(\mathcal{D}^k f \otimes I_{H_\sigma}). \quad (6)$$

Thank You!