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Inner function: I : D→ D analytic with radial limits of modulus 1
a.e.

Definition

An inner function I is indecomposable or prime if whenever
I = U ◦ V with U and V inner, either U or V is a disk
automorphism.

Question: Which inner functions can be prime?

Motivation from composition operators: CΦ : X → X defined by
CΦ(f ) = f (Φ).



One reason to care

Range of composition operators:

Theorem (J. Ball, 1975; K. Stephenson 1979, (revised))

Let X be any Hp space, 0 < p ≤ ∞. and let M be a linear
submanifold of X that is closed under uniform convergence on
compact subsets of D. Then M = CΦ(X ) for some inner function
Φ, if and only if M has the following properties:

1 M contains a nonconstant function.

2 If f , g ∈ M and f · g ∈ X (resp. f /g ∈ X ), then f · g ∈ M
(resp. f /g ∈ M).

3 If f ∈ M and I is the inner factor of f , then I ∈ M.

4 M contains g.c.d. {B ∈ M : B inner B(0) = 0}.



First: Finite Blaschke products

B(z) = λ

n∏
j=1

aj − z

1− ajz
, where |aj | < 1, |λ| = 1;ϕa(z) =

a− z

1− az
.

1922-3, J. Ritt reduced to result about groups (Trans. AMS): F is
a composition iff the group of F−1(w) is imprimitive.

1974: Carl Cowen gave result for rational functions. (ArXiv)

The group: Associated with the set of covering transformations of
the Riemann surface of the inverse of the Blaschke product;
Compositions correspond to (proper) normal subgroups.

2000, JLMS Beardon, Ng simplified Ritt’s work,
2011 Tsang and Ng, Extended to finite mappings between
Riemann surfaces



Basic Assumptions

B has distinct zeros.

ϕa(z) = (a− z)/(1− az)

B is indecomposable iff ϕB(0) ◦ B is, so we suppose B(0) = 0.

B = C ◦D with C ,D Blaschke iff B = (C ◦ϕD(0)) ◦ (ϕD(0) ◦D) is.
So we suppose B(0) = C (0) = D(0) = 0.

Nice consequence: C (z) = zC1(z);
B(z) = C (D(z)) = D(z)(C1(D(z))) and D is a subfactor of B.
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Algorithm 1: Try all sets of zeros (B degree n, B(0) = 0)

Is B(z) = C ◦ D(z)?

degree(D) = k , degree(C ) = m, degree(B) = mk = n

Pick subsets of size k to be the zeros of D (include 0) D is
k − to− 1 so D partitions the zeros of B into m sets of k points.
You’re done.

Theorem (Algorithm 1.)

B = C ◦ D with D degree k iff there is a subproduct D of B of
degree k that identifies the zeros of B in m sets of k points.

But you don’t know anything about your Blaschke product.
Won’t work for infinite Blaschke products.



Algorithm 2: Critical Points (B degree n, B(0) = 0)

Critical point: B ′(z) = 0; critical value w = B(z),B ′(z) = 0.

Theorem (Heins, 1942; Zakeri, BLMS 1998)

Let z1, . . . , zd ∈ D. There exists a unique Blaschke B, degree
d + 1, B(0) = 0, B(1) = 1, and B ′(zj) = 0, all j .

Corollary (Nehari, 1947; Zakeri)

Blaschke pdts. B1,B2 have the same critical pts. iff B1 = ϕa ◦ B2

for some automorphism ϕa.

Remark. B with distinct zeros has 2n − 2 critical points,

only
n − 1 are in D: {z1, . . . , zn−1, 1/z1, . . . , 1/zn−1}: B has ≤ n − 1
critical values in D.
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Algorithm 2: Counting critical values

B = C ◦ D =⇒ B ′(z) = C ′(D(z))D ′(z); D has k − 1 critical
points, D partitions the others into m − 1 sets.

Theorem

B = C ◦ D iff there exists a subproduct D of B sharing k − 1
critical pts. with B that partitions the others into m − 1 sets.

B can have at most (k − 1)

+ (m − 1) critical values.
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Which one is a composition?

Note: Argument chooses the color

Figure: Blaschke products of degree 16

The one on the left. (Right has 7 critical values, but the
composition has to be degree 4 and degree 4.)
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Algorithm 3: Geometry (B(0) = 0, B degree n = mk)

Theorem (Poncelet’s porism)

Let C and D be two ellipses. If C is inscribed in one n-gon with
vertices on D, then C is inscribed in every n-gon with vertices on D.

















Other things want to be Poncelet curves:

Figure: Acts like a Poncelet curve

Definition

C ⊂ D is a Poncelet curve if whenever C is inscribed in one n-gon
with vertices on T, every λ ∈ T is the vertex of such an n-gon.



Work of Gau-Wu and Daepp, G., Voss implies

Theorem

Every Blaschke product B, B(0) = 0 degree n, is associated with a
unique such Poncelet curve; B identifies the vertices of the n-gon.

Applet: Duncan Gillis, Keith Taylor, Thanks to Banach Algebras
2009 http://www.mscs.dal.ca/~kft/Blaschke/

http://www.mscs.dal.ca/~kft/Blaschke/


Can we pair Poncelet curves with Blaschke products?

No: Every Blaschke product is associated with a Poncelet curve,
but not every Poncelet curve is associated with a Blaschke
product. Those that are will be called B-Poncelet curves.

Theorem (DGSSV)

B = C ◦ D with D degree k iff there is a B-Poncelet curve C such
that if B identifies {z1, . . . , zn} ∈ T ordered with increasing
argument, then C is inscribed in the polygon formed joining every
m-th pt.

This needs a new applet! http://lexiteria.com/~ashaffer/

blaschke_loci/blaschke.html.

http://lexiteria.com/~ashaffer/blaschke_loci/blaschke.html
http://lexiteria.com/~ashaffer/blaschke_loci/blaschke.html


Which one is a composition?

The Poncelet curve associated to a degree-3 Blaschke product is
an ellipse:

Figure: Blaschke products of degree 9



Which one is a composition?

The Poncelet “2-curve” associated with a Blaschke product is a pt.

Figure: Blaschke products of degree 8

What you see: Density of indecomposable Blaschke products in the
set of finite Blaschke products.



COMMERCIAL BREAK

Figure: thanks to G. Semmler and E. Wegert

For more info see: E. Wegert, Visual Complex Functions, 2012
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Otto Frostman

Otto Frostman received his B. Sc. degree from Lund University in
Sweden, where he pursued graduate studies under the younger of
the two Riesz brothers, Marcel Riesz.

Theorem 1 from Frostman’s thesis, Potential d’équilibre et
capacité des ensembles avec guilques applications á la théorie des
fonctions, Medd. Lunds Univ. Mat. Sem. 3, 1935.

Theorems 2 and 3, Sur les produits de Blaschke, Knugl.
Fysiografiska Sällskapets I Lund Förhandlingar, 1942.



Three Theorems of Frostman: Theorem 1

I inner, analytic on D, radial limits of modulus 1 a.e. on D;

I = BS , B (infinite) Blaschke, S inner with no zeros in D.

Theorem

Let I be an inner function. Then for all a ∈ D, except possibly a
set of capacity zero, ϕa ◦ I is a Blaschke product.



Figure: Mystery function



The atomic singular inner function: For better or for worse

Figure: Atomic singular inner function

S(z) = exp
(

1+z
1−z

)
; ϕa ◦ S is a Blaschke product for all a 6= 0.

But not at 0, of course.



Doing the Frostman shift

Theorem (Frostman’s First Theorem)

Let I be an inner function. Then for all a ∈ D, except possibly a
set of capacity zero, ϕa ◦ I is a Blaschke product.

Singular inner functions are rare:

Theorem (S. Fisher)

Let F be a bounded analytic function. The set of w for which
F (z)− w has a singular inner factor has logarithmic capacity zero.

When is the Frostman shift of a Blaschke product a Blaschke
product?



Indestructible Blaschke products

Some Blaschke products are indestructible: ϕa ◦ B is always a
Blaschke products.

Clever name due to Renate McLaughlin (1972) gave necessary and
sufficient conditions;

Morse (1980): Example of a destructible Blaschke product that
becomes indestructible when you delete a single zero.

Examples:

1 Finite Blaschke products;

2 Thin Blaschke products: limn(1− |zn|2)|B ′(zn)| = 1;

3 (Kraus & Roth, 2013) Compositions of indestructible
Blaschke products; decompositions of indestructible Blaschke
products are too.
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Non-examples

Recall: B zeros (zn), interpolating if infn(1−|zn|2)|B ′(zn)| > δ > 0

Alt:

inf
n:n 6=m

∏
j

∣∣∣∣ zn − zm
1− zmzn

∣∣∣∣ > δ > 0.

S , the atomic singular inner fcn, ϕa ◦ S interpolating for a 6= 0.

Note the difference:

infn(1− |zn|2)|B ′(zn)| > δ > 0 can be destructible;
limn(1− |zn|2)|B ′(zn)| = 1 indestructible.
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Frostman’s second theorem

Theorem

Let B be an (infinite) Blaschke product with zeros (an). Then B
and all of B’s subproducts have radial limit of modulus one at
λ ∈ T iff

∞∑
j=1

1− |aj |2

|1− ajλ|
<∞,

Most important set satisfying this condition:

Definition

A Blaschke product is a uniform Frostman Blaschke product if

sup
λ∈T

∞∑
j=1

1− |aj |2

|1− ajλ|
<∞.
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Examples of UFB?

“Specific examples of Blaschke products in UFB are somewhat
difficult to come by.” –Cima, Matheson, Ross

(Specific Example): 0 < rn < 1, 0 < θn < 1,

sup

(
θn+1

θn

)
< 1

and
∞∑
n=1

1− rn
θn

<∞

then (rne iθn) is the zero sequence of a UFB.

Is there a condition depending just on the moduli, like there is for
Blaschke products; i.e.,

∑
n(1− |an|)? No.
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If you are allowed to rotate zeros of a Blaschke product, can you
always rotate the zeros to obtain a UFB?

Definition

A Blaschke product is a uniform Frostman Blaschke product if

sup
λ∈T

∞∑
j=1

1− |aj |2

|1− ajλ|
<∞.

(Naftalevitch) You can always rotate to get an interpolating
Blaschke product; infn(1− |zn|2)|B ′(zn)| ≥ δ > 0.

(Chalendar, Fricain, Timotin) You can always rotate to get a thin
Blaschke product; limn(1− |zn|2)|B ′(zn)| = 1.
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Theorem (Vasyunin)

B ∈ UFB with zeros (zn) =⇒
∑

n(1−|zn|) log(1/(1−|zn|)) <∞.

Theorem (Akeroyd, G)

Let (rn)∞n=1 nondecreasing sequence in [0, 1). For there to exist a
B ∈ UFB with zeros (zn) having |zn| = rn, it is sufficient that there
exists ε > 0 such that the following sum converges:

∞∑
n=1

(1− rn) log(e/(1− rn))[log(log(3/(1− rn)))]ε.



Putting the two theorems together

Definition

A Blaschke product is a UFB if

sup
λ∈T

∞∑
j=1

1− |aj |2

|1− ajλ|
<∞.

Recall: Theorem 1 said ϕa ◦ I is almost always a Blaschke product.

Question 1. If B is a uniform Frostman Blaschke product, is ϕa ◦B
a Blaschke product?
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We do!

Definition

µ finite Borel measure (∈ M), the Cauchy transform of µ is

(1) (Kµ)(z) =

∫
T

1

1− ξz
dµ(ξ), z ∈ D

K = {Kµ : µ finite Borel measure} space of Cauchy transforms.

‖f ‖K = inf{‖µ‖ : µ ∈ M and (1) holds}.

Definition

φ analytic on D is a multiplier if f ∈ K =⇒ φf ∈ K.

Theorem (Hruščev, Vinagradov, 1980)

UFB is the set of inner functions that are multipliers of K.



Three ways of looking at it:

• If B ∈ UFB, can B be the composition of two infinite Blaschke
products? (1994, G, Laroco, Mortini, Rupp)

• When can a composition of multipliers be a multiplier?

• Can a UFB be in the range of a composition operator with a
discontinuous inner symbol?



Theorem (Matheson and Ross, CMFT 2007)

If B ∈ UFB, then ϕa ◦ B ∈ UFB for all a ∈ D.

“You can’t Frostman shift your way into (or out of) the class UFB”

Consequence:
We know finite Blaschke products and thin Blaschke products are
indestructible. M & R tell us that UFBs are too.



Theorem (Matheson and Ross, CMFT 2007)

If B ∈ UFB, then ϕa ◦ B ∈ UFB for all a ∈ D.

“You can’t Frostman shift your way into (or out of) the class UFB”

Consequence:
We know finite Blaschke products and thin Blaschke products are
indestructible. M & R tell us that UFBs are too.



Stronger statement: If you post-compose a UFB with ϕa you get a
UFB; what if you postcompose with an infinite Blaschke product?

Example (Akeroyd, G.)

There exists B ∈ UFB such that B ◦ B ∈ UFB.

How do you do it?

Fact: If you’re an inner function close (uniformly) to a UFB, you’re
a UFB. Create B so that on a “hot spot”

B ◦ B =
∏
j

B − aj
1− ajB

∼ λk
B − ak

1− akB
,

a Frostman shift of a UFB.
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One more theorem of Frostman

Definition

We say B has angular derivative at λ ∈ T if for some η ∈ T the
nontangential limit ∠ limz→λ

B(z)−η
z−λ exists and is finite.

Theorem

A Blaschke product B has angular derivative at a point λ ∈ T iff

∞∑
j=1

1− |aj |2

|1− ajλ|2
<∞.

Fact: If you’re an inner function uniformly close to a BP with finite
angular derivative at λ, you have finite angular derivative at λ too.



Coincidences?

Thin products: Indestructible,

close to thin =⇒ thin, finite
products of interpolating Blaschke products, “close to finite”

UFB: Indestructible, close to UFB =⇒ UFB, finite product of
interpolating, feel close to finite and...
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Finite angular derivative:

Theorem

A Blaschke product B has angular derivative at a point λ ∈ T iff

∞∑
j=1

1− |aj |2

|1− ajλ|2
<∞.

Theorem (Gallardo-Gutierrez, G.)

Let C be a Blaschke product invertible in H∞[B] where B has
finite angular derivative at λ ∈ D. Then C does too.
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