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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Weighted unilateral shifts: {en}∞n=0 is an ONB in H, {wn}∞n=1 ⊆ C
bounded weight-sequence

W : H → H, Wen = wn+1en+1.

Weighted bilateral shifts: {en}∞n=−∞ is an ONB in H,
{wn}∞n=−∞ ⊆ C bounded weight-sequence

W : H → H, Wen = wn+1en+1.

Weighted backward shifts: {en}∞n=0 is an ONB in H, {wn}∞n=0 ⊆ C
bounded weight-sequence

W : H → H, Wen =

{
wn−1en−1 if n > 0,

0 if n = 0.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Graphs can be associated to these operators:

Sometimes we write the weights on the edges.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Why we investigate shift operators?

Simple structure.

They provide examples for many questions.

After normal operators they are the best test operators.

A natural generalization: replace the previous graphs with
directed trees and write some weights in the vertices which are not
roots. −→ This will naturally de�ne a �tree-shift operator�.

They were recently introduced in: Z. J. Jablonski, I. B. Jung and
J. Stochel, Weighted Shifts on Directed Trees, Memoirs of the
American Mathematical Society, Number 1017, 2012.

(hyponormality, co-hyponormality, subnormality and
hyperexpansivity � simpler examples than before)
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Directed Trees and Treeshift Operators

T = (V ,E ) is a directed graph, V ≡ vertices, E ≡ (directed) edges
E ⊆ V × V \ {(v , v) : v ∈ V }. T is a directed tree if

(i) T is connected, i.e.: ∀ u, v ∈ V , u 6= v ∃
u = v0, v1, . . . vn = v ∈ V , n ∈ N s. t. (vj−1, vj) or
(vj , vj−1) ∈ E for every 1 ≤ j ≤ n.

(ii) For each vertex v there exists at most one other vertex u with
the property that (u, v) ∈ E (i.e. every vertex has at most one
parent), and

(iii) T has no (directed) circuit, i.e.: @ v0, v1, . . . vn ∈ V , n ∈ N
distinct vertices s. t. (vj−1, vj) ∈ E ∀ 1 ≤ j ≤ n and
(vn, v0) ∈ E .

If (u, v) ∈ E , then v is a child of u, u is the parent of v .
In notations: v ∈ Chi(u), parT (v) = par(v) = u.
ChiT (u) = Chi(u) ≡ the set of all children of u.
If v has a parent, then it is unique.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Directed Trees and Treeshift Operators

park(v) := par(. . . (par︸ ︷︷ ︸
k-times

(v)) . . . ) if it makes sense,

and par0 is the identity map.

If u has no parent −→ root. If there exists one, then it is unique
u := root = rootT .

If Chi(u) = ∅ −→ leaf. Lea(T ) ≡ the set of all leaves.

If W ⊆ V , then Chi(W ) := ∪v∈WChi(v),

GenT (u) = Gen(u) =
⋃∞

n=0

(⋃n
j=0Chi

j(parj(u))
)
is the

(whole) generation or the level of u.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Directed Trees and Treeshift Operators

Bounded Tree-shift Operator

`2(V ): complex Hilbert space of all square summable functions.
The natural inner product:

〈
f , g
〉
=
∑

u∈V f (u)g(u).
eu(v) = δu,v (u ∈ V ), {eu}u∈V ONB.
W ⊆ V −→ `2(W ) = ∨{ev : v ∈W } which is a subspace (closed
linear manifold).

Let λ = {λv : v ∈ V \ {root}} ⊆ C (v ∈ V if T is rootless) be a

set of weights sup
{√∑

v∈Chi(u) |λv |2 : u ∈ V
}
<∞

Sλ : `
2(V)→ `2(V), eu 7→

∑
v∈Chi(u)

λvev,

‖Sλ‖ = sup


√ ∑

v∈Chi(u)

|λv |2 : u ∈ V


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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Asymptotic Behaviour of Hilbert Space Contractions

H: complex Hilbert space, B(H): bounded linear operators on it.
Suppose T ∈ B(H) is a contraction: ‖T‖ ≤ 1,
then the following SOT-limits exist:

A = AT = lim
n→∞

T ∗nT n and A∗ = AT∗ = lim
n→∞

T nT ∗n.

A: the asymptotic limit of T , A∗: the asymptotic limit of T ∗.

h ∈ H is a stable vector for T , if limn→∞ ‖T nh‖ = 0. The set of
all stable vectors: H0 = H0(T ) = N (AT ).
H0 is a hyperinvariant subspace of T and will be called the stable
subspace of T .
(a subspace is hyperinvariant for T if it is invariant for every C

commuting with T )
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Asymptotic Behaviour of Hilbert Space Contractions

A Classi�cation of Contractions

If every vector is stable, then T is stable or of class C0·.
If H0 = {0}, then T is of class C1·.

If T ∗ ∈ Ci ·(H) (i = 0 or 1), then T is of class C·i .
Cij(H) = Ci ·(H) ∩ C·j(H).

Because H0(T ) or H0(T
∗)⊥ is hyperinvariant, if

T /∈ C00 ∪ C10 ∪ C01 ∪ C11, then it has a non-trivial hyperinvariant
subspace (C11 can be also handled).
For C11 contractions there is a nice structure result (C. Foias and
B. Sz.-Nagy )
So the hyper-invariant subspace problem is only open in the classes
C00,C10,C01.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Asymptotic Behaviour of Hilbert Space Contractions

X ∈ B(H,R(AT )
−),Xh = A

1/2
T h.

There exists a unique isometry U ∈ B(R(AT )
−) s. t.

XT = UX .

The pair (X ,U) is a canonical realization of the so called isometric
asymptote of T .
(There is a more general de�nition, but we will not use it)
(Important because of the (hyper)invariant subspace problem)

Application 1 (C. Foias and B. Sz.-Nagy):

With the isometric asymptote we can prove that a contraction T

from the class C11 are quasi-similar to a unitary operator.
T ∼ U (quasi-similar), if ∃ X ,Y ∈ B(H) with dense range and
trivial kernel s. t. XT = UX and YU = TY .
(If they are similar, then Y = X−1).

György Pál Gehér Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators



Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Introduction, Motivation

Asymptotic Behaviour of Hilbert Space Contractions

h ∈ H is a cyclic vector for T ∈ B(H)

∨{T nh : n ∈ Z+} = H.

Then T is cyclic operator.

Application 2:

If U is not cyclic and T ∈ C1·(H) =⇒ T is also non-cyclic.

If U∗ is cyclic and T ∈ C1·(H) =⇒ T ∗ is also cyclic.

A consequence: Every contractive C·1 weighted bilateral shift is
cyclic.

Application 3:

T is similar to an isometry ⇐⇒ AT is invertible.
T is similar to a unitary ⇐⇒ both A and A∗ are invertible.
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

W.L.o.G. we can and we will assume in the talk that all weights are
strictly positive and H is separable (|V | ≤ ℵ0).

Theorem

Let Sλ be a tree-shift contraction. Then the asymptotic limit A is a

positive operator s. t.

Aeu = αueu ∀ u ∈ V ,

where αu = limn→∞
∑

v∈Chin(u)
∏n−1

j=0 λ
2
parj (v)

.
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Corollary

If V ′ = {v ′ ∈ V : ev ′ /∈ H0}, then H0 = `2(V \ V ′) and
H⊥0 = `2(V ′).

Proposition

The followings are valid for every vertex u ∈ V :

(i) u /∈ V ′ =⇒ Chi(u) ⊆ V \ V ′,
(ii) u /∈ V ′ ⇐⇒ Chi(u) ⊆ V \ V ′; this is ful�lled in the special

case when u is a leaf,

(iii) u ∈ V ′ =⇒ park(u) ∈ V ′, ∀ k ∈ Z+,

(iv) T ′ = (V ′,E ′ = E ∩ (V ′ × V ′)) is a lea�ess subtree,

(v) if T has no root, neither has T ′, and
(vi) if T has a root, then either Sλ ∈ C0·(`

2(V )) or
rootT = rootT ′ .
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Theorem

If Sλ is a tree-shift contraction, then

(i) If T has a root, then Sλ ∈ C·0(`
2(V )).

(ii) If T is rootless, then H0(S
∗
λ)
⊥ = ∨{hu : u ∈ V } where

hu =
∑

v∈Gen(u)

∞∏
j=0

λparj (v) · ev ∈ `2(V ).

hu = hv ⇐⇒ v ∈ Gen(u) and hu are eigen-vectors:

A∗hu = auhu ∀ u ∈ V with the corresponding eigen-values

au = ‖hu‖2 =
∑

v∈Gen(u)

∞∏
j=0

λ2
parj (v).

So, every level has one such hu. Moreover, if hu is not zero for

a vertex u, then it is not zero for every u ∈ V .
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Br(T ) =
∑
u∈V

u/∈Lea(T )

(|Chi(u)| − 1) is the branching index of T .

S+ is the simple unilateral shift (all weights are 1) and S is the
simple bilateral shift. They can be represented as multiplication
operators by χ(z) = z on H2(T) and L2(T), respectively.

The isometry T ∈ B(H) is called completely non-unitary (c.n.u. for
short) if the only reducing subspace on which T acts as a unitary
operator is the trivial one: {0}.
An isometry is c.n.u i� it is an orthogonal sum of simple unilateral
shifts.
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Theorem

For a non-C0· tree-shift contraction Sλ ∈ `2(V ), the isometric

asymptote U ∈ B(`2(V ′)) is unitarily equivalent to:

(i)
∑Br(T ′)+1

j=1 ⊕S+, if T has a root,

(ii)
∑Br(T ′)

j=1 ⊕S+, if T has no root and U is a c.n.u. isometry, i.e.:∑
v ′∈GenT ′ (u′)

∏∞
j=0 β

2
parj (v ′)

= 0 for some (and then for every)

u′ ∈ V ′,

(iii) S ⊕
∑Br(T ′)

j=1 ⊕S+, if T has no root and U is not a c.n.u.

isometry.
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Theorem

Suppose that the contractive tree-shift operator Sλ is not in the

class C·0. Then T has no root and the isometry U∗ acts as follows:

U∗hu =

√
au

√
apar(u)

· hpar(u),

where hu 6= 0 for every u ∈ V . In fact U∗ is a simple unilateral

shift, if Chi(Gen(u)) = ∅ for some u ∈ V , and a simple bilateral

shift elsewhere.

György Pál Gehér Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators
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Asymptotic Limits and Isometric Asymptotes of Tree-shift Operators

Corollary

Consider the tree-shift contraction Sλ. Then the followings hold

(i) Sλ is similar to an isometry if and only if inf{αu : u ∈ V } > 0.

(ii) Sλ is similar to a co-isometry if and only if it is a bilateral

weighted shift with
∏∞

j=−∞ λj > 0, or it is a unilateral

weighted backward shift with
∏∞

j=0 λj > 0. Then it is similar

to the simple bilateral or the simple backward shift operator,

respectively.
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Cyclic Properties

Cyclicity of Tree-shift Operators

Easy to see: If co− dim(R(T )−) > 1 =⇒ T has no cyclic vectors.

⇓

if T has a root and Br(T ) > 0 =⇒ Sλ has no cyclic vectors,

if T is rootless and Br(T ) > 1 =⇒ Sλ has no cyclic vectors.

The pure tree-shift case is when Br(T ) = 1 and T has no root.
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Cyclic Properties

Cyclicity of Tree-shift Operators

Br(T ) = 0 =⇒ Sλ is

a weighted bilateral shift (no characterization for cyclicity is
known) (for supercyclicity, hypercyclicity . . . there are
characterizations),

a weighted unilateral shift (easy: always cyclic),

a weighted backward shift (always cyclic, later),

a cyclic nilpotent operator acting on a �nite dimensional space.

There are cyclic and non-cyclic bilateral shifts, see:
A. L. Shields, Weighted shift operators and analytic function
theory, Topics in Operator Theory, Math. Surveys 13, Amer. Math.
Soc., Providence, R. I., 1974, 49�128.
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Asymptotic Behaviour and Cyclic Properties of Tree-shift Operators

Cyclic Properties

Cyclicity of Tree-shift Operators

Theorem

Suppose that B is a weighted backward shift of countable

multiplicity. Then B is cyclic if and only if there is at most one zero

weight.

In case the multiplicity is 1 the was obtained by Z. Guang Hua in
1984 (written in Chinese).
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Cyclic Properties

Cyclicity of Tree-shift Operators

Theorem

If the directed tree T has no root, Br(T ) = 1 and have 2 leaves,

then every bounded tree-shift operator on it is cyclic.

Proof. Sλ is similar to a backward shift, which has at most one
zero weight. �
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Cyclic Properties

Cyclicity of Tree-shift Operators

Theorem

Suppose T has a unique leaf. A tree-shift operator Sλ on T is

cyclic if and only if the bilateral shift W with weights {λn}∞n=−∞ is

cyclic. In particular, if Sλ /∈ C·0(`
2(V )), then Sλ is cyclic.
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Cyclic Properties

Cyclicity of Tree-shift Operators

Proposition

The operator S ⊕ S+ has no cyclic vectors.

Theorem

Suppose that T is rootless and Br(T ) = 1. If the tree-shift

contraction Sλ is of class C1·, then it has no cyclic vectors.

Proof. The isometric asymptote of Sλ is unitarily equivalent to
S ⊕ S+. �

On this T the contrary may also happen.
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Cyclic Properties

Similarity to orthogonal sum of bi- and unilateral shifts

The graphs of Sλ and W

gk =
∏k

j=1
1
λj
· ek −

∏k
j=1

1
λj′
· ek ′ (k ∈ N) .
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Cyclic Properties

Similarity to orthogonal sum of bi- and unilateral shifts

Theorem

If
{∏k

j=1

λj′
λj

: k ∈ N
}
is bounded, then Sλ is similar to W .

Corollary

If Sλ /∈ C0·(`
2(V )), then it is similar to W .

Theorem

There is a tree-shift operator on the previous directed tree which is

cyclic.
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Cyclic Properties

Cyclicity of the Adjoint

S+
k := S+ ⊕ · · · ⊕ S+︸ ︷︷ ︸

k times

(k ∈ N),

S+
ℵ0 := S+ ⊕ S+ ⊕ . . .︸ ︷︷ ︸

ℵ0 many

.

Theorem

The operator S ⊕ (S+
k )∗ is cyclic for every k ∈ N.

Theorem

The followings are valid:

(i) If T has a root and the tree-shift contraction Sλ on it is of

class C1·, then S∗λ is cyclic.

(ii) If T is rootless, Br(T ) <∞ and the tree-shift contraction Sλ
on it is of class C1·, then S∗λ is cyclic.
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Cyclic Properties

Cyclicity of the Adjoint

Question

Is the operator S ⊕ (S+
ℵ0)
∗ cyclic?
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